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Abstract

It is shown that anharmonic corrections to the elastic energy may lead to unphysical
solutions for the elastic movement. The equation of motion for longitudinal deformations
with third-order anharmonic terms is the continuum limit of the Fermi-Pasta-Ulam equation.
This equation is solved exactly by elementary quadratures, and the corresponding time-
dependence is shown to exhibit singularities at finite times. The first terms in the asymptotic
series of the plane-waves solution are also computed. It is shown that resonances may appear
in the elastic waves, as a consequence of their mutual coupling through non-linearities.

1 Introduction

In spite of the great deal of work on non-linear phenomena, the wave equation with anharmonic
corrections has still received little attention in the continuum limit. Cubic and quartic anhar-
monicities have been considered in a one-dimensional discrete lattice,[1] and exact solutions have
been identified as sinusoidal waves of finite amplitudes and amplitude-dependent frequency, in
general, for certain wavevectors (see also Ref.2). Non-linear structures arising from modulated
strain in ferroelectrics have also been studied within a semi-discrete approach to Ginsburg-Landau
equations.[3] However, the continuum limit is usually quite different from the discrete lattice mod-
els. A connection has also been discussed of non-linear wave equations with the well-known
anharmonic oscillators.[4] A breakthrough has been recorded recently[5] by applying Lie algebras
of the equation symmetry group to the exact solutions of a class of non-linear wave equations,
which includes the well-known Fermi-Pasta-Ulam equation in the continuum limit. We present
here cubic anharmonic corrections to the elastic waves equation, and show that the corresponding
equation of motion for longitudinal deformations is the continuum limit of the Fermi-Pasta-Ulam
equation. Its exact solution is obtained herein by elementary quadratures, and shown to be un-
physical, in the sense that it is boundless for finite times and space boundaries placed at infinite.
However, the non-linear term in this equation may act as a perturbation on plane waves, and the
corresponding asymptotic series is relevant for waves propagating over finite space regions and
time intervals. The first terms in this asymptotic series are explicitly computed. The transverse
waves with cubic anharmonic corrections are also analyzed, and a resonance is shown to appear
as a consequence of the non-linear coupling of these waves to the longitudinal deformation waves.

It is well-known that terms of order higher than second in the strain tensor must be considered
in the elastic energy for large values of the elastic deformations. These higher-order terms gen-
erate non-linear equations of motion, and they are usually called anharmonic corrections. The



2 J. Theor. Phys.

anharmonic corrections to the elastic energy and equations of motion may change drastically the
character of the elastic movement. Indeed, the superposition of the solutions does not hold any-
more for anharmonic corrections, in general, and the elastic waves exhibit the combined-frequency
phenomenon and temporal resonances. The third-order anharmonic corrections are considered
here for an isotropic elastic body, and the equation of motion is solved exactly for longitudinal
deformations. It is shown that this equation is the continuum limit of the well-known Fermi-
Pasta-Ulam equation. The solution exhibits a singular time-dependence at finite times, being
therefore unphysical. In addition, it is boundless at the space boundaries placed at infinite. The
contribution of the non-linear terms in this equation is also treated as a small perturbation to the
plane waves, and the first terms in the asymptotic series are computed explicitly. The coupling
of the transverse waves to the longitudinal waves is also considered, and a resonance is shown to
occur for a frequency which depends on the ratio of the waves velocities.

Linear elasticity[6] assumes a linear strain (or deformation) tensor

uij =
1

2
(∂ui/∂xj + ∂uj/∂xi) , (1)

which has a weak spatial variation, where ui is the i-th (Cartesian) coordinate of the displacement
vector u at position r of coordinates xi (i = 1, 2, 3). The elastic energy for an isotropic body is
then written as

E =
∫

dr(
λ

2
u2

ii + µu2
ij) (2)

in the linear approximation, where λ and µ are (constant) Lame’s coefficients (λ > −2µ/3, µ > 0)
and u2

ii and u2
ij are the two second-order scalars under rotations (u2

ij = uijuji). Equations of
motion

ρ∂2ui/∂t2 = (λ + µ)∂(divu)/∂xi + µ∆ui , (3)

follow, where ρ is the density and ∆ denotes the laplacean, which describe longitudinal and

transversal plane waves with velocities vl =
√

(λ + 2µ)/ρ and, respectively, vt =
√

µ/ρ.

Non-linear contributions to elasticity appear first through the full expression

uij =
1

2
[∂ui/∂xj + ∂uj/∂xi + (∂uk/∂xi)(∂uk/∂xj)] (4)

of the strain tensor, and secondly through higher-order terms in the elastic energy. There are
three scalars of the third order that must be added to the elastic energy (2), which now reads

E =
∫

dr(
λ

2
u2

ii + µu2
ij +

1

3
Auijujkuki + Bu2

ijukk +
1

3
Cu3

ii) , (5)

where A, B, C are constant coefficients. The fourth-order contributions which appears inadver-
tently in (5) must be removed, in order to keep the contributions up to the third order at most.
It is worth noting that, in general, the elastic energy given by (5) has not an absolute minimum
value for ∂ui/∂xj = 0, so that the motion associated with deviations of the strain tensor around
vanishing values may lead to a non-equilibrium motion and to the unstability of the elastic body.
Therefore, additional restrictions are necessary to be imposed upon the values of the deformation
tensor, in order to describe a physically meaningful motion.

First, we note that the third-order non-linear contributions to the elastic enegy (5) do not affect
a transverse wave of the form, say, u2(x1) = u(x), which obeys the same equation of motion (3)
as for linear elasticity.
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For a longitudinal displacement u1(x1) = u(x) the strain tensor has only one component u11 =
∂u/∂x + (1/2)(∂u/∂x)2 = u′ + u′2/2, and the energy reads

E =
∫

drρ(
1

2
v2

l u
′2 +

1

6
v2u′3) , (6)

where v2 = [3(λ + 2µ) + 2(A + 3B + C)]/ρ. The density of energy has a minimum value for
u′ = 0 and a maximum value 2v6

l /3v
4 for u′ = −2v2

l /v
2. For |u′| larger than 2v2

l / |v|
2 the elastic

deformation becomes unstable. We assume therefore that the initial strain tensor u′ is much
smaller than this limiting value, everywhere in the body. On the other hand, we also assume that
u′ is sufficiently large (u′ ∼ 1) so that non-linear terms be considered in the elastic energy. It is
interesting to note that even if the explicit third-order contributions to the energy are absent, i.e.
A = B = C = 0, the third-order non-linearities do occur in the energy, coming from the non-linear
terms in the strain tensor. The coefficient v2 becomes in this case v2 = 3v2

l ( corresponding to
A + 3B + C = 0). For the elastic energy given by (6) the equation of motion reads

∂2u/∂t2 = (∂2u/∂x2)[v2
l + v2(∂u/∂x)] . (7)

This is the continuum limit of the Fermi-Pasta-Ulam equation.[5, 7] It ensures the conservation
of energy (continuity equation) ∂w/∂t + divj = 0, where w = ρ(u̇2/2 + v2

l u
′2/2 + v2u′3/6) is the

energy density (both kinetic and elastic) and j = −ρ(v2
l u

′ +v2u′2/2)u̇ is the energy flow. It is easy
to see that (7) can also be written as

∂2u′/∂t2 =
∂2

∂x2
(v2

l u
′ +

1

2
v2u′2) , (8)

or
∂2

∂t2
U =

1

2
v2 ∂2

∂x2
U2 , (9)

where U = u′ + v2
l /v

2 (U > −v2
l / |v|

2). This equation has been analyzed in Ref. 5 by making use
of the symmetry approach and the prolongation technique. The solution of this equation can be
written as U(t, x) = g(t)f(x) by the separation of the variables, leading to

g̈ − 3

2
ω2g2 = 0 , (10)

and
(f 2)′′ − 3(ω/v)2f = 0 , (11)

where ω2 is a (real) constant of integration. We show herein that these equations can be integrated
by elementary quadratures.

2 Time dependence

Indeed, (10) leads straightforwardly to∫
−s

dg√
g3 + s3

= ωt , (12)

where s3 is another (real) constant of integration, ω2s3 = ġ2(0)− ω2g3(0) (the origin of time has
been put equal to zero, and t can assume both positive and negative sign). First, we assume s > 0
and ωt > 0, so that (12) becomes ∫ ξ

−1

dx√
x3 + 1

=
√

sωt , (13)
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where ξ = g/s > 0. It corresponds to initial conditions g(0) = −s, ġ(0) = 0 (for more general
conditions we may change the origin of time). The integration in (13) can be performed straight-
forwardly by the substitution x + 1 =

√
3 tan2(α/2), leading to the elliptic integral of the first

kind

F (ϕ, k) =
∫ ϕ

0

dα√
1− k2 sin2 α

= ω
√√

3st , (14)

where k2 = (2 +
√

3)/4 (< 1) and ξ + 1 =
√

3 tan2(ϕ/2). Introducing the notation τ = ω
√√

3st
we obtain immediately the Jacobi elliptic sine-amplitude[8] (p.910) sin ϕ = snτ , or

ξ =
√

3
1− cnτ

1 + cnτ
− 1 , (15)

where cnτ is the cosine-amplitude; the function ξ can also be written as
ξ =

√
3[sn(τ/2)dn(τ/2)/cn(τ/2)]2 − 1, where dn(τ/2) is the delta-amplitude of τ/2. It can also

be expressed in terms of the elliptic Weierstrass function.[5, 8] A similar substitution allows the
integration for s < 0 (as well as for ω2 < 0; we note that sgn(ω2) = sgn(g + s) = sgn(s)). Noting
also that g(t) is an even function of time, we can finally write down the solution of (10) as

g(t) = |s|
√

3
1− cn(

√√
3 |s| |ωt|)

1 + cn(
√√

3 |s| |ωt|)
− 1sgn(ω2) . (16)

This is a periodic function with period
√√

3 |s| |ωt| = 4K (∆ϕ = 2π), where K is the complete

elliptic integral F (π/2, k) (∼ 4). It has also singularities at
√√

3 |s| |ωt| = 4K(n + 1/2), where n
is an integer (corresponding to ϕ = (2n+1)π), as expected directly from (12). These singularities
make unphysical the solution of (7). We note here that a similar treatment is applicable to
the classical cubic anharmonic oscillator, leading to an exact (oscillatory) solution which can be
expressed in terms of elliptic functions.[9]

3 Spatial dependence

First, we note that solution f of equation (11) changes sign as (ω/v)2 does and it is an even
function of x. Making use of the substitution (f/h)2 = F , where h is a (real) non-vanishing
constant of integration, the spatial equation (11) becomes F ′2 = (4ω2/v2 |h|)(F 3/2 − 1), which
leads to ∫ z

0
dt · t−1/2(1 + t)−1/3 = 3 |ωx/v| /

√
|h| , (17)

where F 3/2−1 = t = |f/h|3−1 > 0. It corresponds to the boundary condition f(0) = h and f ′(0) =
0 (the origin of space is set equal to 0). Using t → −t one can see that the integral in (17) is an an-
alytic continuation of the incomplete beta function B−z(1/2, 2/3) = 2

√
−z 2F1(1/2, 1/3, 3/2;−z),

where 2F1 is the Gauss hypergeometric function F .[8] (pp.950, 1039). Therefore, the spatial func-
tion f is given by the implicit equation√

(|f/h|)3 − 1 F (1/2, 1/3, 3/2; 1− (|f/h|)3) = 3 |ωx/v| /2
√
|h| , (18)

up to a constant of integration (which can be chosen as the origin of space). Making use of the
transformation formulas of the hypergeometric function,[8] (p. 1043), or using directly the integral
representation (17), we find the solution of this equation

f ∼ |h| sgn(ω/v)2 + (ω/2v)2x2 , x ∼ 0 (19)
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near the origin, and
f ∼ (ω/2v)2x2 , x → ±∞ (20)

for large x. The remarkable particular case h = 0, corresponding to f = (ω/2v)2x2 has been
pointed out in Ref. 5.

4 Exact solution

The general solution of (7) reads

u(t, x) = g(t− t0)
∫ x

0
dxf(x− x0)− (vl/v)2x + c , (21)

where time and space origins t0 and, respectively, x0 are introduced, and c is another constant of
integration. These constants of integration, together with ω2 , s and h introduced previously, are
determined from initial and boundary conditions. The movement described by (21) looks rather
like a vibration and not a propagation. The density of kinetic energy ρu̇2/2 increases boundlessly in
time, while the density of elastic energy e = ρ(v2

l u
′2+v2u′3/3)/2 = ρv2(f 3g3−3v4

l fg/v4+2v6
l /v

6)/6
(which requires fg > −v2

l / |v|
2 for avoiding the unstability of the body), decreases initially with

increasing time and thereafter increases boundlessly. This boundless increase in both energies is
performed at the expense of the energy flow j = −ρ(v2

l u
′ + v2u′2/2)u̇ = −ρv2(f 2g2 − v4

l /v
4)fġ,

which, although acquires the same value at symmetric boundaries x = ±L (due to the fact that
f is an even function of x), increases itself boundlessly in time. Indeed, the main characteristic of

the solution (21) is its singular behaviour near the periodical times t = (4K/ |ω|
√√

3 |s|)(n+1/2)
as indicated by (16). These singularities are unphysical, they lead to ruptures in the elastic body,
corresponding to jumps of the solution from one temporal oscillating branch to another, with cor-
responding singularities in the time derivative of the solution (angular points of solution) at the
singularities times, and with corresponding loss of energy. This singular behaviour of the solutions
of the non-linear elastic movement indicates a main mechanism of energy transfer and dissipation
through ruptures. It is a general phenomenon exhibited by non-linear equations of elastic motion,
because for large values of u′ in (8) the rhs of this equation reduces to (∂2/∂x2)u′n, where n
(n = 2, 3, ...) is an integer corresponding to the non-linearity degree, and such an equation can be
integrated by separation of variables, leading to singular solutions for finite times. The ruptures
associated with such non-linear elastic movements are non-uniformly distributed in space and prop-
agates (from the boundaries) with a non-uniform velocity given by v = dx/dt = (∂u/∂t)/(∂u/∂x).
For the third-order non-linearities discussed here the time dependence is given by g ∼ 1/ω2(t−T )2

near a singularity, where T = 4K/ |ω|
√√

3 |s| is the period, and the spatial dependence is given
by

∫ x dxf ∼ (ω/v)2x3 for large values of |x|. It folows that ruptures appears during a time of
the order of a period T propagating with a velocity of the order of v . For A + 3B + C = 0 this

velocity is v =
√

3((λ + 2µ)/ρ =
√

3vl.

5 Asymptotic series

It is useful to compute the asymptotic series of the solution of (7) by viewing the non-linear term
as a small perturbation. To this end, we introduce the parameter ε = (v/vl)

2. Equation (7) reads
now

ü− v2
l u

′′ = εv2
l u

′u′′ . (22)
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The solution of (22) can be written as an expansion u = u0 + εu1 + ε2u2 + ... in powers of ε,
where u0 = a cos(ωt − kx) is a plane wave of amplitude a and frequency ω = vlk, k being the
corresponding wavevector. The first-order approximation u1 obeys the equation

ü1 − v2
l u1 = −1

2
v2

l a
2k3 sin[2(ωt− kx)] , (23)

whose solution is of the form u1 = f cos[2(ωt − kx)], with f a linear function of time and space.
Similarly, the second-order approximation includes a second-order f -function of space and time.
Straightforward computations lead to

u = a cos(ωt− kx) + 1
16

εa2k2(x + vlt) cos[2(ωt− kx)]+

+ 1
128

ε2a3k4(x + vlt)
2cos[3(ωt− kx)]− cos(ωt− kx) + ...

(24)

which is, in fact, a triple expansion in powers of ε, ak and lk, where l = x + vlt is a characteristic
length. It is worth noting the expansion parameter ak = a/λ in (24), where λ is the wavelength,
which shows indeed that the non-linear contributions are controlled by the ratio of the wave
amplitude to the wavelength, as expected. The asymptotic character of the solution, however,
makes boundless these contributions, over the characteristic length l. We also note the higher
harmonics appearing in the asymtotic series (24), as well as various amplification factors of the
order of 1 + εal/4λ2 in the amplitude, velocity and acceleration of the asymptotic solution. A
similar asymptotic series can be computed for higher-order anharmonic corrections to the elastic
waves equation.

6 Coupled equations

Let us assume both a longitudinal displacement u1(x1) = u(x) and a transverse displacement
u2(x1) = v(x). The strain tensor has then the components u11 = u′ + u′2/2 + v′2/2 and u12 =
u21 = v′/2. Making use of (5) the equations of motion are obtained as

ü− v2
l u

′′ = εv2
l u

′u′′ + ζv2
l v

′v′′ ,

v̈ − v2
t v

′′ = ζv2
l u

′v′′ ,
(25)

where ζ = 1+(A+2B)/2ρv2
l . The solutions can be written as a double expansion in powers of ε and

ζ. The zeroth-order approximation are plane waves u0 = a cos(ω1t−k1x) and v0 = b cos(ω2t−k2x),
where a and b are amplitudes and ω1,2 = vl,tk1,2. Apart from the asymptotic character, the solution
exhibits a new feature originating in the combined-frequency phenomenon. Indeed, the first-order
approximation to the transverse wave obeys the equation

v̈1 − v2
t v

′′
1 = −1

2
v2

l abk1k
2
2 sin(Ωt−Kx) , (26)

where Ω = ω1±ω2 and K = k1± k2. The solution of this equation is v1 = B sin(Ωt−Kx), where

B =
1

2
abk2

v2
l k1k2

Ω2 − v2
t K2

=
1

2
abk2

vl

vl − vt

· vlk2

(vl + vt)k1 ± 2vtk2

. (27)

It is worth noting here that a resonance may appear for (vl + vt)k1− 2vtk2 = 0, which corresponds
to ω2 = ω1(1 + vt/vl)/2, i.e. Ω = ω1(1 − vt/vl)/2. Similar resonances may also appear in
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higher-order approximations both to longitudinal and transverse waves, as a consequence of the
combined-frequency phenomenon originating in the non-linear contributions. The damping can
be considered here, by introducing the term η(u̇ − vlu

′) in the original wave equation, where η
is the damping coefficient (it leads to a damped plane wave of the form u = ae−ηt cos(ωt − kx)
for t > 0; a similar term holds also for the transverse waves). The resonance singularity is then
smoothed out by the small damping coefficient η, while the asymptotic series (24) is not changed
significantly.

7 Conclusion

The main conclusion of this paper is that anharmonic corrections to the elastic energy lead, in
general, to unphysical solutions of the elastic movement, which involve singularities in the time-
dependence at finite times and boundless movement at the space boundaries placed at infinite.
This phenomenon is illustrated in the present paper by solving exactly the equation of motion for
a longitudinal deformation for the third-order anharmonic corrections to the elastic energy. It is
shown that this equation is the continuum limit of the Fermi-Pasta-Ulam equation, and a solution
obtained by elementary quadratures is provided. This phenomenon is rather general, it appears
also for higher-order non-linear equation of motion, which makes unphysical the solutions of these
equations. It follows that, for a consistent physical picture, the elastic energy both for small and for
large deformations is distributed among wave-like solutions, which obey linear equations of motion
with a satisfactory approximation over finite spaces and times, while the non-linear contributions
act as a small perturbation. The first terms in such a perturbation series are computed for
the third-order anharmonic corrections to the longitudinal elastic wave, in order to illustrate the
asymptotic character of the non-linear contributions. The transverse waves are not affected by
the third-order non-linearities, though a superposition of transverse and longitudinal deformations
propagating along the same direction exhibits resonances for certain frequencies that depend on
the ratio of the waves velocities, as a consequence of their mutual coupling via non-linear terms.
Such non-linear couplings betwen waves propagating along different directions is worth of a more
detailed investigation.
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