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Abstract

A Thomas-Fermi model of a spherical shell of positive charge is investigated, under various
boundary conditions. The electron distribution and the ionization charge are given particular
attention.

The advent of the fullerene molecule[1] and the metallic clusters[2] have called the attention
upon the stability of new atomic micro-objects. One of them is described in this paper. As it is
known, the fullerene molecule C60 consists of 60 carbon atoms (C), arranged (in pentagons and
hexagons) on the surface of a sphere of radius ∼ 3.5 Å. Certain clusters, made of (relatively) a
small number of atoms (as, for example, alkali atoms), have been identified in solid-state matrices,
particularly in the octahedral interstices of face-centered cubic fullerites. They acquire regular
geometrical shapes, like tetrahedrons, or cubes, the latter being sometimes centered. We investigate
herein the stability of a Thomas-Fermi model suggested by these micro-objects.

As it is known, the Thomas-Fermi model starts with free electrons and assumes that, due to
the Pauli exclusion principle, there is a certain scale length over which their number, and their
effective interaction, vary slowly. It is a quasi-classical theory, and its validity is ensured by the
number of electrons being much greater than unity. Of course, at infinitely long distances the
theory is not valid, nor at very short distances where the Coulomb potential is singular. In the
case of an atom with the atomic number Z we know that the Thomas-Fermi model is not valid
for distances shorter than ∼ 1/Z. As in our case of the micro-objects presented above we are
interested in distances of the order of the size of large molecules, or of the order of the solid-
state distances, we may also neglect the variations over atomic scale lengths, i.e. over the Bohr
radius aH = h̄2/me2 = 0.53 Å (where m is the electron mass, e is the electron charge and h̄ is
the Planck’s constant). This allows one to treat the atoms in the above micro-objects as being
uniformly distributed over a spherical shell of radius R. In addition, one may assume that the
centre of the sphere is occupied by a nucleus of positive charge z0.

A positive charge z uniformly distributed over the surface of a sphere of radius R, and a central
positive charge z0, create an electric potential

V1(r) = z/R + z0/r , r < R , (1)

and

V2(r) = (z + z0) /r , r > R . (2)

An electric field

Es= (z/2 + z0) /R2 (3)
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acts outwardly on the spherical surface, which tends to blow the sphere up; and the electrostatic
energy of the object is

E0 = z (z/2 + z0) /R . (4)

The density of free electrons n is related by the Fermi wavevector kF through n = k3
F /3π2; the

local energy of the electrons should be a constant, for equilibrium,

h̄2

2m
k2

F − eϕ− eV = const , (5)

where ϕ is the electrostatic potential of the electron distribution, and V = V1,2 for r < R and
r > R, respectively. We shall assume that the electron distribution extends to infinity, in which
case const = 0 in (5). We shall also use the atomic units aH and e2/aH = 27.2 eV , which together
with h̄ = 1 give m = 1 and e2 = 1. Then, from (5), we have

n =
2
√

2

3π2
(ϕ + V )

3
2 (6)

and the Poisson equation reads

∆ (ϕ + V ) = 4πn =
8
√

2

3π
(ϕ + V )

3
2 (7)

for r 6= R; remark that ∆V = 0. Introducing the reduced variable x = r/R and

ϕ + V =
9π2

128R4

χ

x
, (8)

we get from (7) the Thomas-Fermi equation

x
1
2 χ

′′
= χ

3
2 . (9)

Since n is a continuous function ϕ and its two first derivatives are continuous; therefore χ has a
slope discontinuity (but itself is a continuous function), exactly as the derivative of V . Defining
χ1 = χ for x < 1 and χ2 = χ for x > 1, we have therefore

χ1(1) = χ2(1) . (10)

The number N(x) of electrons inside a sphere of radius x is easily obtained from

N(x) = 4πR3
∫ x

0
dx x2n =

9π2

128R3

∫ x

0
dx

(
xχ

′ − χ
)′

, (11)

whence

N1(x) =
9π2

128R3

[
xχ

′

1 − χ1 + χ1(0)
]

, x < 1 , (12)

and

N2(x) =
9π2

128R3

{
xχ

′

2 − χ2 +
[
χ
′

1(1)− χ
′

2(1)
]
+ χ1(0)

}
, x > 1 . (13)

We remark that N(x) is continuous at x = 1, and

N(1) =
9π2

128R3

[
χ
′

1(1)− χ1(1) + χ1(0)
]

. (14)
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As the system extends to infinity we have to assume that χ2(∞) = 0 (together with its derivatives),
so that the total number of electrons is given by

N =
9π2

128R3

[
χ
′

1(1)− χ
′

2(1) + χ1(0)
]

. (15)

The electric field E1(x) at x < 1, and the total charge q1(x) inside the sphere of radius x < 1,
are obtained easily from the Gauss’ law,

4πr2E1 = −4πRx2 ∂

∂x
(ϕ1 + V1) = 4π

9π2

128R3

(
χ1 − xχ

′

1

)
= 4πq1 , (16)

whence

q1 =
9π2

128R3

(
χ1 − xχ

′

1

)
, (17)

and

E1(x) =
q1(x)

R2x2
. (18)

Since q1 = z0 −N1, we obtain from (12) and (17)

z0 =
9π2

128R3
χ1(0) . (19)

Similarly, the electric field at x > 1 is E2(x) = q2(x)/R2x2 and the charge

q2 =
9π2

128R3

(
χ2 − xχ

′

2

)
, (20)

whence, by using (13) and (19), we get

z =
9π2

128R3

(
χ
′

1(1)− χ
′

2(1)
)

. (21)

We remark that (21) expresses exactly the jump in the slope of χ and of V at x = 1, as we said
above; and the total charge q = q2(∞) = 0,i.e. the infinite system is neutral.

The electrons act on the shell with an electric field Eel given by

Eel = −∂ϕ
∂r
|r=R= − 9π2

128R5
∂
∂x

(
χ1

x

)
|x=1 +∂V1

∂r
|r=R=

= − 9π2

128R5

[
χ
′
1(1)− χ1(1)

]
− z0

R2 ,
(22)

or, equivalently,

Eel = − 9π2

128R5

[
χ
′

2(1)− χ2(1)
]
− z + z0

R2
, (23)

if we use (10) and (21). From (14) and (19) we find that

Eel = −N(1)/R2 , (24)

as expected. In order to have the equilibrium of the shell this field must compensate the field Es

given by (3), i.e.
N(1) = z/2 + z0 ; (25)

or, using (14), (19) and (21),
2χ1(1) = χ

′

1(1) + χ
′

2(1) . (26)
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Equations (19) and (21) may be viewed as giving the parameters z0R
3 and zR3, respectively;

therefore, we have to solve the Thomas-Fermi equation (9) under the rather natural conditions
χ1 (1) = χ2 (1), χ2 (∞) = 0 and (26). There is no such a solution. We have always, in fact,
2χ1(1) > χ

′
1(1)+χ

′
2(1), which means that N(1) < z/2+z0, i.e. the electrons inside the sphere are

not numerous enough to ensure the equilibrium; due to their fermionic nature they prefer to go
outside the sphere where their kinetic energy is lower. The infinite Thomas-Fermi ”hollow” atom
is too ”rarefied” to be stable. Obviously, the only way to attain the equilibrium of such a ”hollow”
atom is to embed it into a cage, as, in fact, it is a more realistic case.

Suppose that we have a spherical cage of radius R0 > R, where the ”hollow” atom is introduced.
The Thomas-Fermi relationship (5) now reads

h̄2

2m
k2

F − eϕ− eV − U = −eϕ0 , (27)

where U is the potential well of the cage and ϕ0 is the chemical potential, which must equal
the external potential for preventing the flux of electrons from either going out or in the cage.
Introducing the reduced variable x = r/R0 and defining

ϕ + V + U − ϕ0 =
9π2

128R4
0

χ

x
(28)

(in atomic units) we arrive at the Thomas-Fermi equation (9) with th continuity condition (10)
at a = R/R0. The number of electrons (12) and (13) is now given by

N1(x) =
9π2

128R3
0

[
xχ

′

1 − χ1 + χ1(0)
]

, x < a , (29)

and

N2(x) =
9π2

128R3
0

{
xχ

′

2 − χ2 + a
[
χ
′

1(1)− χ
′

2(1)
]
+ χ1(0)

}
, x > a . (30)

Similar relations (17) − (20) hold now, with R replaced by R0; while the discontinuity condition
(21) becomes now

z =
9π2

128R3
0

a
[
χ
′

1(a)− χ
′

2(a)
]

. (31)

A similar condition (25) for equilibrium is also obtained. Summing up all these relationships we

have to solve the Thomas-Fermi equation x
1
2 χ

′′
= χ

3
2 under the following conditions:

z0 =
9π2

128R3
0

χ1(0) , (32)

χ1(a) = χ2(a) , (33)

z =
9π2

128R3
0

a
[
χ
′

1(a)− χ
′

2(a)
]

, (34)

2χ1(a) = a
[
χ
′

1(a) + χ
′

2(a)
]

; (35)

in which case the total charge in the cage is given by

q =
9π2

128R3
0

[
χ2(1)− χ

′

2(1)
]

. (36)

First, we remark that, as we said above, leaving aside (32) and (34), as giving the parameters
z0R

3
0 and zR3

0, requiring χ2(1) = 0 and letting R0 go to infinity, we have the infinite ”hollow”
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atom discussed previously; and, then, it is easily to see that the equilibrium condition (35) is not
satisfied, as it would require χ1(a) = 0, i.e. a vanishing solution. Secondly, we see that if we put
χ2(1) = 0 and a = 1 we get again the previous case of an infinite Thomas-Fermi atom, which
we know that it is unstable; it follows that even more unstable will be the ”hollow” system with
χ2(1) = 0 and a < 1, i.e the ”positive ion”. But we remark that this is only a particular cas of a
positive ion.

In the remaining of this paper we shall discuss a few types of solutions for the Thomas-Fermi
equation (9) under the boundary conditions (32) − (35), being especially interested in the total
charge (36).

For z0 = 0, R0 = 2 Å, R = 1.73 Å (a = 0.86) and z = 44, as for a (tetrahedral) cluster of four
sodium atoms, the function χ is plotted in Fig.1 vs x; it corresponds to a total charge q = +2.7.
For z0 = 0, R0 = 3.2 Å, R = 2.78 Å (a = 0.87) and z = 88, as for a (cubic) cluster of eight sodium
atoms, the function χ is shown in Fig.2; the total charge in this case is q = −0.1. For z0 = 11,
R0 = 3.15 Å, R = 2.75 Å (a = 0.87) and z = 88, as for a centered (cubic) cluster of nine sodium
atoms, the function χ is given in Fig.3, for a total charge q = 0.7. We remark that, indeed, the
function χ has a smoother variation with increasing the number of electrons, except for a range
∼ aH around the positions of atomic charges. In addition, we remark that the charge q is very
sensitive to the input parameters, for increasing both the number of electrons and the positive
charges.

We may estimate the energy of the system as follows. The density of kinetic electron energy is

εkin =
2

(2π)3 2π
∫ kF

0
dk

1

2
k4 =

9(3π/32)3

10R10
0

χ5/2

x5/2
, (37)

whence the total kinetic energy of electrons

Ekin =
3 (3π/8)4

20R7
0

∫ 1

0
dx

χ5/2

x1/2
. (38)

The density of potential energy of the electrons is given by

εpot = −(ϕ + V + U)n = −3(3π/32)3

2R10
0

χ5/2

x5/2
− 9π

83R6
0

ϕ0
χ3/2

x3/2
, (39)

whence their total energy

Eel = Ekin + Epot = −(3π/8)4

10R7
0

∫ 1

0
dx

χ5/2

x1/2
−Nϕ0 , (40)

where N = −(q − z − z0) is the total number of electrons. The energy of the shell is given by

Es = E0 − (z + z0)U . (41)

On the other hand we may express the energy of interaction of the shell with the electrons in two
distinct ways

Ei = zϕ (R) = −
∫

dr nV , (42)

where V is the potential of the shell; from (42) we get

U − ϕ0 =
9π2

128R4
0

χ
′

2 (1) , (43)
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which together with (40) and (41) allows one to write the total energy as

E = E0 + E1 + E2 − [2 (z + z0)− q] ϕ0 , (44)

where

E1 = −(3π/8)4

10R7
0

∫ 1

0
dx

χ5/2

x1/2
(45)

and

E2 = − 9π2

128R4
0

(z + z0) χ
′

2 (1) . (46)

In the first case shown in Fig.1 E1 = −28, E2 = −42, (χ
′
2 (1) = 282) while the self-energy (4) of the

shell is E0 = 297; for stability, i.e. negative total energy, one needs ϕ0 ≥ (297− 28− 42) /88 ∼ 2.6.
One can see that, indeed, the object is squeezed into the atomic environment, ϕ0 being a measure
of the variation of the atomic ”pseudo-potential” felt by an outside electron on its attempts of
penetrating the electron cloud of the atomic surrounding; these ”pseudo-potentials” are potential
barriers which confine the clusters. A huge ”pressure” is exerted by the cluster on its surrounding,
which results in the deformation of the electronic clouds of the cage walls. Similar values are
obtained in the other cases, for example, ϕ0 ≥ (742− 43− 92) /176 ∼ 3.4 for eight atoms, and
ϕ0 ≥ (931− 155− 110) /200 ∼ 2.4 for nine atoms.

It might be of interest the variation of q with z. For example, we define Z = 128R3
0z/9π

2 and
Q = 128R3

0q/9π
2, and solve the equation for various values of a. Such a dependence of Q on Z is

shown in Fig.4 for z0 = 0 and a = 0.8, and in Fig.5 for z0 = 0 and a = 0.9; while in Fig.6 it is
shown an almost neutral cluster for z0 = 0 and a = 0.87. Similar results can also be obtained for
z0 6= 0. In Fig.7 the variation of q with R0 is shown for zO = 0, z = 44 and R = 1.73 Å, while in
Fig.8 a similar dependence is included for zO = 11, z = 88 and R = 2.75 Å.

In the limit of large number of atoms in the cluster the Thomas-Fermi theory is valid. For a
finite number n of atoms disposed on a spherical surface one may estimate the error in the total
charge as follows. From the Poisson equation we have that the charge q is proportional to the
radial δϕ

′
r and angular δϕ

′
a variations of the potential derivatives in the following way:

q ∼ δϕ
′

r∆S + 2δϕ
′

a∆S , (47)

where ∆S is the element of area. Assuming the same variation per unit length we find

δϕ
′

a = δϕ
′

r

√
4π

n
. (48)

On the other hand, if one neglects the angular variations we have

q0 ∼
(
δϕ

′

r

)
0
∆S . (49)

As these small variations are proportional to the small variations of the distance we should also
have (

δϕ
′

r

)2
+ 2

(
δϕ

′

a

)2
= (1 + 8π/n)

(
δϕ

′

r

)2
=

(
δϕ

′

r

)2

0
, (50)

whence

∆q/q ∼ 1−

√
1 + 8π/n

1 + 2
√

4π/n
. (51)

In our cases of n ∼ 4, 8, 9 this error in ∆q is about 40%.
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Figure 1: Function χ vs x for z0 = 0, R0 = 2 Å, R = 1.73 Å (a = 0.86) and z = 44, and a total
charge q = +2.7.

Figure 2: Function χ vs x for z0 = 0, R0 = 3.2 Å, R = 2.78 Å (a = 0.87) and z = 88, and a total
charge q = −0.1.
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Figure 3: Function χ vs x for z0 = 11, R0 = 3.15 Å, R = 2.75 Å (a = 0.87) and z = 88, and a
total charge q = 0.7.

Figure 4: The reduced charge Q vs Z for z0 = 0 and a = 0.8.
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Figure 5: The reduced charge Q vs Z for z0 = 0 and a = 0.9.

Figure 6: The reduced charge Q vs Z for z0 = 0 and a = 0.87 for an almost neutral cluster.
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Figure 7: The total charge q vs R0 for z0 = 0, z = 44, and R = 1.73 Å.

Figure 8: The total charge q vs R0 for z0 = 11, z = 88, and R = 2.75 Å.


