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Introduction. Our world is statistical. It is motion and numbers. Mechanical or quantal motion,
both non-relativistic and relativistic, are only approximations to the statistical motion. Statistical
numbers are probabilities.

Theory of gases. Probabilities occurred perhaps for the first time in our reasoning about the
natural world, i.e. in our Philosophiae Naturalis, with Maxwell, who, around 1870, had to admit
that atoms in gases are distributed over velocities v according to the exp(—const-v?) law, i.e. their
numberdN ~ exp(—const - v*)dv. Obviously, dN/dv is a density of probability. This is shocking,
because we do not see any reason for it to be so. Moreover, it is more fundamental than even our
atomistic concept of the natural world, because from atoms we cannot derive probabilities, but
from probabilities we can conceive atoms as parts, or possibilities, of the matter.

Probability and frequency. Much longer before, around 1700, one of the Bernoulli’s discovered
that if something is going to happen with probability p, then it appears for ¢ and only ¢ times in
N draws with the probability

fp) = C{p" (1= )77 (1)
This function has a remarkable property: it is peaked on the frequency py = ¢/N and dispersed
around by +/po(1 — po)/N, which tells that for N large enough the probability p is precisely the
frequency of occurrence gq/N. It is called the "law of large numbers", and it is the foundation
of the empirical probability, or the empirical foundation of probability, which made probabilities
the basis of the scientific method. The probability (1) is called the binomial distribution. For
p = v/N it becomes Poisson’s distribution v%~" /¢! of very improbable events (like Bonaparte’s
soldiers kicked to death by mules), while expanding it around py = ¢/N we get the "normal"
distribution (1/0v/27)exp[—(p — po)?/20?], where ¢ = +/po(1 — po)/N is the dispersion. The
latter is said to have been shown by Gauss, around 1800, while suspecting his baker of fouling
him with the weight of his daily breads.

Chances. It seems that there have been existed, once upon a time, a monk, by name of Bayes,

who would have written an Essay toward solving a Problem in the Doctrine of Chances, published
in 1764 after his death. Bayes looked at the probability P(AB/C') to have both A and B under
condition C', and noticed that

P(AB/C) = P(A/BC)P(B/C) . 2)

On the other hand,
P(AB/C)= P(BA/C)= P(B/AC)P(A/C) |, (3)
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so that
P(B/AC)

P(B/C) (4)

which means that we can know how to update the prior probability P(A/C) to the posterior
probability P(A/BC') under the occurrence of a new condition B. It appears that this Bayesian
logic of probabilities is indeed the scientific method. It has been embraced and developed by
Laplace around 1800, and in modern times by Jeffreys and Jaynes. It tells us that probability is
not necessarily a frequency, and the chances depend on conditions. Usually, if we have a frequency
f then p(f)df is the probability to get it within df.

P(A/BC) = P(A/C) -

More, in order to get something that might be reasonable, we need more than "let data speak
for themselves". Data never "speak for themselves". We need a prior reasonable knowledge, to
update it with plausibility. In order to get a theory, we need another apriori theory! This is
another thing Bayes taught us!

Indeed, let C' be unspecified, and let us denote A by some x; and let B be some «, such that
p; = p(z;)and p(z;/a) = p;(a). We have then

pi(e) = p(a/i)p; . (5)

Suppose that we know nothing apriori about p;. Then, they must be equal, as given by the
maximum of the entropy

S:—Zpilnpi; (6)

our state of knowledge is minimal at this stage, as measured by this Shannon entropy given above
(it is called the principle of "insufficient reason"!). Let us introduce then a constraint « (like, for
instance, imposing the condition of having a fixed mean energy of a statistical ensemble). We
know then that the probabilites p;(«) get non-uniform with respect to i, which, of course, means
that we know more. Indeed, on the other hand, Bayes equation (5) tells that p;(«) < p;, so the
Shannon entropy (6) decreases, and we got more knowledge, as expected.

The most likely state. A statistical ensemble of N particles has a (density of) probability
p ~ 1/N over its states in number of N. It is convenient to introduce the additive entropy
S =InN = —Inp for the multiplicative A/. At equilibrium, the entropy must be maximal, and,
therefore steady. Consequently, it must be proportional to the constants of motion, like energy, for
instance, S ~ 3&, where 3 is some constant. Then, p ~ e #. Let us normalize this distribution
(which is called the canonical distribution):

7 ~ / dEAN - e = / d€ - e (7)
where N is the number of states correspoding to £, and entropy is labelled now by &£. If

0S/0E = 3 (8)

for some £ = F (and S = §), then S — € = S — BE — |S"/2| (€ — E)?... and Z becomes

7~ S / dE - 19 PIEFP _ | [or TG S0P (9)

The prefactor may be dropped out, and define the canonical partition function (sum of states) as
Z = e PF and the free energy F' = E — 3~1S. What is more important is that the distribution
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p ~ exp{—1|5"/2| (€ — E)?} is higly peaked on E (because S” ~ 1/N); it is close to the "micro-
canonical distribution" /27 /5”6(€ — E). This is why a statistical ensemble has a rather definite
energy F, in spite of its (statistical) moving over so many states (or, precisley due to that): it is
the thermodynamical energy, it is also the mean energy, and the corresponding thermodynamical
state, reached at equlibrium by so many (statistical) movements (and perhaps such a long time),
is the most likely state. Equation (8) defines temperature 7' = 3!, and the fluctuations in energy
are 0E ~ 1/1/|S"| = T'\/c, where c is the heat capacity. A similar analysis holds for the grand-
canonical ensemble, telling that the probability is peaked on the number of particles N, and ¢ ~ N
, and so does energy F. And the relative fluctuations go like 1/ V/'N.

If the statistical equilibrium exists, then it is the most likely; or it does exist precisely because
it is the most likely. And this is true for large ensembles, with large energies, large volume, etc,
i.e. with a large number of states. Because, if the number of states is large enough, we ask for
the ensemble to be in one subset of an equally large number of states (as, for instance, to have
energy F, which is proportional to this number of states for a given temperature), so it is not
very surprising that equilibrium does exist. As it may equally be read from fluctuations. On
the contrary, for low temperatures, or low energies, or small size, etc, the relative fluctuations
grow indefinitely, and equlibrium is not attained anymore, and this non-thermodynamical limit is
thermodynamically meaningless.

Apart from being an extensive function of number N of particles and volume V' (as seen from the
summation over states), the thermodynamical energy F is also a function of entropy S, as seen
from (8), while the latter is obviously S = — )" pIn p; and T'dS is heat. All this thermodynamics as
the most likely behaviour of the statistical ensembles has clearly been made explicit by Boltzmann
up to around 1900.

Moreover, the entropy as the logarithm of the number of states can be made explicit simply. For
the classical occupation numbers n = N/AN < 1, the number of states is HNN/N!...,SO that
S = —>Y nln(n/e). For fermions with N states out of which N are occupied and N’ — N are
empty, the number of states is [[NV!/N!/(N — N)!, so that S = —> [nlnn+ (1 —n)In(1 — n)],
for the mean occupation number n = N/N. For bosons we distribute N particles and N — 1
"walls" among N states, so the number of states is [[(N + N — 1)!I/(N — 1)IN!, leading to S =
Y [(n+1)In(n+ 1) — nlnn] for the mean occupation number n = N/N. Statistical distributions
for the mean occupation number can be obtained from the maximum of these entropies under
constraints of energy, number of particles, etc.

Motion through probabilities. Around 1905 Einstein realized that the statistical motion
proceeds by probabilities, and this probabilistic motion is the origin of heat, as another component,
of energy. Indeed, from > exp(c — BE) = 1, where Z = e ¢, we have straightforwardly dc —
B(OE/ON)dX — EdB =0, or d(fE — ¢) = fdE — B(OE/ON)d\ = 3dQ, so dE = (OE/ON)d\ + dQ,
where (@) is heat and ) is any other parameter. Moreover, since S = —> plnp = fE+InZ =
BE — ¢, it follows dS = (3dQ, as a total differential. Similarly, S>(E — £)e ™ = 0 leads to
OF /03 = E* — E2, so that the energy fluctuations are 0E ~ /|0FE/0f|, or §E ~ /1/]02S/0E?|,

since dS = 3dFE, for constant parameters. In general, since probability goes like ¢°, the fluctuations
go like 1/4/]5"|.

In addition, since the statistical probability is labelled by states, the statistical motion is assignable
to every state of the ensemble, in particular to particles, or excitation quanta. Indeed, according
to (8), temperature 7T is a scale energy, corresponding to equilibrium, and time 7, ~ h/T is time
over which equilibrium is reached. It must be much shorter than the quantal time 7, ~ h/hw,
where w is a characteristic frequency of quantal states. For statistical ensembles, such frequencies
are very low, so the condition 74, < 7, is easily fulfilled. For non-ideal ensembles, the quantal
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states are elementary excitations, and the condition reads 7, < 7¢, where 7,4 is the lifetime of
these excitations. For instance, quasiparticle lifetime for a Fermi liquid is ~ h/(T?/u), where
i is the Fermi energy. A special situation pertains to the classical gas, where the state energy
corresponds to the particle energy /?/ma®, where m is the particle mass and a represents the
mean inter-particle distance. However, the condition 7' > h*/ma?, i.e. 7y, < 74, is precisely the
condition of equilibrium in this case. The role of the elementary excitations are played now by
colliding particles, whose lifetime is longer by a factor a?/o than the "quantal" time, where o is
the cross-section. Therefore, inequalities 7, < 7, < 7y must be obeyed.

Fluctuations have their own time scale 7¢,.s. Indeed, the fluctuating energy is de ~ T'y/c, where c is
the heat capacity (per particle), so the fluctuation time may be written as 7. ~ nh/de, where n
is a undetermined number of quanta of action. It is easy to see that 7, K Tfiesq K 73 K 75. Sim-
ilarly, the mean inter-particle distance fluctuates by some a, such that a ~ (1/9v%?)(9%s/0v?)71,
where s is the entropy per particle volume v. It is about the mean inter-particle distance. Mo-
mentum fluctuates also by dp, given by (dp)? ~ mT, etc.

Probability goes in time and space by fluctuations. In the simplest form, the particle density
obeys

on/ot = %[n(x —a) —n(z) —n(z) +n(x +a)] = (a*/27)0*n/02* | (10)

where a and 7 are the fluctuating distance and time. This is the diffusion equation, whose solution
isn ~ (N/v/4rDt)e **/4Pt for an original peak Nd(z), where N is the number of particles per unit
area and D = a*/27 is the diffusion coefficient. Since D = T /6man, wheren is the viscosity, and
a®/21 ~ a®T+\/c/2hn, it is easy to see that the viscosity per unit mass density is na/m ~ n(h/m),
so that h/m may be viewed as quanta of viscosity.

Equation (10) is, in fact, more general. Momentum can be added for completely characterizing
classical states, and, in the presence of transport velocities and external forces, equation (10)
becomes Boltzmann’s kinetic equation with the right-hand side, writen as dn/7, the collision
integral. Boltzmann’s H-theorem for the increase of entropy — > pIn(p/e) is then easily proven.
Similarly, the master equation for quantal evolution of the probability density under the action
of transition probabilities per unit time is easily reducible to Boltzmann’s equation written in
this form, on the ground of the quasi-classical description. The approach to equilibrium and the
transport (which proceeds over longer distance and time scales, those of the collision time, lifetime
and mean free path) are thereby governed by such a diffusion equation of the form (10), which may
be called Einstein’s kinetic equation. Originally, Einstein employed it for the Brownian motion.
Fluctuations and dissipation go by this equation.

Probability waves. Perhaps the most general motion for detemined quantities like r and ¢
proceeds by
kdr — wdt = dd . (11)

Though not necessary, r may be position and ¢t may denote time, so that the wavevector k = grad®
is perpendicular to ® = const and k = 27/\ is then the inverse of a wavelength ), while the
frequency w = 27 /T is the inverse of a period 7. Obviously, ® is the phase of a wavefunction
1 ~ €® and there must be a universal constant of action A, such that the mechanical action is
dS = hd®, and the momentum p = hk = h/\ is quantized, the energy € = hw = h/T is quantized,
since S ~ 27nh, where n is an integer. The wavefunction reads then ¢ ~ ¢*/" and we may start
the description of the quantal motion, with Planck’s constant h, de Broglie’s quantization of the
momentum and Einstein’s quanta of energy.

The wavefunction 1) may be expanded in plane waves, 1) = >_ c¢(k)e’ ™, or, for sets of determined
coefficients c¢(k), the wavefunction 1) may also be expanded in orthogonal wavefunctions ¢, ¢ =
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> (@n,V)@n, where (¢,,1) is the scalar product of ¢ by ¢,. Obviously, the scalar product
(n, 1) is the content of ¢, in 1), it tells how much of ¢,is contained in 1, and, by virtue of the
normalization of the wavefunctions, S [¢/]> = 3 |(¢n, ¥)|%, its square |(¢y,,1)|* may be viewed
as the probability of getting ¢,, in ¥. Obviously, (¢n, %) is a wavefunction of ¢,, so the square
of wavefunctions is density of probability. Thus, ¢ (r) = [dr’ - ¢(r')é(r — r’), so [ (r)|? dr is the
probability of having r in this wavefunction v (r). Because in ¢(r) position r is not determined,
only 1 is determined, and, in this sense, the quantal motion, or the waves motion, is not a
complete description of reality. Indeed, in the plane wave e’ the wavevector k is determined,
position r is not determined. Moreover, the variation d® = kér + rdk + okor = d® + dkir
becomes 6@ = dkior on ® = const, so that dkor ~ 27n, which means , 0kdr > 7 at least, in order
to have meaningful values for both k and r. This holds also for frequency and time, dwdt > =,
and may be called the uncertainty of the phase variables in waves. It is worth noting that if the
wavelength is small enough, much smaller than the characteristic length of the movement, then
we may have a reasonable accuracy for both wavevectors and positions, and say then that we are
in the quasi-classical limit, or approximation, or description. Similarly, if the position is much
sharply defined over a range which is much smaller than the wavelengths, then again we are in the
quasi-classical limit. In both cases dkdxr > 7, i.e. the phase varies over a large range of cycles,
and the mechanical action varies over a much larger range than Planck’s constant, and we may let
then h formally go to zero. It is also worth noting that this waves uncertainty acts independently
upon each spatial coordinate, so we may have a sharp localization on two coordinates, and a
small wavelength along the third, which is a ray, as obtained from a small aperture of size d,
where A\ < d. We may note that in such quasi-classical limit the wavevector, or wavelengths,
vary slowly in space, while abrupt variations bring about big changes in phase, which can only be
accommodated by letting the amplitude of the wavefunction changing, which amounts formally
to let phase become imaginary.

In order to see how much of a quantity f is contained in a wavefunction 1 we should act with
an operator f on that wavefunction. For instance, if —id/0r acts upon e** we get ke’*™, and
may say that the wavevector is determined in the wavefunction ¢’**, having the value k. It may
happen that ¢, is an eigenfunction for the operator f, i.e. fy, = f,v,, and then we say that
f has a well-determined value f,, on that wavefunction, which is an eigenvalue of f. But usually
f => cafon = . cnfupn, so that f is not determined, in the sense that it may be any f,,
with probability |c,|?, so that its average is (1, f©)) = 3. |¢n|” fn, and during this measurement
of f we may reduce the wavefunction to any ,, with a probability, thus disturbing the original
wavefunction. Wavefunction v itself may be the eigenfunction for another quantity g, and these
two quantities f and g are not simultaneously well-determined, as long as they do not commute.
They are represented, in general, by matrices, of the form f,,, = (¥n, fm), and they must be
hermitian, 7.e. f transposed and conjugate f"* must be equal to f in order to have real eigenvalues.
A principle of Heisenberg’s uncertainty of the form 0 fdg > finite holds for them, as for instance,
(¢, (0f —iXdg)(6f + iNdg)y) > O for any A, so that dfdg > |C| /2, where C = [f,g] is their
commutator. Momentum p = —ihd/0r does not commute with its canonical-conjugate operator
of position r, i.e. [p,, x| = —ih, so that dp,0x > h/2, etc. The most complete description is
attainable by wavefunctions which are eigenfunctions of the most complete set of commuting
operators, and again such a description is not a complete one, in principle.

If energy is going to have determined values, then they must be eigenvalues of ih0/0t, since,
indeed, this operator gives energy E = hw when acting upon the plane wave. On the other
hand, it may be represented as the hamiltonian H = p?/2m + V, for instance, for a particle of
mass m moving in the potential V', and Schroedinger’s equation Hvy = Ev = thoy /0t leads to a
wavevector dependence w(k) of frequency, like any other equation.
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Let us consider such a superposition of plane waves

Y(r,t) = / dk - c(k)e' k=t (12)

where w is a function of k. Usually, the coefficients c(k) are localized over a certain range around
a certain wavevector, depending on the initial condition at ¢ = 0. We may assume that c(k) are
uniformly distributed, so that at ¢ = 0 the wavefunction ¢ (r,0) = d(r) is localized as a J-peak on
r = 0. If w would be linear in k, then ¢ would move as a §-peak with phase velocity w/k. It follows
that the main contribution to v comes from the linear part of w, so that we expand w around
some ko, which may be taken zero, for simplicity. The expansion reads w = wo+vk+w”;;k;k;/2...,
where

v = Jw/0k (13)

is a velocity. We further assume that the tensor w”;; is brought to the principal axes, so that we
may estimate the contribution to the wavefunction for each coordinate separately. It reads

w(x,t) _ /d/{i . eik(vat)fiw”k%ﬂ (14)

which is readily estimated as
zf'ut)Q

b(x, ) = \/2m i te (15)
Such an oscillating diffusion is related to Fresnel’s stationary phase, or Debye’s steepest descent. It
follows that the wavefunction looks like wavepackets, which are localized (periodically) on = = vt
over a spread dx ~ +/|w”|t, propagate with a group velocity v, which is dispersive, i.e. each
wave packet propagates with its own group velocity, depending on its central wavevector, and the
wave packets flatten in time and oscillate slower. Obviously, |w”|t ~ 1/§k?, so that the larger
0k the sharper the localization, i.e. the uncertainty dxdk ~ 1. Moreover, since x = t0w/0k, the
frequency may be given a space dependence, and the wavevector may be given a time dependence,
such that 0k/0t = Ow/0z, and, in general,

Ok /Ot = —Ow/dr | (16)

i.e. the frequency may act as a hamiltonian for the Hamilton-Jacobi equations of motion. Under
such circumstances, waves behave like particles (or quasi-particles, their lifetime being 7 ~ w” /v?),
and particles are waves, or quasi-waves. Everything with probabilities, certain uncertainty, and,
of course, incompleteness.

Power laws. Suppose that something occurs repeatedly with an average time ¢ in a long duration
T. The number of occurences is then N = T'/t. Similarly, the total number may be taken as
Ny = T/t,, where t, is a characteristic time (actually, it is (7'/to) In(T/ts), which amounts to
renormalize the threshold time to ty = to/In(T/ty) — 0 for T — oo, such that the results are in
fact independent of arbitrary cutoff time). The frequency is then N/Ny = t(/t, and the probability
is —d(N/Ny) = (to/t*)dt. Suppose further that each N set is characterized by some size S. For
large scales of time and size, the logarithms In S and Int vary slowly, so it is reasonable to say
that

dlnS/dlnt =1/r , (17)

where 7 is a constant. It follows t/to = (5/Sy)", where Spis a threshold size. The probability
becomes —d(N/Ny) = (rS5/S™7)dS, or, if we denote p = —dN/NydS and o = 1 +r,

p=(a—1)857"/8", (18)
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or
Inp = const —alnS . (19)

Such power-law distributions of probability seem to be ubiquitous. They seem to be present in
word frequency (o ~ 2.2), papers citations (a ~ 3), web hits (o« ~= 2.4), books sold (a ~ 3.5),
telephone calls (« ~ 2.2), craters on the moon (« ~ 4), solar flares (o ~ 1.8), wars (« ~ 1.8), worth
of the people (« ~ 2), family names («a ~ 2), cities distributed over size (« ~ 2.3). Sometimes In S
may be viewed as a magnitude M, InS ~ M, and, in this respect, the earthquakes are distributed
with @ > 1, or o ~ 2, for the biggest ones (size being in this case the released seismic energy).
There is no scale probability in such power laws, simply the probability distributes over a large
range. It is noticed that beta function B(S,«a) = I'(S)'(«)/I'(S + «), where I' is the gamma
function, goes like S~ for large a.

Power-law distributions may also be got by some specific mechanisms. For instance, let a random
walk of step length a (like that of a drunken sailor). The position after N steps is ry = ry —
rNo1+TN_1—TN_2+...= Y Sy, Where s, = a, % = a? and 5,5,, = 0. The distance after N steps
is given by 12 = (3. 5,)2 = Na?, so it goes like square root v/Z of time, since N ~ t. Let a random
walk along an axis, by two distinct steps only (one upwards, other downwards), and let us, be the
probability of crossing the axis after 2n steps. Let fs,, be the probability of crossing the axis for
the first time after 2m steps, so that ua, = >} fomUan—om, where ug = 1 and fy = 0. Generating
functions U(z) = > ug,z™ and F(z2) = > fo,2" give immediately F'(z) = 1 — 1/U(z). On the
other side, uy, = C% /2> so that U(z) = 1/y/1 —z, and F(z) = 1—v/1 — z, whose expansion
coefficients are fo, = C% /(2n — 1)2%". For large n, with Stirling’s Inn! = nlnn —n + (1/2) Inn,
we get fon ~ 1/2/n(2n — 1)2 , which amounts to a probability ~ 1/t*?2 of zeroing for the first
time in time ¢. It gives the lifetime of a gambler’s ruin process. A maximal winning streak, or
losses streak, in N tries is v/N.

Suppose an ensemble with a certain distribution of sizes s. Obviously, the probability for s is a
function of s/a, where a is a scale size, like unit of measure. The ensemble is also characterized by,
say, its mean size S, so the probability is p(s) = C'f(s/a,5/a). Changing the unit a will not change
the probability, so that p(s) = C'f(s/Aa,5/Aa), which, however, belongs to another ensemble
characterized by §/\. The ensemble rests the same only for § — oo, so that the probability reads
then p(s) = C'f(s/Aa,00) = (C”/C)p(s/A), which amounts to

p(bs) = g(b)p(s) - (20)
This scaling is specific to the phase transitions, where the mean size percolates to infinity at the
critical point. The power law is easily obtained from (20), since p(b) = g(b)p(1), i.e. p(bs) =
[p(b)/p(1)]p(s), and sp'(s) = [p'(1)/p(1)]p(s), hence p(s) = p(1)s?'M/P1) Formally, solution of
(20) contains also a contribution which is periodic in Ins. A large number of natural phenomena
may be viewed as being always close to their critical point, oscillating around it, which is a
self-organized criticality, their probability distribution following a power law. It is striking the
similarity of the scaling equation (20) with Bayes’ equations (4) or (5). It is also worth noting
that a second-order term to (17) may produce a log-normal distribution, i.e. a normal distribution
in logarithms. It seems that the bird species do obey such a distribution, for instance.

Finally, let us note one of the most convenient fitting method. Suppose that f,(z) is a function that
may fit a set of n data z;. A probability may be defined as p,(z) = fo(2)/Is, where I, = [ fo(x)dz,
so that the fit probability (or likelihood) is [ pa(2;). The extrema of In [] pa(x;) = > Inp,(x;) =
> In fo(z;) —nln I, give the most likely values of the fitting parameter a. Obviously, the method
is based on Bayes theory.

© J. Theor. Phys. 2005, apoma@theorl.theory.nipne.ro



