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The static dipolar force is generalized to time-dependent classical distributions of dipoles and

electromagnetic fields. This force may exhibit a remarkable resonance character for induced dipoles,

related to the pole structure of the polarizabilities. The resonance phenomenon is illustrated for

two macroscopic polarizable bodies, with mutually induced polarizations, using the well-known Lorentz-

Drude model for the dielectric response with optical dispersion and a characteristic (resonance) frequency.

Specifically, the calculations are performed for distances much longer than the dimension of the bodies

(“point-like” bodies), but shorter than the characteristic wavelength (sub-wavelength, stationary,

near-field regime). The polarizations are induced via a localized external field acting upon only one body.

The force is practically vanishing for distinct substances and acquires a non-vanishing value for identical

substances. It falls off as the 7-th power of the distance, being reminiscent of the van der Waals-London

force. The conditions of validity of this resonance phenomenon are emphasized. Particular cases

corresponding to independent external fields or two isolated, interacting bodies (closed system) are also

analyzed, with similar conclusions regarding the resonance character of the force. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4737610]

I. INTRODUCTION

The interaction of light with matter in the sub-wavelength

regime (i.e., for distances much shorter than the relevant

wavelengths) is of much interest today in the context of nano-

plasmonics, metamolecules and metamaterials, enjoying a

wide range of applications.1–8 In general, the electromagnetic

interaction acquires various forms, depending on the particular

conditions of motion of the electric charges and currents. As it

is well known, classical particles and electromagnetic fields

are subjected to the ponderomotive Lorentz force and Max-

well stress forces. Quantum mechanical perturbation theory

leads to van der Waals-London or Casimir forces acting

between atoms and molecules.9–15 The vacuum zero-point

fluctuations, associated with the motion of the electric polar-

ization, generate similar forces in matter.16–22 Usually, such

forces are related to the multipolar expansion of the electro-

magnetic interaction, especially the dipolar interaction. Partic-

ular importance is given to the resonant character of such

forces, in various contexts.23,24 A resonant energy transfer is

well known for the dipolar interaction of donor-acceptor mol-

ecules (Forster mechanism),25–28 and resonant polarizabilities

have been identified for aromatic molecules placed between

two metallic clusters.29

Long-range forces acting between polarizable bodies

(dipole oscillators) in intense optical fields have been

identified,7,30–32 exhibiting, typically, characteristic spatial

oscillations, related to the wavelength of the external fields.

These optical forces may lead to bound states and ordered

crystalline structures, generating a genuine “optical matter.”31

Usually, the derivation of these forces do not exploit the

resonant character associated with the pole structure of the

dielectric response function (polarizability). We get here the

optical force as a particular case of our general approach.

We present here a generalization of the static dipolar

force arising from the classical time-dependent polarization

of two macroscopic bodies. The force exhibits a remarkable

resonance character, in the sense that it acquires finite values

for identical substances and is practically vanishing for dis-

tinct substances. In order to illustrate this resonance phenom-

enon we employ the well-known electric susceptibility

(dielectric response function), which exhibits optical disper-

sion associated, in general, with a set of characteristic fre-

quencies (Lorentz-Drude model33–37). The calculations are

carried out in the sub-wavelength (stationary) regime (near-

field zone) for two “point-like” polarizable bodies, each with

one characteristic frequency (and leaving aside the spatial

dispersion). The distances are much larger than the dimen-

sion of the bodies, but smaller than the characteristic wave-

lengths. The polarization is driven by a localized, external

electric field acting upon only one body. Particular cases cor-

responding to independent external fields or two isolated,

interacting bodies (closed system) are also analyzed, with

similar conclusions regarding the resonance character of the

force.

II. DYNAMIC DIPOLAR FORCE

We consider two polarizable bodies, one placed at R

(denoted by a) and another placed at the origin (denoted by

b). All the quantities pertaining to these two bodies are

labelled by a and, respectively, b. The bodies have charge

and current densities qa;bðr; tÞ and ja;bðr; tÞ, which generate

electric and magnetic fields Ea;bðr; tÞ and Ha;bðr; tÞ. In gen-

eral, the quantities which belong to body a (placed at R)a)apoma@theory.nipne.ro.
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depend parametrically on the position R; for brevity, we

omit occasionally to write explicitly this dependence. The

Lorentz force acting upon body a on behalf of body b is

given by

F ¼
ð

drqaðr; tÞEbðr; tÞ þ
1

c

ð
drjaðr; tÞ �Hbðr; tÞ: (1)

It is convenient to use Fourier transforms (wavevector k

and frequency x) and to introduce the electromagnetic

potentials U and A. The fields can then be written as

Ebðx; kÞ ¼ i
x
c

Abðx; kÞ � ikUbðx; kÞ;

Hbðx; kÞ ¼ ik� Abðx; kÞ: (2)

As usually, we average the force given by Eq. (1) over

the time T, much longer than the period of the relevant fre-

quencies, according to the recipe ð1=TÞ
Ð

dt. Such an averag-

ing procedure implies an infrared frequency cutoff

Dx ’ 1=T. Using the continuity equation xqaðx; kÞ
�kjaðx; kÞ ¼ 0, we get

F ¼ i

ð2pÞ4T

ð
dxdk � k 1

c
j�aðx; kÞAbðx; kÞ

�

� q�aðx; kÞUbðx; kÞ
�
: (3)

As it is well known, the electromagnetic potentials are given by

Ubðr; tÞ ¼
ð

dr0
qbðr0; t� jr� r0j=cÞ

jr� r0j ;

Abðr; tÞ ¼
1

c

ð
dr0

jbðr0; t� jr� r0j=cÞ
jr� r0j ;

(4)

or, by taking the Fourier tranforms,

Ubðx; kÞ ¼ qbðx; kÞGðx; kÞ;

Abðx; kÞ ¼
1

c
jbðx; kÞGðx; kÞ; (5)

where

Gðx; kÞ ¼ 4p
k2 � x2=c2 � isgnðxÞ0þ (6)

is the Green function of the (retarded) Coulomb interaction.

We can check easily the Lorenz gauge kAðx; kÞ
�ðx=cÞUðx; kÞ ¼ 0 on these equations (related to the conti-

nuity equation for the distributions labelled by b). Inserting

Eqs. (5) into Eq. (3), the force becomes

F ¼ i

ð2pÞ4T

ð
dxdk � k 1

c2
j�aðx; kÞjbðx; kÞ

�

� q�aðx; kÞqbðx; kÞ
�

Gðx; kÞ: (7)

We can see that the force acting on body a on behalf of

body b is the same (and of opposite direction) as the force

acting upon body b on behalf of body a, as expected (the law

of action and reaction).

Further on, we assume that the two bodies are “point-

like”, i.e., their dimensions are much smaller than any dis-

tance of interest (this amounts to a short-wavelength cutoff

Dk). Specifically, we assume that their polarizations (dipole

moment of the unit volume) are given by

pa ¼ vaPaðt;RÞdðr� RÞ ; pb ¼ vbPbðt;RÞdðrÞ; (8)

where va;b are the volumes of the two bodies and Pa;bðt;RÞ
are the polarization vectors (dipole moments per unit vol-

ume). For generality, we assume that the polarization vector

Pbðt;RÞ of body b (placed at the origin) may depend on R.

Using qa;b ¼ �divpa;b and the continuity equation, we get

the polarization charge and current distributions

qaðr; tÞ ¼ �va½Paðt;RÞgrad�dðr� RÞ;

jaðr; tÞ ¼ va
@Paðt;RÞ

@t
dðr� RÞ (9)

and

qbðr; tÞ ¼ �vb½Pbðt;RÞgrad�dðrÞ;

jbðr; tÞ ¼ vb
@Pbðt;RÞ

@t
dðrÞ: (10)

For the Fourier transforms we get

qaðx; k; RÞ ¼ �iva½kPaðx; RÞ�e�ikR;

jaðx; k; RÞ ¼ �ivaxPaðx; RÞe�ikR

(11)

and

qbðx; k; RÞ ¼ �ivb½kPbðx; RÞ�;
jbðx; k; RÞ ¼ �ivbxPbðx; RÞ: (12)

Introducing these charge and current densities in Eq. (7)

we can write the force as

F ¼ ivavb

ð2pÞ4T

ð
dxdk � k

�
x2

c2
P�aðx;RÞPbðx;RÞ

� ½kP�aðx;RÞ�½kPbðx;RÞ�
�

eikRGðx; kÞ: (13)

The k-factors in Eq. (13) can be replaced by the deriva-

tives of the exponential eikR with respect to R; the polariza-

tions Pa;bðx;RÞ can be related to the external fields

Eext
a;bðx;RÞ by means of the (scalar) polarizabilites,

Pa;bðx;RÞ ¼ aa;bðxÞEext
a;bðx;RÞ; (14)

and the integration over k of eikRGðx; kÞ (performed in the

upper k-half-plane) is the spherical wave

1

ð2pÞ3
ð

dkeikRGðx; kÞ ¼ eixcR

R
; (15)

024905-2 Apostol et al. J. Appl. Phys. 112, 024905 (2012)

Downloaded 21 Jul 2012 to 194.102.58.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



the force given by Eq. (13) becomes

F ¼ vavb

2pT

ð
dx

x2

c2
P�aðx;RÞPbðx;RÞ

�

þ P�aiðx;RÞPbjðx;RÞ
@2

@Ri@Rj

�
@

@R

eixcR

R
; (16)

or

F ¼ vavb

2pT

ð
dxa�aðxÞabðxÞEext�

ai ðx;RÞEext
bj ðx;RÞ

� x2

c2
dij þ

@2

@Ri@Rj

� �
@

@R

eixcR

R
; (17)

where summations are performed over the components labels

i and j. We can see that the force given by these equations is

a generalization of the static dipolar force (it contains

frequency-dependent factors); we may call it a dynamic

dipolar force. Indeed, in the static limit x! 0 and using

(static) polarizations Pa;b, we can check easily that this force

is proportional to F ¼ �@U=@R, where

U ¼ PaPb

R3
� 3ðPaRÞðPbRÞ

R5
(18)

is the static dipolar interaction energy.

It is also worth noting that Eq. (17) leads to the well-

known optical force in the wave-zone xR=c� 1. Indeed, in

this case we may retain only the spatial derivatives of the expo-

nential in Eq. (17). Assuming for simplicity a monochromatic

external field Eext parallel with R, acting upon the both bodies,

we get immediately from Eq. (17) the interaction energy of the

two bodies U � vavbðx=cÞ2jEextj2ðcos xR=cÞ=R, which is the

typical result corresponding to the optical force.30–32

It is worth noting that the dipolar force can also be

obtained by starting with the interaction Lagrangian

Lint ¼ �
ð

drqaðr; tÞUbðr; tÞ þ
1

c

ð
drjaðr; tÞAbðr; tÞ; (19)

corresponding to the charge and current densities of the body

a placed in the external field generated by body b. Following

the procedure described above we get

Lint ¼
vavb

2pT

ð
dx

x2

c2
P�aðx;RÞPbðx;RÞ

�

þ P�aiðx;RÞPbjðx;RÞ
@2

@Ri@Rj

�
eixcR

R
: (20)

The force derived from such an interaction Lagrangian is

given by F
0 ¼ @Lint=@R. This force includes the effect of the

external fields, through the R-dependence of the polarizations

(external fields). In order to get the force F, these effects must

be subtracted from the force F
0
. If the polarizations (external

fields) do not depend on R, the two forces F and F
0
coincide.

If the bodies are mutually polarized (as we discuss in the

Sec. III), the interaction becomes in fact a self-interaction and

a factor 1=2 must be included in the interaction Lagrangian.

We can see from Eq. (20) that the same result is obtained by

starting with charge and current densities of the body b placed

in the external field generated by body a, as expected. In view

of the symmetry a$ b (R! �R), the law of action and

reaction is fulfilled.

In general, except for the static contribution, the x-integral

in Eq. (17) has a finite value, so that the force is vanishing in

the limit T !1. However, for a pole structure of the polariz-

abilities aa;bðxÞ, especially for identical substances a ¼ b
(aaðxÞ ¼ abðxÞ), the integration over x may give a singular

(indefinitely increasing) contribution, which, together with the

vanishing factor 1=T, may lead to a finite value for the force.

Such a circumstance has an obvious resonance character, and

we may call the corresponding force a resonant dipolar force.

In order to illustrate this resonance phenomenon, we make fur-

ther on a few simplifying assumptions.

III. MUTUALLY POLARIZED BODIES

We assume that an external electric field Eext
a ðtÞ ¼ EðtÞ

is attached to the body a, which falls off sufficiently rapidly

with the distance, such that it acts only upon the body a and

not upon body b. Consequently, EðtÞ does not depend on R

(it depends only on the time t); similarly, the polarization

PaðtÞ induced in body a depends only on the time t and does

not depend on the position R. In order to simplify the calcu-

lations we assume that the external field EðtÞ is of the form

EðtÞ ¼ EDtdðtÞ, where Dt is a characteristic duration of the

external field pulse; for numerical estimations it can be taken

of the order of an ultraviolet frequency cutoff. Then, the Fou-

rier transform of the external field is EðxÞ ¼ EDt.
Further, we assume that the external field for body b is

the field Eaðr ¼ 0; tÞ generated by body a. This field can be

computed most conveniently by making use of the Fourier

transforms and equations of the type (2), (5) and (6). The

integration over k can be performed straightforwardly, as

in Eq. (15), leading to a spherical wave. The intervening k-

factors can be handled by noticing that qaðx; k; RÞ and

jaðx; k; RÞ contain the factor e�ikR, according to Eq. (11).

Therefore, the k-factors can be replaced by suitable deriva-

tives of the form @=@R, as we did in deriving Eq. (17) for

the force. By straightforward calculations we get

Eaðx;r¼ 0;RÞ¼ vaaaðxÞ
x2

c2
EðxÞþ EðxÞ @

@R

� �
@

@R

� �
eixcR

R
;

(21)

or

Eaðx;r¼0;RÞ¼vaaaðxÞ
x2

c2
EðxÞ�

�
EðxÞR

	
R

R2

2
4

3
5

8<
:

þ1

R
i
x
c
�1

R

� �
EðxÞ�3

�
EðxÞR

	
R

R2

2
4

3
5
9=
;eixcR

R
:

(22)

The external field acting upon body b is Eext
b ðx;RÞ

¼ Eaðx; r ¼ 0; RÞ.
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We turn now to establishing a model for the polarizabil-

ities aa;bðxÞ.
In general, leaving aside the spatial dispersion, the

polarization Pðx; RÞ is related to an external electric field

Eextðx; RÞ by

Pðx; RÞ ¼ vðxÞEtðx; RÞ ¼ vðxÞ½Eextðx; RÞ þ Eintðx; RÞ�;
(23)

where vðxÞ is the electric susceptibility, Eintðx; RÞ is the in-

ternal electric field (generated by the polarization charges

and currents) and Et ¼ Eext þ Eint is the total electric field.

We can view the polarization of matter as consisting of a

slight displacement uðr; tÞ of the mobile charges, say elec-

trons, with respect to their neutralizing, (quasi-) rigid

background of positive (ionic) charges. Under these circum-

stances, a density imbalance dn ¼ �ndivu occurs, which

gives rise to a polarization charge density q ¼ endivu and a

polarization current density j ¼ �en@u=@t, where n is the

particle density and �e is the particle (electron) charge. We

can see that the polarization is given by P ¼ �enu. This rep-

resentation of the electric polarization turned out to be very

useful in dealing with electromagnetic phenomena in macro-

scopic bodies, including reflection, refraction, surface

plasmons, and polaritons in a half-space (semi-infinite

solid),38,39 a slab,40 electromagnetic coupling between two

half-spaces41 or the Mie scattering of the electromagnetic

field by a sphere.42 The displacement u obeys Newton’s law

of motion. Let us assume a characteristic restoring (elastic)

force acting locally, with a characteristic frequency xc. For a

homogeneous piece of matter, leaving aside the spatial dis-

persion and relativistic and magnetic effects, Newton’s law

reads

m€u ¼ �eEt � mx2
cu� mc _u; (24)

where m is the particle mass and a damping term is included

(c	 xcÞ. This equation can be transformed straightforwardly

into an equation for the polarization P, leading to PðxÞ
¼ vðxÞEtðxÞ and the well-known electric susceptibility

vðxÞ ¼ � 1

4p

x2
p

x2 � x2
c þ ixc

; (25)

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pne2=m

p
is the plasma frequency. This is the

well-known Lorentz-Drude (plasma) model of polarizable

matter,33–37 which assumes a homogeneous, isotropic matter,

without spatial dispersion, represented by a field of harmonic

oscillators of frequency xc. It leads to the well-known

Lydane-Sachs-Teller dielectric function eðxÞ ¼ 1þ 4pvðxÞ,
including both longitudinal (xL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ x2
p

q
) and trans-

verse modes (xT ¼ xc).43 For conductors xc ¼ 0, for dielec-

trics xc 6¼ 0. We use Eq. (25) for the dielectric response and

consider xp; xc and c as parameters characterizing each par-

ticular substance. The model can be generalized by including

the spatial dispersion, several characteristic frequencies xc,

or by adding an external magnetic field, etc. It is worth not-

ing the absence of the magnetic part of the Lorentz force in

Eq. (24), according to the non-relativistic motion of the

slight displacement u. It is easy to see that, apart from rela-

tivistic contributions, it would introduce non-linearities in

Eq. (24), which are beyond our assumption of a small dis-

placement u. Using spatial Fourier transforms, this approxi-

mation can be formulated as kuðkÞ 	 1, where k is the

wavevector.

According to Eqs. (2) and (4), the mean value of the in-

ternal fields Eint
a;b, generated by the polarization charges qa;b

and currents ja;b, can be viewed as being proportional to the

volumes va;b of the bodies. We consider these volumes suffi-

ciently small (point-like bodies), such as we may neglect the

internal fields Eint
a;b in Eq. (23), which becomes

PaðxÞ ’ vaðxÞEðxÞ ; Pbðx;RÞ ’ vbðxÞEaðx; r ¼ 0; RÞ:
(26)

This approximation is valid for distances and wave-

lengths much larger than the size of the bodies, such that we

may consider the bodies as being point-like. It amounts to

use the electric susceptibility vðxÞ for the polarizability

aðxÞ. In general, the results presented here are valid as long

as the polarizability has a pole structure as the dielectric sus-

ceptibility given by Eq. (25). Such a Lorentzian structure of

the polarizability is well documented for large molecules,

molecular aggregates and clusters.29,44–47

It is worth noting that, in general, the process of mutual

polarization described here is an iterative process, i.e., in the

same manner as the field of body a polarizes body b, the field

of body b polarizes in turn body a, and so on. Applying itera-

tively Eqs. (26), we can see easily that this succession of mu-

tual polarizations amounts to an iteration factor �vavbvavb

(and a geometric series with this ratio). Since the volumes

va;b are considered as being very small, we may neglect the

iterative nature of the polarization process.

We insert now the external fields EðxÞ, Eaðx; r ¼ 0; RÞ
(Eq. (21)) and the electric susceptibilities va;bðxÞ given by

Eq. (25) in Eq. (17) for the dipolar force. For brevity, we

omit the label c in xca;b and write simply xa;b. It is easy to

see that Eq. (17) implies an integration with respect to x of

functions containing factors of the form

xn

ðx2 � x2
aÞ

2 þ x2c2
a

� 1

x2 � x2
b þ ixcb

e2ixcR; (27)

where n is a positive integer (the integration is performed

in the upper half-plane). We can see that the main contribu-

tion to these integrals comes from poles of the type

’6xa;b þ ica;b=2. The oscillating factor e62ixa;bR=c can

reduce appreciably the value of these integrals. We limit our-

selves to xa;bR=c	 1, i.e., R	 ka;b, where ka;b ¼ c=xa;b

are the wavelengths of the characteristic frequencies xa;b

(much longer than the linear dimensions of the bodies).

We call it the sub-wavelength regime (near-field zone, or

stationary regime). Under these circumstances, we can omit

the oscillating factor e62ixR=c in Eq. (27), as well as

terms containing factors of the form ðx=cÞn, which give

1=kn
a;b 	 1=Rn. This approximation amounts to use
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F ¼ vavb

2pT

ð
dx Pbðx;RÞ

@

@R

� �
P�aðxÞ

@

@R

� �
@

@R

1

R
(28)

for the force given by Eq. (16) and the field

Eaðx; r ¼ 0; RÞ ¼ vavaðxÞ EðxÞ @
@R

� �
@

@R

1

R
¼ �vavaðxÞ EðxÞ @

@R

� �
R

R3
; (29)

given by Eq. (21). We get easily

F ¼ 3v2
avbDt2

2pð4pÞ3TR8
x4

pax
2
pbI0 E2 þ 4

ðERÞ2

R2

" #
R� ðERÞE

( )

(30)

where

I0 ¼
ð

dx
1

ðx2 � x2
aÞ

2 þ x2c2
a

Re
1

x2 � x2
b þ ixcb

� �

¼
ð

dx
x2 � x2

b

½ðx2 � x2
aÞ

2 þ x2c2
a�½ðx2 � x2

bÞ
2 þ x2c2

b�
: (31)

As we see in Sec. IV, this integral has a resonance character.

It is worth noting that the same result for the force given

by Eq. (30) is obtained from F ¼ @Lint=@R, by using the

interaction Lagrangian given by Eq. (20). Within the approx-

imations used here (sub-wavelength regime) this interaction

Lagrangian reads

Lint ¼
v2

avb

4pT

ð
dxvbðxÞjvaðxÞj2

����� EðxÞ @
@R

� �
R

R3

�����
2

¼ v2
avb

4pT

ð
dxvbðxÞjvaðxÞj2 jðEðxÞj2 þ 3

jEðxÞRj2

R2

 !2

:

(32)

IV. RESONANT FORCE

We compute here resonance integrals of the form

In ¼
ð

dx
xnðx2 � x2

bÞ
½ðx2 � x2

aÞ
2 þ x2c2

a�½ðx2 � x2
bÞ

2 þ x2c2
b�

(33)

for even positive integers n (the integrals are vanishing for

odd integers n). We consider first the case of distinct bodies

(a 6¼ b). The function to be integrated in Eq. (33) has 4 (sim-

ple) poles in the upper half-plane, given by

Xa;b ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a;b � c2
a;b=4

q
þ ica;b=2 (34)

and another set of 4 (simple) poles in the lower half-plane,

given by X�a;b. The integration must be performed over the

upper half-plane. By straightforward calculations we get the

contribution

Ið1Þn ¼
pxn�2

a

ca

Re
x2

a�x2
bþ ixaca

ðx2
a�x2

bÞ
2þ 2ixacaðx2

a�x2
bÞþx2

aðc2
b� c2

aÞ
(35)

of the Xa-poles and

Ið2Þn ¼�pxn�1
b Im

1

ðx2
b�x2

aÞ
2þ2ixbcbðx2

b�x2
aÞþx2

bðc2
a�c2

bÞ
(36)

of the Xb-poles. We can see that in the limit ca;b 	 xa;b the

contribution of the Xb-poles is vanishing and

In ¼
pxn�2

a

ca

� 1

x2
a � x2

b

: (37)

This integral is vanishing for a large difference jxa �
xbj (distinct bodies).

The same result can be obtained by noticing that

1

ðx2 � x2
aÞ

2 þ x2c2
a

¼
����� 1

x2 � x2
a þ ixca

�����
2

(38)

and using the representation

1

x2 � x2
a þ ixca

’ 1

2xa
P 1

x� xa
� P 1

xþ xa

� �

� ip
2xa
½dðx� xaÞ � dðxþ xaÞ� (39)

in the limit ca ! 0, where P denotes the principal value. The

main contribution to the integral In comes from the d2-terms.

According to our procedure, we put

dðx ¼ 0Þ ¼ 1

2p

ð
dt ¼ T=2p (40)

and get

In ¼
pTxn�2

a

4
� x2

a � x2
b

ðx2
a � x2

bÞ
2 þ x2

ac
2
b

; (41)

which coincides with Eq. (37) in the limit cb ! 0, providing

we identify T ¼ 4=ca. Therefore, we may take T of the order

of 1=ca;b, up to minor numerical factors which arise from

various limiting procedures (for instance, in the example

given above we assumed that the limit ca ! 0 is taken first).

Indeed, according to Eq. (25), the infrared frequency cutoff

is of the order of ca;b. As a rule, we assume that the damping

coefficients ca;b are small in comparison with the relevant

frequencies, but finite.

Let us assume, for instance, xa ’ xb ¼ xc, such as

xa � xb ¼ dx	 xc and, similarly, ca � cb ¼ dc	 c
(¼ ca ’ cb). The careful estimation of the expressions given

by Eqs. (35) and (36) shows that

Ið1Þn ¼ �Ið2Þn ’
pxn�3

c

c
dx

4dx2 þ dc2
; (42)
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i.e., the integral In is vanishing (within this approximation).

We consider now two identical substances (a ¼ b), with

xa ¼ xb ¼ xc and ca ¼ cb ¼ c. The integrals given by

Eq. (33) read

In ¼
ð

dx
xnðx2 � x2

cÞ
½ðx2 � x2

cÞ
2 þ x2c2�2

: (43)

The limiting procedure illustrated above (Eqs.

(38)–(40)) cannot be applied. The integrand in Eq. (43) has

now two double poles

X1;2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � c2=4

q
þ ic=2 (44)

in the upper half-plane (and two other double poles X�1;2 in

the lower half-plane). The evaluation of the integral is

straightforward, the result being

In ¼
pðn� 3Þxn�4

c

4c
: (45)

We can see that the dipolar force is practically vanishing

for distinct substances and has a non-vanishing value for

identical substances.

It is worth emphasizing that the results given by Eqs.

(37) and (45) have a resonant character, due to the occur-

rence of the c parameter in the denominator (as well as the

difference x2
a � x2

b in Eq. (37)). This remarkable resonance

phenomenon originates in the presence of the complex-

conjugate poles in the lower half-plane, which may coalesce

with the poles in the upper half-plane in the limit of a vanish-

ing c.

For identical substances, according to Eq. (45),

I0 ¼ �3p=4cx4
c , and the force (Eq. (33)) can be written as

F¼¼� 9v2
avbDt2

8ð4pÞ3Tcx4
c

x6
pE2

(
1þ 4

ðnRÞ2

R2

" #
R� ðnRÞn

)
1

R8
;

(46)

where n ¼ E=E0 is the unit vector along the direction of the

external field E (we keep the distinction between the vol-

umes of the two bodies). According to our procedure, we put

Tc ¼ 1 in Eq. (46). We can see that the force given by

Eq. (46) has an axial symmetry and falls off as the 7-th

power of the distance. If we take the z-axis along the vector

n and denote by h the angle between n and R, the radial

component of the force is proportional to 1þ 3 cos2 h; it is

an attractive force. The tangential component of the force is

proportional to sin 2h. In view of its R�7-dependence, the

force given by Eq. (46) is reminiscent of the van der Waals-

London dipolar force.

The resonance integral given by Eq. (33) has been esti-

mated here for xa;b 6¼ 0. If one, at least, of these two fre-

quencies is vanishing (as for conductors) the situation is

more complex. First, we note in Eq. (33) an asymmetry with

respect to the frequencies xa;b (and ca;b), arising from the

fact that the external field acts upon only one body (body a).

For xb ¼ 0 we get I0 ¼ pðca þ cbÞ=cacbx
4
a (compare with

Eq. (37)). For xa ¼ 0 (or xa ¼ xb ¼ 0), the integrand of I0

acquires an additional factor 1=x2. According to our infrared

cutoff, we take this factor as the limit of 1=ðx2 þ e2Þ, where

� ¼ minðca; cbÞ. For xa ¼ 0, xb 6¼ 0, and e ¼ cb < ca, we

get I0 ¼ �pc2
b=c

3
aðc2

a � c2
bÞx2

b, which is vanishing in the limit

cb ! 0. For xa ¼ 0, xb 6¼ 0, and e ¼ ca 
 cb, the integral is

I0 ¼ p=2c3
ax

2
b, which is more singular than Eq. (37), due to

the denominator c3
a in the limit ca ! 0 (the integral has a

double pole, in this case, at x ¼ ica). For xa ¼ xb ¼ 0, we

get I0 ¼ p=maxðca; cbÞðc2
a � c2

bÞ
2

for ca 6¼ cb and I0 ¼
3p=8c5 for ca ¼ cb ¼ c, with an even more pronounced sin-

gular character (compare with Eq. (45)). In addition, the ra-

dial component of the force is repulsive in this case.

However, it is worth noting that the equation of motion (24)

and the electric susceptibility given by Eq. (25) are not appli-

cable anymore for xa;b ¼ 0 and ca;b ! 0. Including these

particularities, the general conclusion regarding the resonant

character of the force is preserved.

It is difficult to make a numerical estimation of the force F
given by Eq. (46), since it depends on many unknown parame-

ters. For illustrative purposes we take, for instance, �p ¼ xp=2p
¼ 1010Hz, �c ¼ xc=2p ¼ 1 MHz (kc ¼ 300 m), va ¼ vb

¼ 1 cm3, Dt ¼ 1=xp, E ¼ 103 V=m (’3� 10�2 statV=cm),

and R ¼ 10 m. Using these input data, we get a maximum value

F ¼ 10�11 dyn. It is worth noting that Eq. (46) includes the

greater-than-unity factor ðxp=xcÞ4 that can increase appreciably

the force. Another numerical example might be xp ¼ xc

’ 1015s�1, corresponding to a wavelength kc ’ 1lm, and

va ¼ vb ¼ 10�18 cm3, as for nanostructures of a linear dimen-

sion 100 Å (10 nm). Assuming that a classical treatment of

the electromagnetic interaction is valid for such “quantum”

dots, we get a maximum force F ’ 10�32 dyn for Dt ¼ 1=xp,

E ¼ 103 V=m at the distance R ¼ kc ¼ 1 lm, which is a very

weak force; it may increase for shorter distances and lower fre-

quencies xc (the external electric field could also be much

higher in this case).

V. ENERGY LOSS

The energy dissipated per unit time in body b by the

electric field generated by body a (energy loss) is given by

W ¼
ð

drjbðr; tÞEaðr; tÞ ¼ vb
@PbðtÞ
@t

Eaðr ¼ 0; tÞ; (47)

where the current density jbðr; tÞ is given by Eq. (10) and the

electric field Eaðr ¼ 0; tÞ is given by the Fourier transform

of Eq. (21). In order to compute this energy loss we proceed

as in the preceding sections, by taking the temporal Fourier

transforms, averaging over the time T and using the electric

susceptibilities of the type given by Eq. (25). We limit our-

selves to distances R much smaller than the characteristic

wavelengths ka;b, and get

W ¼ iv2
avb

2pTR6

ð
dxxv�bðxÞjvaðxÞj2 jðEðxÞj2 þ 3

jEðxÞRj2

R2

 !

(48)
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(compare with the interaction Lagrangian given by Eq. (32))

or, introducing the pulsed external field and the electric

susceptibilities,

W ¼ 2v2
avbcbDt2

ð4pÞ4T R6
x4

pax
2
pbJ0ð1þ 3 cos2 hÞE2; (49)

where h is the angle between the external field E and the

position vector R and

J0 ¼
ð

dx
x2

½ðx2 � x2
aÞ

2 þ x2c2
a�½ðx2 � x2

bÞ
2 þ x2c2

b�
(50)

(compare with the integral I0 for the force, given by Eq. (33)).

It is worth noting the occurrence of the damping factor cb in

Eq. (49), as expected. It is also worth noting the directional

character of the energy loss (through the factor 1þ 3 cos2 h in

Eq. (49)).

The calculation of the integral J0 is straightforward. For

xa 6¼ xb (xa;b 6¼ 0) and ca;b 	 xa;b, we get

J0 ¼
pðca þ cbÞ

cacbðx2
a � x2

bÞ
2

; (51)

we can see that the energy loss is practically vanishing for

distinct substances, i.e., for large values of the difference

jxa � xbj or for ideal bodies (ca;b ! 0). For xa ¼ xb ¼ xc

(6¼ 0) and ca ¼ cb ¼ c (identical substances), the integral is

J0 ¼ p=2x2
cc

3 and the energy loss (Eq. (49)) becomes

W ¼ v2
avbDt2

4ð4pÞ3T R6x2
cc

2
x6

pð1þ 3 cos2 hÞE2: (52)

The presence of the damping factor c in the denominator

of Eq. (52) (Tc ¼ 1) can induce an appreciable (resonant)

energy loss in the ideal limit c! 0. This is again an indica-

tion of the resonant character of this interaction. It is worth

emphasizing that the singular character exhibited by the

physical quantities at the resonance point is in fact indicative

merely of the inadequacy (and the limitations) of the har-

monic oscillator-like models, as those employed here. In par-

ticular, for instance, the parameters of the polarizability

change on decreasing the distance between the two bodies

(proximity effect).29,44

For xa ¼ 0, xb 6¼ 0 (or xb ¼ 0, xa 6¼ 0) we get J0 ¼
pðca þ cbÞ=cacbx

4
b;a (identical with I0 for xb ¼ 0), which

gives a vanishing energy loss in the ideal limit ca;b ! 0. For

xa ¼ xb ¼ 0, the integral J0 is identical with the integral I0

(J0 ¼ p=maxðca; cbÞðc2
a � c2

bÞ
2

for ca 6¼ cb and J0 ¼ 3p=8c5

for ca ¼ cb ¼ c), having a pronounced singular character.

The comparison of the energy loss given by Eq. (52)

with the energy spent by the external field EDtdðtÞ provides

a criterion of validity for the approximations employed in

the above theoretical considerations. The ratio of the two

energies should be much lesser than unity. The energy per

unit time of the external field in the exciting body a is

W0 ¼ E2va=8pDt, so we should have

Wmax

W0

¼ vavbDt3

8p2T R6x2
cc

2
x6

p 	 1; (53)

where Wmax is given by Eq. (52) for h ¼ 0; p. This criterion is

satisfied for the two numerical examples given before. Indeed,

for Dt ¼ 1=xp, Tc ¼ 1, and va ¼ vb ¼ 1 cm3, �p ¼ 1010 Hz,

�c ¼ 1 MHz, c ¼ 1 kHz, R ¼ 10 m we get Wmax=W0 ’ 10�5.

Similarly, for va ¼ vb ¼ 10�18 cm3, xp ¼ xc ’ 1015 s�1 and

R ¼ 1 lm (all the other data remaining the same) we get

Wmax=W0 ¼ 10�2. Such a validity criterion as that given in

Eq. (53) imposes important restrictions on the range of param-

eters used in estimating the resonant force.

VI. MONOCHROMATIC WAVES

The Fourier transform of a monochromatic external field

EðtÞ ¼ E cos Xt of frequency X can be written as

EðxÞ ¼ EðþÞdðx� XÞ þ Eð�Þdðxþ XÞ; (54)

where Eð6Þ ¼ pE. This decomposition in 6X-components is

transmitted to all the relevant quantities, like the charge and

current densities, electromagnetic fields, etc. In particular,

the polarizations can be written as

Pa;bðxÞ ¼ P
ðþÞ
a;b ðXÞdðx� XÞ þ P

ð�Þ
a;b ðXÞdðxþ XÞ;

PðþÞa ðXÞ ¼ Pð�Þ�a ðXÞ ¼ paaðXÞE;

P
ðþÞ
b ðXÞ ¼ P

ð�Þ�
b ðXÞ ¼ abðXÞEðþÞa ðX; r ¼ 0Þ;

(55)

where

EðþÞa ðX; r ¼ 0Þ ¼ Eð�Þ�a ðX; r ¼ 0Þ

¼ pvaaaðXÞ E
X2

c2
þ E

@

@R

� �
@

@R

� �
eiXcR

R
:

(56)

The force calculated from Eq. (1) (averaging over the

period �1=X) is given by

F ¼ vavb

ð2pÞ2
X2

c2
PðþÞ�a ðxÞPðþÞb ðxÞ

�

þ P
ðþÞ�
ai ðxÞP

ðþÞ
bj ðxÞ

@2

@Ri@Rj

�
@

@R

eiXcR

R
þ c:c:: (57)

The parameter R is omitted in these equations and the

complex conjugate (c:c:) is the contribution of the�X-compo-

nents (superscript ð�Þ). In the sub-wavelength regime, we get

F ¼ 1

4
v2

avbjaaðXÞj2 abðXÞ
@

@R
E
@

@R

� �
R

R3

� �2

þ c:c:; (58)

or, using the electric susceptibility for the polarizability,

F¼ 3v2
avb

ð4pÞ3R8
x4

pax
2
pb

X2�x2
b

½ðX2�x2
aÞ

2þX2c2
a�½ðX2�x2

bÞ
2þX2c2

b�

�
(

E2þ 4
ðERÞ2

R2

" #
R�ðERÞE

)
:

(59)
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We can see that this force is similar with the force given

by Eqs. (30) and (31), except for the x-integration, as

expected.

For identical substances (xa ¼ xb ¼ xc; ca ¼ cb ¼ c)

and X close to xc, X ¼ xc þ dx, the force given by Eq. (59)

is governed by the factor dx=ð4dx2 þ c2Þ2, which has two

extrema �61=c3 for dx � c. In the limit of ideal substances

c! 0, this may lead to an appreciable force (and a corre-

sponding energy loss). It is worth noting that a detuning

dx � c is necessary. For distinct substances, the force goes

like 1=c2, which is much smaller than the force correspond-

ing to identical substances, illustrating again the resonance

phenomenon.

From Eqs. (55)–(57) we can also estimate the force in

the wave-zone, i.e., for R� k� v1=3
a;b , where k ¼ c=X is the

wavelength. The force is longitudinal in this case (�R=R)

and generated by the transverse component Et of the external

field (EtR ¼ 0). The resonance character of the force is pre-

served. For X ¼ xa ¼ xb ¼ xc; ca ¼ cb ¼ c, we have the

estimation

F � v2
avb

k5

x6
p

X3c3
E2

t cos 2R=k � R

R3
: (60)

This is a resonant optical force resulting form the mutual

polarization of the bodies. We can see that this force is prac-

tically vanishing, due to the rapid oscillations of the factor

cos 2R=k, as expected.

VII. TWO PARTICULAR CASES

We turn now to Eq. (17) and consider two particular

cases. First, we take two independent external fields which do

not depend on R. Then, the resonance integral, denoted by K,

implies the product v�aðxÞvbðxÞ. It can be represented as

K ¼ I2 � x2
aI0 þ cacbJ0; (61)

where In are given by Eq. (33) and J0 is given by Eq. (50).

Making use of the integrals In and J0 calculated before, we

can see that the force is practically vanishing in this case for

distinct substances and has a finite value (K ¼ p=cx2
c) for

identical substances. Therefore, the general resonance char-

acter of the force is preserved.

An interesting case occurs by assuming that the external

field for body a is the field generated by body b,

Eext
a ¼ Ebðx;RÞ, and the external field for body b is the field

generated by body a, Eext
b ¼ Eaðx; r ¼ 0Þ. This situation cor-

responds to two isolated, interacting bodies (closed system).

The field Eext
b has been computed in Eq. (21). Similarly we

get the field Eext
a , so we have

Eext
a;bðx;RÞ ¼ vb;a

x2

c2
Pb;aðxÞ þ Pb;aðxÞ

@

@R

� �
@

@R

� �
eixcR

R
;

(62)

where we omit to write explicitly the variable R in the polar-

izations Pa;bðxÞ. Making use of Pa;bðxÞ ¼ aa;bðxÞEext
a;bðx;RÞ,

we get a homogeneous system of two coupled equations

PaðxÞ ¼ vbaaðxÞ
x2

c2
PbðxÞ þ PbðxÞ

@

@R

� �
@

@R

� �
e

i
x
c

R

R
;

PbðxÞ ¼ vaabðxÞ
x2

c2
PaðxÞ þ PaðxÞ

@

@R

� �
@

@R

� �
e

i
x
c

R

R
:

(63)

It is convenient to introduce the longitudinal and transverse

polarizations, Pl
a;b ¼ Pa;bR=R and Pt

a;b ¼ Pa;bR?=R, where R?
is a vector perpendicular to R and of the same magnitude as R.

In the sub-wavelength regime we can identify two perturbation

parameters el
a;b ¼ 2va;b=R3 	 1 and et

a;b ¼ �va;b=R3 	 1.

Leaving aside the labels l; t, the system of equations reads

Pa ¼ aaebPb; Pb ¼ abeaPa: (64)

The eigenfrequencies are given by the roots of the equa-

tion 1 ¼ aaabeaeb. Making use of polarizabilities of the form

given by Eq. (25), we get the eigenfrequencies

X1;2 ¼ 6xa6
x2

pax
2
pbeaeb

2ð4pÞ2xaðx2
a � x2

bÞ
;

X3;4 ¼ 6xb �
x2

pax
2
pbeaeb

2ð4pÞ2xbðx2
a � x2

bÞ
(65)

for xa 6¼ xb. The solutions of the system of Eqs. (64) can be

written as

PaðxÞ ¼ 2p½C1dðx� X1Þ þ C2dðx� X2Þ�

þ
x2

paeb

2ðx2
a � x2

bÞ
½C3dðx� X3Þ þ C4dðx� X4Þ�

(66)

and

PbðxÞ ¼ 2p C3dðx� X3Þ þ C4dðx� X4Þ½ �

�
x2

pbea

2ðx2
a � x2

bÞ
C1dðx� X1Þ þ C2dðx� X2Þ½ � ;

(67)

where Ci, i ¼ 1; 2; 3; 4, are constants. The contributions to

the force (Eq. (16)) come from products of the form PaPb,

i.e., from d2-terms. Using dðx ¼ 0Þ ¼ T=2p, we can see that

these contributions are proportional to ea;b=ðx2
a � x2

bÞ (simi-

lar to Eq. (37)), so that we may say that the force is practi-

cally vanishing in this case.

For identical substances (xa¼xb¼xc; xpa¼xpb¼xp),

the eigenfrequencies are

Xi ¼ 6xc 6
x2

p

ffiffiffiffiffiffiffiffi
eaeb
p

8pxc
; i ¼ 1; 2; 3; 4 (68)

and the polarizations are given by

PaðxÞ ¼ 2p
X4

i¼1

Cidðx� XiÞ; PbðxÞ

¼ 2p

ffiffiffiffi
ea

eb

r X4

i¼1

ð�1ÞiCidðx� XiÞ: (69)
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The force acquires a finite value in this case (and is pro-

portional to 1=R4), indicating again a resonance character.

However, in practice, the preparation of the two bodies in

states with polarizations corresponding to the frequencies Xi

is very likely to raise difficulties. Usually, it is reasonable to

expect equal weights jC1j2 ¼ jC2j2 and jC3j2 ¼ jC4j2, which,

due to the factor ð�1Þi in Eq. (69), leads, in fact, to a vanish-

ing force.

It is worth commenting on Eqs. (63) and (64) derived

here. If we add an external field E acting only upon one

body, as discussed previously, these systems of equations

become inhomogeneous and their solution has a denominator

of the form 1� aaabeaeb. This factor is indicative of the geo-

metric series with the ratio aaabeaeb � vavbaaab arising in

the iterative process of polarization, as discussed before, and

discarded for point-like bodies.

VIII. CONCLUDING REMARKS

A dynamic dipolar force has been described here, which

has a resonant character, in the sense that it acquires finite

values for identical substances, and is practically vanishing

for distinct substances. The derivation is based on the well-

known electric susceptibility (dielectric response function),

which exhibits a set of characteristic frequencies. The force

is free from spatial oscillations (which reduce appreciably its

effectiveness) in the sub-wavelength regime, i:e:, for distan-

ces much smaller than the characteristic wavelengths (but

much larger than the dimension of the bodies). The calcula-

tions have been limited to point-like bodies (neglecting the

spatial dispersion) and only one characteristic frequency for

each body, but they can be extended, in principle, to finite-

size bodies and several characteristic frequencies. The force

computed here appears through the mutual polarization of

the bodies, driven by a localized external field acting upon

only one body. The resonant force derived here is a general-

ization to classical time-dependent electromagnetic fields of

the static force acting between two classical dipoles. Its R�7-

dependence on the distance R between the two bodies recalls

the well-known van der Waals-London force. Particular

cases corresponding to independent external fields or to iso-

lated, interacting bodies (closed system) have also been ana-

lyzed, with similar conclusions regarding the resonant force.

According to our numerical estimations, the force derived

here is very small and is subjected to severe limitations aris-

ing from its resonant character.

Finally, it is worth commenting upon the nature and

relevance of the resonant force derived here, in the wider

context of electromagnetic interaction (which may acquire a

great variety of particular forms, as discussed in Sec. I). The

electromagnetic forces acting upon polarizable particles

(including magnetodielectric particles) and the correspond-

ing energy flow, electromagnetic momentum and torques

have been widely investigated in connection with the energy

conservation, or, more generally, the conservation of the

energy-momentum tensor, for estimating the transfer rate of

momentum, angular momentum or energy.48–52 As it is well

known, the conservation of the energy-momentum tensor in

polarizable matter involves, beside the mechanical (kinetic)

energy of the charges (currents, energy loss included) and

the energy flow corresponding to the Poynting vector, the

electromagnetic stress forces, the Lorentz force and the elec-

tromagnetic momentum (radiation pressure). Under certain

circumstances, special forms of such forces have been

derived, like those arising from the curl of the spin angular

momentum or the “pulling force,”48–52 some of them exhibit-

ing a non-conservative character. We focused here on a

Lorentz-type force (according to Eq. (1)), corresponding to a

particular case of resonance of the induced matter polariza-

tion for point-like bodies. Surface stress forces, or forces

associated with rotations, may be discarded for point-like

bodies in the first approximation, and the electromagnetic

momentum (and its rate of change with the time) can also be

discarded in the sub-wavelength zone we dealt with here.

The (average) mechanical energy of the polarizable charges

has been estimated as the energy loss in Sec. V. It has been

shown there that it sets important limits on the resonant

force, in particular upon the harmonic-oscillator model of

polarizable dipoles. The bodies discussed in the present pa-

per are under the action of an external field (one body) and

their own polarization fields. Part of the energy pumped into

the external field is recovered in the energy flows (Poynting

vectors), the remaining is lost as energy loss (kinetic energy)

in the polarizable bodies and another part may be associated

with the mechanical work done by the force derived here,

providing we allow the motion of the bodies. This illustrates

the energy conservation (within the approximations used

here), as expected for polarizable matter interacting with the

electromagnetic field.
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