Journal of Theoretical Physics

Founded and Edited by M. Apostol

ISSN 1453-4428

On linear anharmonic oscillators and self-consistent harmonic approximation M. Apostol Department of Theoretical Physics, Institute of Atomic Physics,

Magurele-Bucharest Mg-6, POBox Mg-35, Romania

email: apoma@theory.nipne.ro

Through the years, anharmonic oscillators generated a great deal of technical work, both classically and quantally. In fact, they are reducible to harmonic oscillators, with a good approximation.

Let $T = m\dot{u}^2/2$ be the kinetic energy of a linear oscillator of mass m, and $U = (m\omega^2/2)(u^2 + 2au^3/3)$ its potential energy with cubic anharmonicities, where a is a parameter. Let u^3 be approximated by

$$u^{3} = \frac{3}{2}(Au + Bu^{2}) \quad , \tag{1}$$

where $A = \bar{u^2}$, $B = \bar{u}$, the averages being taken over the motion and the coefficients 3/2 in (1) being chosen such as $\bar{u^3} = 3\bar{u}\bar{u^2}$. It is easy to see that the oscillator becomes then a displaced one, with the frequency $\Omega = \omega(1 + aB)^{1/2}$; the solution is $u = u_0 \cos \Omega t - C$, where u_0 is an amplitude and C = aA/2(1 + aB). The condition $\bar{u^3} = 3\bar{u}\bar{u^2}$ is fulfilled only for small values of C, as expected ($\bar{u} = -C$, $\bar{u^2} = u_0^2/2 + C^2$, $\bar{u^3} = -3u_0^2C/2$). It follows $C \cong au_0^2/4$ and $A \cong u_0^2/2$, $B = -C \cong -au_0^2/4$. The frequency shift is then given by

$$\Omega = \omega (1 + aB)^{1/2} \cong \omega (1 - a^2 u_0^2 / 8) \quad , \tag{2}$$

which compares rather satisfactorily with the exact result[1] $\Omega = \omega(1 - 5a^2u_0^2/12)$.

A similar decomposition $u^4 = 3Au^2/2$ holds for the quartic anharmonicity in the potential energy $U = (m\omega^2/2)(u^2 + bu^4/2)$, where $A = \bar{u^2}$ and b is the anharmonic parameter. The condition $\bar{u^4} = 3(\bar{u^2})^2/2$ is then fulfilled exactly $(u^2 = A = u_0^2/2, \bar{u^4} = 3u_0^4/8$ for solution $u = u_0 \cos \Omega t$ and frequency $\Omega = \omega(1 + 3Ab/4)^{1/2}$). It follows the frequency shift given by

$$\Omega = \omega (1 + 3Ab/4)^{1/2} \cong \omega (1 + 3bu_0^2/16) \quad , \tag{3}$$

for small b, which again compares well with the exact result[1] $\Omega = \omega(1 + 3bu_0^2/8)$. Is is worth noting that the frequency shift is quadratic in amplitude for cubic anharmonicities, and linear for quartic anharmonicities.

Similar approximations can be used approximately for higher-order anharmonicities, without any loss of qualitative behaviour, and a satisfactory representation of the quantitative results. They are called generically the self-consistent harmonic approximation.

References

[1] L. Landau and E. Lifshitz, Mecanique, Mir, Moscow (1965).

87 (2003)

 $[\]textcircled{C}$ J. Theor. Phys. 2003, apoma@theor1.theory.nipne.ro