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1 Spin waves

As it is well-known the Landau-Lifshitz equation for magnetization
−→
M is given by

∂
−→
M

∂t
= γ

−→
M ×−→H + D

−→
M ×∇2−→M (1)

with usual notations. Let mx and my be small deviations from an equilibrium uniform magneti-

zation M0 parallel to the z-axis. In the absence of an anisotropy field we have
−→
H = Hi

−→ez .

Keeping only linear contributions, we get

γHi(mx
−→ex + my

−→ey )×−→ez = γHi(my
−→ex −mx

−→ey )

for the first term, and

DM0
−→ez ×

(
−→ex

∂2mx

∂z2
+−→ey

∂2my

∂z2

)
= −DM0

(
−→ex

∂2my

∂z2
−−→ey

∂2mx

∂z2

)

for the second one in the rhs of Eq.(1). Therefore, the equation (1) led to the following system of
differential equations

∂mx

∂t
= γHimy −DM0

∂2my

∂z2

(2)

∂my

∂t
= −γHimx + DM0

∂2mx

∂z2

Introducing m± = mx ± imy we get

∂m±

∂t
=

∂mx

∂t
± i

∂my

∂t

= γHi(my ∓ imx)−DMo
∂2

∂z2
(my ∓ imx)

= ∓iγHi(mx ± imy)± iDM0
∂2

∂z2
(mx ± imy)

= ∓iγHim± ± iDM0
∂2m±

∂z2
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The eigenmodes are given by

m+ = a+(t)e±ikz

m− = a−(t)e∓ikz

where a± are complex conjugate to one another and satisfy the equation

∂a±
∂t

= ∓i(γHi + DM0k
2)a±

Therefore, we obtain the eigenmodes

m+ = e−iωkte±ikz

m− = eiωkte∓ikz

where
ωk = γHi + DM0k

2 (3)

Then, we have

mx = cos (±kz − ωkt)

(4)

my = sin (±kz − ωkt)

2 Spin waves under dc currents

The equation of motion is written as

∂m±

∂t
= ±i

(
−γHi + DM0

∂2

∂z2

)
m± + X

∂m±

∂z

where X depends linearly of the dc current, parallel to the z-axis.

The solutions are of the form

m+ = a(t)e±ikz , m− = m∗
+ = a∗(t)e∓ikz

where

m+ = e−iωkte±ik(z+Xt)

m− = eiωkte∓ik(z+Xt)

and

mx = cos (±k(z + Xt)− ωkt)

my = sin (±k(z + Xt)− ωkt)

where ωk is given by (3). We can see that

mx,y(z, t) = m0
x,y(z + Xt, t)

where m0
x,y are the components of the magnetization in the absence of the dc current given by (4).
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3 Time dependent currents

If X has a time dependence, X = X(t), the equations are solved in the same manner. The only
difference is that in the final result we have ∫

X(t)dt

instead of Xt. Therefore, the solution is

mx = cos
[
±k

(
z +

∫
X(t)dt

)
− ωkt

]
= m0

x(z +
∫

X(t)dt)

my = sin
[
±k

(
z +

∫
X(t)dt

)
− ωkt

]
= m0

y(z +
∫

X(t)dt)

The amplitude has no time dependence, therefore the conditions for a parametric resonance are
not fulfilled. The parametric resonance occur when the amplitude of the oscillations behave like
µωt, with µ > 1, giving instability for t � 1.

For instance, for X = X0 cos ωt we get

mx = m0
x(z + X0

sin ωt

ω
)

4 Parametric excitations

By means of the Fourier transform equation (2) becomes

∂ax

∂t
= ωkay

(5)

∂ay

∂t
= −ωkax

where ωk is given by (3) and

ax,y(k, t) =
∫

dzmx,y(z, t)e
−ikz

are the Fourier components of the magnetization. Equations (5) lead to an oscillator type equation
of motion by taking the time derivative in one equation and making use of the other,

∂2ax

∂t2
= ωk

∂ay

∂t
= −ω2

kax

This would suggest a parametric resonance, providing ωk has a time dependence in the above
equation of a harmonic oscillator.

Suppose that this is true, as, for instance, the applied field Hi has a time dependence:

∂ax

∂t
= ω(t)ay

(6)

∂ay

∂t
= −ω(t)ax
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Making the change of variable dτ = ω(t)dt the above system of equations become

∂ax(τ)

∂τ
= ay(τ)

∂ay(τ)

∂τ
= −ax(τ)

whose solution

ax,y = exp(±iτ) = exp
{
±i
∫

ω(t)dt
}

has no parametric resonance however.

In order to have a parametric resonance it is necessary to have different ω in the above two
equations but this kind of anisotropy is difficult to be obtained. Equations (6) should have the
form

∂ax

∂t
= ω1(t)ay

(7)

∂ay

∂t
= −ω2(t)ax

with ω1/ω2 6=const.

In the case of a a classical parametric oscillator described by the Hamiltonian

H =
p2

2m
+

1

2
kx2

where m and k have time dependence (they are the parameters), we have the canonic equations

ẋ =
1

m(t)
p

ṗ = −k(t)x

which have the form given by equations (7). Making the change of variable dτ = dt/m(t) we
obtain

dx

dτ
= p(τ)

dp

dτ
= −m(τ)k(τ)x

which lead to the parametric resonance equation

d2x

dτ 2
= −ω2(t)x

where ω2(τ) = m(τ)k(τ).

Therefore we must emphasize that the requirements ω1 6= ω2 in (7) is essential.

It can be easily verified that the parametric resonance do not even occur if both the current (X)
and the external field (or more generally, ωk) have time dependence.
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5 Notes

5.1 Solution of the equation of motion in Ref. 1

We consider the equation of motion

∂m±

∂t
= −iγHim± + iDM0

∂2m±

∂z2
+ X0e

iωt ∂m±

∂z
(8)

For X0 = 0 the eigenmodes are plane waves with the dispersion relation

ωk = γHi + Dk2M0

For X0 6= 0 the eigenmodes are

e±ikze−ifk(t)

where fk has a nonzero imaginary part which give time dependent amplitude.

From (8), fk(t) satisfy the equation

∂fk

∂t
= γHi + DM0k

2 ∓ kX0e
iωt

= ωk ∓ kX0e
iωt

Up to a constant, the solution is

fk(t) = ωkt∓ kX0
eiωt − 1

iω

= ωkt∓
2kX0

ω
ei ωt

2 sin
ωt

2

Therefore, the eigenmodes are

exp

{
∓2kX0

ω
sin2 ωt

2

}
· e±ik(z+

kX0
ω

sin ωt)e−iωkt

The amplitude is time dependent but remains finite even for ωt � 1; therefore the equation has
no parametric resonance.

5.2 An equation with parametric resonance

If we assume the equation of motion

∂m±

∂t
= −iγHim± + iDM0

∂2m±

∂z2
+ X0e

±iφ(t)∂m±

∂z

with φ(−t) = φ(t). The eigenmodes have the form

m± = eikze−if±
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where f± staisfy the equation

∂f±
∂t

= ωk − kXo exp(±iφ(t))

where ωk is given by (3). The above equation has the solution

f± = ωkt− kX0

∫ t

0
exp(±iφ(t′))dt′

Therefore, the eigenmodes are

m± = exp
{
∓kX0

∫ t

0
dt′ sin φ(t′)

}
e

ik

(
z+X0

∫ t

0
cos φ(t′)dt′

)
e−iωkt

We can observe that the two amplitude satisfy the relation A+A− = 1, situation similar to that
occurred in the parametric resonance of the classical oscillator.

Because φ is a periodic function we have∫ t

0
dt′ sin φ(t′) =

∫ [ t
T ]T

0
dt′ sin φ(t′) +

∫ t

[ t
T ]

dt′ sin φ(t′)

=
[

t

T

] ∫ T

0
dt′ sin φ(t′) +

∫ { t
T }

0
dt′ sin φ(t′) (9)

where [...] and {...} are the integer, respectively the fractional part. The second term is always
finite.

Neglecting the finite term in (9) we have the dominant contribution

A± = e∓
t
T

kX0

∫ T

0
sin φ(t′)dt′ = µ

t
T
±

where µ+µ− = 1

µ± = exp

{
∓kX0

∫ T

0
dt sin φ(t)

}
If the above integral is finite, we have µ+ > 1 or µ− > 1, which means that one of the above
amplitude is divergent. There are many possible choices. All periodic functions which satisfy
0 < φ < π are a good choices. For example

φ(t) =
π

2
(1 + cos

2πt

T
)

give ∫ T

0
sin φ(t)dt ' 3

T

2π
or

φ(t) =
π

2

√
1 + cos

2πt

T
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