Journal of Theoretical Physics

On the cubic anharmonic oscillator

B. F. Apostol

Department of Seismology, Institute of Earth Physics, Magurele-Bucharest Mg-6, POBox Mg-35, Romania
email: apoma@theory.nipne.ro

Abstract

The exact solution is derived for the classical cubic anharmonic oscillator, and the firstorders terms are computed in the perturbation series of the anharmonic correction.

There is a huge literature on anharmonic oscillators, both quantal and classical.[1] Exact solutions are known for classical cubic and quartic anharmonic oscillators with and without dissipation, $[2,3]$ and detailed studies have been performed for forced classical oscillator with higher-order anharmonicities.[4] We present here a simple derivation of the exact solution for the classical cubic oscillator, and the first-orders terms in the corresponding series expansion in powers of the anharmonicity.
Let $T=m \dot{u}^{2} / 2$ be the kinetic energy and

$$
\begin{equation*}
U=\frac{1}{2} m \omega^{2} u^{2}+\frac{1}{3} m \omega^{2} a u^{3} \tag{1}
\end{equation*}
$$

the potential energy of a cubic anharmonic oscillator of mass m, frequency ω and anharmonicity parameter $a>0$. The energy conservation gives

$$
\begin{equation*}
\dot{u}^{2}=\frac{2}{m}(E-U)=\omega^{2}\left(x^{2}-u^{2}-\frac{2}{3} a u^{3}\right), \tag{2}
\end{equation*}
$$

for this oscillator, where $E=m \omega^{2} x^{2} / 2>0$ is the energy. For $x^{2}>1 / 3 a^{2}$ the velocity in (2) vanishes for $u_{1}>0$ and the motion is infinite for $u<u_{1}$. For $x^{2}<1 / 3 a^{2}$ the velocity in (2) vanishes for $u_{3}<u_{2}<u_{1}$ and the motion is infinite for $u<u_{3}$ and finite for $u_{2}<u<u_{1}$. For this finite motion (2) can also be written as $\dot{u}^{2}=\left(2 a \omega^{2} / 3\right)\left(u_{1}-u\right)\left(u-u_{2}\right)\left(u-u_{3}\right)$, and the integral of motion reads

$$
\begin{equation*}
\int_{u_{2}}^{u} \frac{d y}{\sqrt{\left(u_{1}-u\right)\left(u-u_{2}\right)\left(u-u_{3}\right)}}=\sqrt{2 a / 3} \omega t \tag{3}
\end{equation*}
$$

for $u_{2}<u<u_{1}$ and the initial conditions $u=u_{2}, \dot{u}=0$ for $t=0$. The integral in (3) can be expressed by means of the elliptic function of the first kind $F(\varphi, k)$ by introducing $\sin \alpha=$ $\left[\left(u_{1}-u_{3}\right)\left(y-u_{2}\right) /\left(u_{1}-u_{2}\right)\left(y-u_{3}\right)\right]^{1 / 2} .[5]$ (p. 219, 3.131(5)) We obtain

$$
\begin{equation*}
F(\varphi, k)=\int_{0}^{\varphi} \frac{d \alpha}{\sqrt{1-k^{2} \sin ^{2} \alpha}}=\tau \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\sin \varphi=\sqrt{\frac{u_{1}-u_{3}}{u_{1}-u_{2}}} \sqrt{\frac{u-u_{2}}{u-u_{3}}}, \tag{5}
\end{equation*}
$$

the modulus of the elliptic function is given by

$$
\begin{equation*}
k^{2}=\frac{u_{1}-u_{2}}{u_{1}-u_{3}}, \tag{6}
\end{equation*}
$$

and the dimensionless time τ is given by

$$
\begin{equation*}
\tau=\frac{1}{2} \sqrt{u_{1}-u_{3}} \sqrt{2 a / 3} \omega t \tag{7}
\end{equation*}
$$

From (5) we obtain the solution

$$
\begin{equation*}
u=\frac{u_{2}-k^{2} u_{3} \sin ^{2} \varphi}{1-k^{2} \sin ^{2} \varphi} \tag{8}
\end{equation*}
$$

or, making use of the Jacobi sine-amplitude $s n F=\operatorname{sn\tau }=\sin \varphi,[5]$ (p. 910) we get

$$
\begin{equation*}
u=\frac{u_{2}-k^{2} u_{3} s n^{2} \tau}{1-k^{2} s n^{2} \tau} \tag{9}
\end{equation*}
$$

This is the exact solution of the cubic anharmonic oscillator. It oscillates between u_{2} for $\varphi=n \pi$, and u_{1} for $\varphi=(2 n+1) \pi / 2, n$ being an integer. The period T of the motion is given by

$$
\begin{equation*}
K=\int_{0}^{\pi / 2} \frac{d \alpha}{\sqrt{1-k^{2} \sin ^{2} \alpha}}=\frac{1}{4} \sqrt{2 a\left(u_{1}-u_{3}\right) / 3} \omega T \tag{10}
\end{equation*}
$$

where K is the complete elliptic function. A similar exact solution can also be obtained for the quartic anharmonic oscillator.[2]
It is worth noting that the infinite motion proceeds in a finite time. Indeed, let $u_{1}>0$ and $u_{2,3}=A \pm i B$ for $x^{2}>1 / 3 a^{2}$. Then, the integral (3) becomes $F(\varphi, k)=\sqrt{2 a D / 3} \omega t$, where $k^{2}=\left[1+\left(u_{1}-A\right) / D\right] / 2, D=\left[\left(u_{1}-A\right)^{2}+B^{2}\right]^{1 / 2}$ and $u=u_{1}-D \tan ^{2}(\varphi / 2)$. One can see that $u \rightarrow-\infty$ for $\varphi \rightarrow \pi$, which means that motion goes to infinite in a finite time T_{1} given by $2 K=\sqrt{2 a D / 3} \omega T_{1}$.
It is often useful to have the solution of the cubic oscillator in the limit of the weak anharmonicity. In order to get this limit we need the approximate roots $u_{1,2,3}$ of the equation $x^{2}-u^{2}-\frac{2}{3} a u^{3}=0$ in this limit. Introducing $z=2 a u / 3$ this equation becomes $z^{3}+z^{2}-\varepsilon^{2}=0$, where the perturbational parameter is $\varepsilon=2 a x / 3$. It is easy now to solve perturbationally this equation; its solutions are given by $z_{1,2}= \pm \varepsilon\left(1 \mp \varepsilon / 2+\varepsilon^{2} / 4\right)$ and $z_{3}=-1+\varepsilon^{2}$, or

$$
\begin{equation*}
u_{1}=x\left(1-\varepsilon / 2+\varepsilon^{2} / 4\right), u_{2}=-x\left(1+\varepsilon / 2+\varepsilon^{2} / 4\right), u_{3}=-\frac{x}{\varepsilon}\left(1-\varepsilon^{2}\right) . \tag{11}
\end{equation*}
$$

Making use of these expansions in powers of ε we obtain $k^{2}=2 \varepsilon\left(1-\varepsilon+11 \varepsilon^{2} / 4\right)$ and $K=$ $\pi\left(1+\varepsilon / 2+\varepsilon^{2} / 16\right) / 2$. Using the same expansions in (10) we get the well-known second-order shift

$$
\begin{equation*}
\Omega=2 \pi / T=\omega\left(1-15 \varepsilon^{2} / 16\right)=\omega\left(1-5 a^{2} x^{2} / 12\right) \tag{12}
\end{equation*}
$$

in frequency. Similarly, the angle φ is obtained from (4) as

$$
\begin{equation*}
\varphi=\frac{1}{2} \Omega t+\frac{\varepsilon}{4} \sin \Omega t+\frac{\varepsilon^{2}}{64} \sin 2 \Omega t \tag{13}
\end{equation*}
$$

and the oscilaltor coordinate

$$
\begin{equation*}
u=-x \cos \Omega t-\frac{x \varepsilon}{4}(3-\cos 2 \Omega t)-\frac{x \varepsilon^{2}}{2}\left(2-\frac{17}{8} \cos \Omega t+2 \cos 2 \Omega t-\frac{11}{8} \cos 3 \Omega t\right) . \tag{14}
\end{equation*}
$$

It is worth noting that the renormalized frequency Ω appears in these expansions, instead of the original frequency ω. All these expansions in powers of ε can also be obtained directly by solving perturbationally the equation of motion $\ddot{u}=-\omega^{2}\left(u+a u^{2}\right)$, including the frequency renormalization.

References

[1] L. Skala, J. Cizek, V. Kapsa and E. J. Weniger, Phys. Rev. A56 4471 (1997); L. Skala, J. Cizek, E. J. Weniger and J. Zarnastil, Phys. Rev. A59 102 (1999).
[2] K. Banerjee, J. K. Bhattacharjee and H. S. Manni, Phys. Rev. A30 1118 (1984).
[3] J. M. Dixon, J. A. Tuszynski and M. Otwinowski, Phys. Rev. A44 3484 (1991).
[4] M. Debnath and A. Roy Chowdhury, Phys. Rev. A44 1049 (1991).
[5] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, London (1980).

