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Abstract

The exact solution is derived for the classical cubic anharmonic oscillator, and the first-
orders terms are computed in the perturbation series of the anharmonic correction.

There is a huge literature on anharmonic oscillators, both quantal and classical.[1] Exact solutions
are known for classical cubic and quartic anharmonic oscillators with and without dissipation,[2, 3]
and detailed studies have been performed for forced classical oscillator with higher-order anhar-
monicities.[4] We present here a simple derivation of the exact solution for the classical cubic
oscillator, and the first-orders terms in the corresponding series expansion in powers of the anhar-
monicity.

Let T = mu̇2/2 be the kinetic energy and

U =
1

2
mω2u2 +

1

3
mω2au3 (1)

the potential energy of a cubic anharmonic oscillator of mass m, frequency ω and anharmonicity
parameter a > 0. The energy conservation gives

u̇2 =
2

m
(E − U) = ω2(x2 − u2 − 2

3
au3) , (2)

for this oscillator, where E = mω2x2/2 > 0 is the energy. For x2 > 1/3a2 the velocity in (2)
vanishes for u1 > 0 and the motion is infinite for u < u1. For x2 < 1/3a2 the velocity in (2)
vanishes for u3 < u2 < u1 and the motion is infinite for u < u3 and finite for u2 < u < u1. For this
finite motion (2) can also be written as u̇2 = (2aω2/3)(u1 − u)(u − u2)(u − u3), and the integral
of motion reads ∫ u

u2

dy√
(u1 − u)(u− u2)(u− u3)

=
√

2a/3ωt , (3)

for u2 < u < u1 and the initial conditions u = u2 , u̇ = 0 for t = 0. The integral in (3) can
be expressed by means of the elliptic function of the first kind F (ϕ, k) by introducing sin α =
[(u1 − u3)(y − u2)/(u1 − u2)(y − u3)]

1/2.[5] (p. 219, 3.131(5)) We obtain

F (ϕ, k) =
∫ ϕ

0

dα√
1− k2 sin2 α

= τ , (4)

where

sin ϕ =

√
u1 − u3

u1 − u2

√
u− u2

u− u3

, (5)
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the modulus of the elliptic function is given by

k2 =
u1 − u2

u1 − u3

, (6)

and the dimensionless time τ is given by

τ =
1

2

√
u1 − u3

√
2a/3ωt . (7)

From (5) we obtain the solution

u =
u2 − k2u3 sin2 ϕ

1− k2 sin2 ϕ
, (8)

or, making use of the Jacobi sine-amplitude snF = snτ = sinϕ,[5] (p. 910) we get

u =
u2 − k2u3sn

2τ

1− k2sn2τ
. (9)

This is the exact solution of the cubic anharmonic oscillator. It oscillates between u2 for ϕ = nπ,
and u1 for ϕ = (2n + 1)π/2, n being an integer. The period T of the motion is given by

K =
∫ π/2

0

dα√
1− k2 sin2 α

=
1

4

√
2a(u1 − u3)/3ωT , (10)

where K is the complete elliptic function. A similar exact solution can also be obtained for the
quartic anharmonic oscillator.[2]

It is worth noting that the infinite motion proceeds in a finite time. Indeed, let u1 > 0 and

u2,3 = A ± iB for x2 > 1/3a2. Then, the integral (3) becomes F (ϕ, k) =
√

2aD/3ωt, where

k2 = [1 + (u1 − A)/D]/2, D = [(u1 − A)2 + B2]1/2 and u = u1 − D tan2(ϕ/2). One can see
that u → −∞ for ϕ → π, which means that motion goes to infinite in a finite time T1 given by

2K =
√

2aD/3ωT1.

It is often useful to have the solution of the cubic oscillator in the limit of the weak anharmonicity.
In order to get this limit we need the approximate roots u1,2,3 of the equation x2−u2− 2

3
au3 = 0 in

this limit. Introducing z = 2au/3 this equation becomes z3 +z2−ε2 = 0, where the perturbational
parameter is ε = 2ax/3. It is easy now to solve perturbationally this equation; its solutions are
given by z1,2 = ±ε(1∓ ε/2 + ε2/4) and z3 = −1 + ε2, or

u1 = x(1− ε/2 + ε2/4) , u2 = −x(1 + ε/2 + ε2/4) , u3 = −x

ε
(1− ε2) . (11)

Making use of these expansions in powers of ε we obtain k2 = 2ε(1 − ε + 11ε2/4) and K =
π(1+ ε/2+ ε2/16)/2. Using the same expansions in (10) we get the well-known second-order shift

Ω = 2π/T = ω(1− 15ε2/16) = ω(1− 5a2x2/12) (12)

in frequency. Similarly, the angle ϕ is obtained from (4) as

ϕ =
1

2
Ωt +

ε

4
sin Ωt +

ε2

64
sin 2Ωt , (13)

and the oscilaltor coordinate

u = −x cos Ωt− xε

4
(3− cos 2Ωt)− xε2

2
(2− 17

8
cos Ωt + 2 cos 2Ωt− 11

8
cos 3Ωt) . (14)

It is worth noting that the renormalized frequency Ω appears in these expansions, instead of the
original frequency ω. All these expansions in powers of ε can also be obtained directly by solving
perturbationally the equation of motion ü = −ω2(u + au2), including the frequency renormaliza-
tion.
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