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a b s t r a c t

The eigenfrequencies are identified for two electromagnetically coupled semi-infinite solids with

plane-parallel surfaces (two half-spaces) separated by a third, polarizable body. The corresponding van

der Waals–London and Casimir forces are calculated from the zero-point energy (vacuum fluctuations)

of the normal modes. It is shown how the results can be extended to bodies of any shape; in particular,

the force is given for a sphere interacting with a half-space. The calculations are performed using

the well-known Drude–Lorentz (plasma) model of (non-magnetic) polarizable matter. The polarization

degrees of freedom are explicitly introduced. It is shown that the polarization dynamical variables for

the two bodies are coupled through the electromagnetic field, very similar with two infinite sets of

coupled harmonic oscillators.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The molecular forces acting between atoms (molecules), known
as van der Waals–London and Casimir forces, have been derived
originally by quantum-mechanical calculations in the non-retarded
(small distance) [1–3] and, respectively, retarded (large distance)
regime [4] (see also Refs. [5,6]). The force acting in the retarded
regime between an atom and a semi-infinite conductor (half-
space) has also been derived by quantum-mechanical calculations
[4], while the retarded force acting between two conducting half-
spaces (Casimir force) has been originally derived by advancing
arguments related to the zero-point energy (vacuum fluctuations)
of the electromagnetic field with suitable boundary conditions at
the surfaces of the two half-spaces [7]. It was realized that these
molecular forces are related to the internal electrical polarization
of matter, and the macroscopic bodies bring their own character-
istics with respect to the electrical polarization (like plasmons,
polaritons, surface effects, etc), in comparison with individual
quantum particles [8–14].

Molecular forces acting between macroscopic bodies, either
conductors or dielectrics, have been derived by the theory of the
quantum-statistical electromagnetic fluctuations [15–18] as well
as within the framework of the field source theory [19,20]. Both
theories consider, on one hand, the polarization as an external
source, and estimate the response of the electromagnetic field to
this source, and, on the other hand, include polarization (via the
dielectric function) in the electromagnetic field, viewing the latter
ll rights reserved.
as a dynamical variable (coordinate). There was never clearly
grasped which are the normal modes which fluctuate and bring
the zero-point energy in the molecular forces. On the other hand, a
remarkable progress is being recorded recently in a series of
publications regarding the computation of molecular forces for
various geometries, especially nanomechanical structures, using
elegant scattering-matrix formalism, or path integral methods, or
boundary-element methods [21–31]. In particular, repulsive Casi-
mir forces have been identified for a third body acting as a medium
(instead of vacuum).

We describe here the polarization by a displacement field of
the mobile charges in polarizable matter and solve the coupled
equations of motion of this field, interacting via the electromag-
netic field, for two semi-infinite solids with plane-parallel sur-
faces (two half-spaces) separated by a third, polarizable body.
The calculations are done using the well-known Drude–Lorentz
(plasma) model of (non-magnetic) polarizable matter. We show
that the polarizations of the two bodies interact with each other
via their electromagnetic field, very much alike two infinite sets
of coupled harmonic oscillators. The normal modes of the ensem-
ble of the two bodies are identified and the eigenfrequencies
are computed. The force is derived from the zero-point energy
(vacuum fluctuations) of these normal modes. We compute the
van der Waals–London and Casimir forces for two half-spaces,
either conductors or dielectrics, separated, in general, by a third
polarizable body. In view of the great deal of interest developed
recently for the subject [32–55] we show here how to compute
such forces between bodies of any shape, and give the result for
the force acting between a sphere and a half-space.

Some particular results concerning the derivation of the mole-
cular forces along the lines described above have been previously
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published [56,57]. The method used here has also been previously
illustrated in Refs. [58,59].
2. Matter polarization

We adopt a generic model of matter polarization consisting of
identical mobile charges q, with mass m and density n, moving in
a rigid, neutralizing background of volume V. A small displace-
ment field uðR,tÞ in the position R of these charges gives, at the
time t, a local density imbalance dn¼�n div u and a polarization
charge density r¼�nq div u. We can see that P¼ nqu is the
polarization. Therefore, the displacement field uðR,tÞ is a repre-
sentation for the polarization field PðR,tÞ: The displacement field
obeys the Newton law of motion

m €u ¼ qðEþE0Þ�mo2
c u�mg _u, ð1Þ

where E is the polarization electric field generated by the
polarization charges (and currents), oc is a characteristic fre-
quency, g is a (small) damping factor and E0 is an external electric
field. This is the well-known Drude–Lorentz (plasma) model
of polarizable matter [60–62], which assumes a homogeneous,
isotropic matter, without spatial dispersion, represented by a field
of harmonic oscillators of frequency oc. Taking the temporal
Fourier transform of Eq. (1), with Et ¼ EþE0 the total electric field,
we get the electric susceptibility wðoÞ ¼ P=Et and the dielectric
function

eðoÞ ¼ 1þ4pwðoÞ ¼
o2�o2

c�o2
p

o2�o2
c þ iog

¼
o2�o2

L

o2�o2
Tþ iog

, ð2Þ

where op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnq2=m

p
is the plasma frequency. This is also well

known as the Lydanne–Sachs–Teller dielectric function [63], with
the longitudinal frequency oL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þo2
p

q
and the transverse

frequency oT ¼oc . The latter can be taken as the main absorption
frequency of the substance. The model can be generalized in
multiple ways [56–59], but for our present purpose the simplified
form given above is sufficient.

The displacement field u produces polarization charge and
current densities given by

r¼�div P¼�nq div u, j¼
@P

@t
¼ nq _u, ð3Þ

which can be used to compute the electromagnetic potentials

FðR,tÞ ¼

Z
dR0

rðR0,t�9R�R09=cÞ

9R�R09
,

AðR,tÞ ¼
1

c

Z
dR0

jðR0,t�9R�R09=cÞ

9R�R09
ð4Þ

(subjected to the Lorenz gauge divAþð1=cÞ@F=@t¼ 0). These poten-
tials give rise to the electric field E in Eq. (1), whence we can get the
displacement u. This way, we can compute the electromagnetic
fields of a polarizable body, subjected to the action of an external
electromagnetic field.
3. Half-spaces

For a half-space extending over the region z4d we take the
polarization as

P¼ nqðu,uzÞyðz�dÞ, ð5Þ

where yðzÞ ¼ 0 for zo0 and yðzÞ ¼ 1 for z40 is the step function.
The polarization charge and current densities are given by

r¼�nq divuþ
@uz

@z

� �
yðz�dÞ�nquzðdÞdðz�dÞ,

j¼ nqð _u, _uzÞyðz�dÞ: ð6Þ
We use Fourier decompositions of the type

uðr,z; tÞ ¼
1

2p
X

k

Z
douðk,z;oÞ e�iotþ ikr, ð7Þ

where R¼ ðr,zÞ, and may omit ocassionally the arguments k,o,
writing simply uðzÞ, or u. The electromagnetic potentials given by
Eqs. (4)) includes the ‘‘retarded’’ Coulomb potential eiðo=cÞ9R�R09=

9R�R09, for which we use the well-known decomposition [64]

eil9R�R09

9R�R09
¼

i

2p

Z
dk

1

k eikðr�r0 Þ eik9z�z09, ð8Þ

where l¼o=c and k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
�k2

p
. It is more convenient to compute

first the vector potential A and then derive the scalar potential F
from the gauge equation div A�ilF¼ 0. The calculations are
straightforward and we get the Fourier transforms of the potentials

Fðk,z;oÞ ¼ ¼ 2p
k

Z 1
d

dz0ku eik9z�z09�
2pi

k
@

@z

Z 1
d

dz0uz eik9z�z09,

Aðk,z;oÞ ¼ 2pl
k

Z 1
d

dz0ðu,uzÞ e
ik9z�z09 ð9Þ

(where we have left aside the factor nq; it is restored in the final
formulae). In order to compute the electric field (E¼ ilA�gradF) it
is convenient to refer the in-plane vectors (i.e., vectors parallel with
the surface of the half-space) to the vectors k and k? ¼ ez � k,
where ez is the unit vector along the z-direction; for instance, we
write

u¼ u1
k

k
þu2

k?
k

, ð10Þ

and a similar representation for the electric field parallel with the
surface of the half-space. We get the electric field

E1 ¼ 2pik
Z 1

d
dz0u1 eik9z�z09�

2pk

k
@

@z

Z 1
d

dz0uz eik9z�z09,

E2 ¼
2pil2

k

Z 1
d

dz0u2 eik9z�z09,

Ez ¼�
2pk

k
@

@z

Z 1
d

dz0u1 eik9z�z09þ
2pik2

k

Z 1
d

dz0uz eik9z�z09�4puzyðz�dÞ:

ð11Þ

We use now the equation of motion (1) (with g¼ 0) for E2

given by Eq. (11) and for the combinations iku1þ@uz=@z and
k@u1=@zþ ik2uz in the region z4d. We get wave equations with
solutions of the form u1,2 ¼ A1,2 eik0z, where A1,2 are constants,
and uz ¼�ðk=k0ÞA1 eik0z (we restrict ourselves to outgoing waves,
k040Þ, where

k02 ¼ k2�
l2o2

p

o2�o2
c

: ð12Þ

The total electric field inside the half-space is given by the equation
of motion (1)

Et ¼�
m

q
ðo2�o2

c Þu ð13Þ

for z4d. We can see that the field propagates in the half-space
with a modified wavevector k0, according to the Ewald–Oseen
extinction theorem [65]. The modified wavevector k0 given by
Eq. (12) can also be written as

k02 ¼ eo
2

c2
�k2, ð14Þ

where e is the dielectric function (as given by Eq. (2)). We can
check the well-known polaritonic dispersion relation eo2 ¼ c2K 02,
where K0 ¼ ðk,k0Þ is the wavevector.
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The amplitudes A1,2 can be derived from the original Eq. (1)
and the field Eqs. (11) (for z4d). We get

1

2
A1o2

p

kk0 þk2

k0ðk0�kÞ e
iðk0�kÞd eikz ¼

q

m
E01,

1

2
A2o2

p

l2

kðk0�kÞ e
iðk0�kÞd eikz ¼

q

m
E02: ð15Þ

The (polarization) electric field, both inside and outside the half-
space, can be computed from Eqs. (11). We get

E1 ¼�4pnqA1
o2�o2

c

o2
p

eik0z�2pnqA1
kk0 þk2

k0ðk0�kÞ eiðk0�kÞd eikz, z4d,

E2 ¼�4pnqA2
o2�o2

c

o2
p

eik0z�2pnqA2
l2

kðk0�kÞ e
iðk0�kÞd eikz, z4d,

Ez ¼ 4pnqA1
kðo2�o2

c Þ

k0o2
p

eik0zþ2pnqA1
kðkk0 þk2

Þ

kk0ðk0�kÞ e
iðk0�kÞd eikz, z4d,

ð16Þ

for z4d. The (polarization) electric field outside the half-space (in
the region zod) is given by

E1 ¼�2pnqA1
kk0�k2

k0ðk0 þkÞ e
iðk0 þkÞd e�ikz, zod,

E2 ¼�2pnqA2
l2

kðk0 þkÞ e
iðk0 þkÞd e�ikz, zod ð17Þ

and Ez ¼ ðk=kÞE1 for zod. We can see that it is the field reflected
by the half-space (k-�k).

The amplitudes A1,2 can be viewed either as being determined by
the external field E0 (and H0) through Eqs. (15), or as free parameters.
In the latter case Eqs. (15) are not valid anymore, but the (polariza-
tion) electric fields (Eqs. (16) and (17)), as well as the associated
magnetic fields hold. We can check also that all the fields are
continuous at the surface z¼d, except for Ez and Etz, which exhibit
a discontinuity (Etzðz¼ d�Þ ¼ eEtzðz¼ dþ Þ), as expected.

For a half-space extending in the region zo�d we can repeat
the calculations described above. The displacement field in this
case is written as ðv,vzÞyð�z�dÞ. It is easy to see that we can get
the results for the half space extending in the region zo�d from
those pertaining to the half-space extending in the region z4d by
changing z into �z. For instance, the displacement field is given
by v1,2 ¼ B1,2e�ik0z and vz ¼ ðk=k0ÞB1e�ik0z, where B1,2 are constant
amplitudes; the electric field is given by

E1 ¼�4pnqB1
o2�o2

c

o2
p

e�ik0z�2pnqB1
kk0 þk2

k0ðk0�kÞ
eiðk0�kÞde�ikz, zo�d,

E2 ¼�4pnqB2

o2�o2
c

o2
p

e�ik0z�2pnqB2

l2

kðk0�kÞ
eiðk0�kÞde�ikz, zo�d,

Ez ¼�4pnqB1
kðo2�o2

c Þ

k0o2
p

e�ik0z�2pnqB1
kðkk0 þk2

Þ

kk0ðk0�kÞ e
iðk0�kÞde�ikz, zo�d

ð18Þ

for zo�d and

E1 ¼�2pnqB1
kk0�k2

k0ðk0 þkÞ e
iðk0 þkÞdeikz, z4�d,

E2 ¼�2pnqB2
l2

kðk0 þkÞ e
iðk0 þkÞdeikz, z4�d ð19Þ

and Ez ¼�ðk=kÞE1 for z4�d; and the amplitudes B1,2 are given by

1

2
B1o2

p

kk0 þk2

k0ðk0�kÞ
eiðk0�kÞde�ikz ¼

q

m
E01,

1

2
B2o2

p

l2

kðk0�kÞ e
iðk0�kÞde�ikz ¼

q

m
E02: ð20Þ

We consider now two half-spaces, one, denoted by 1, extend-
ing in the region z4d=2, another, denoted by 2, occupying
the region zo�d=2. The field pertaining to these half-spaces
is given here, with d replaced by d=2. We focus on the amplitudes
Eqs. (15) and (20). The external field for the half-space 2
(Eqs. (20)) is the field given by Eq. (17) produced by half-space
1 in the region zod=2; similarly, the external field for the half-
space 1 (Eqs. (15)) is the field given by Eq. (19), produced by half-
space 2 in the region z4�d=2. All the quantities pertaining to
half-spaces 1,2 will get a suffix 1 or, respectively, 2. Introducing
these fields in Eqs. (15) and (20) we get the dispersion equations

k01�k
k01þk

�
k02�k
k02þk

e2ikd ¼ 1,

k01�k
k01þk

�
k02�k
k02þk

�
kk01�k2

kk01þk2
�
kk02�k2

kk02þk2
e2ikd ¼ 1: ð21Þ

The solutions of these equations give the eigenfrequencies of the
two electromagnetically coupled half-spaces. Since

ðk07kÞðkk07k2
Þ ¼ l2

ðek7k0Þ, ð22Þ

according to Eq. (14), the second dispersion Eq. (21) can also be
written as

k01�e1k
k01þe1k

�
k02�e2k
k02þe2k

e2ikd ¼ 1, ð23Þ

where e1,2ðoÞ are the dielectric functions of the two half-spaces.
These dispersion equations have been established in Refs. [8,10,11],
using continuity conditions for the electromagnetic field at the
surfaces of the two half-spaces.
4. Molecular forces

In general, the dispersion Eqs. (21) have not solutions. However,
there exist particular conditions, corresponding precisely to phy-
sically interesting cases, which ensure solutions for the dispersion
Eqs. (21). For instance, conductors are characterized by oc ¼ 0
and large values of op: In this case, the z-component k0 of the
wavevector is purely imaginary and its magnitude acquires large
values in comparison with k (i.e., l). Purely imaginary wavevectors
k0 correspond to damped surface plasmon-polariton modes in
conductors (see, for instance, Refs. [56,58]), in agreement with
the original Casimir’s assumption concerning the boundary condi-
tions at the surfaces of two semi-infinite metals. In this retarded
regime of interaction the electromagnetic field is propagating
between the two half-spaces (k real), but it is damped along the
z-direction inside the conducting half-spaces. Good dielectrics
are characterized by o5oc 5op, so that k0 (which is real)
acquires again large values. This condition is usually referred to
as the condition of long wavelengths in comparison with the main
(characteristic) absorption wavelength of the substance (see, for
instance, Ref. [18]). It is easy to see that Eqs. (21) have solutions
kd¼ pn, n any integer, for 9k01,29bk1,2,9e1,29k1,2. Solutions kd¼ pn

can be easily understood. In the in-between region there is a field
produced by the half-space 1, which goes like Eð1Þ,Hð1Þ � e�ikz and a
field produced by the half-space 2, which goes like Eð2Þ,Hð2Þ � eikz.
Cross-terms of the form Eð1ÞnEð2Þ, integrated over z from �d=2 to
d=2, in the energy of the electromagnetic field in this region give
rise to the factor sin kd. The condition kd¼ pn ensures the
vanishing of this interaction energy. There is also an interaction
electromagnetic energy inside the two half-spaces (involving cross-
terms), which cannot, in general, be removed, except in those cases
where it is practically negligible. This condition correspond to
9k01,29bk1,2,9e1,29k1,2.

The solutions kd¼ pn (k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
�k2

p
Þ imply the eigenfrequencies

OnðkÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ
p2n2

d2

s
, ð24Þ
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according to Eqs. (15) and (20); the corresponding amplitudes can
be written as

A1,2,n ¼ 2pa1,2,ndðo�OnðkÞÞ, ð25Þ

where u1,2,nðk,z; tÞ ¼ a1,2,neiOnðkÞteik0
1,2

z. We can see that a1,2,n are
displacements, according to Eq. (7), and they correspond to
the coordinates of harmonic-oscillators with frequencies OnðkÞ.
According to Eq. (20) a similar representation holds for the ampli-
tudes B1,2 of the displacement field in the half-space 2, as well as for
the associated electromagnetic fields. In effect, the coordinates of
the a1,2,n-type are the coordinates of the normal modes (labeled by
k and n) of the two electromagnetically coupled half-spaces. The
motion of the normal modes can be quantized, according to
standard rules, so that the ground-state energy is given by

E¼
X1
n ¼ 0

X
k

_OnðkÞ ¼
S_c

2p
X
n ¼ 0

Z
0

dk � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ
p2n2

d2

s
, ð26Þ

where S denotes the area of the surface and a factor 2 has been
introduced in order to account for the two labels 1 and 2.

We estimate the change brought about by the finite distance d

in the energy E using the Euler–Maclaurin formula [66]:

DE¼
X

m ¼ 1

ð�1ÞmBmðp=dÞ2m�1

ð2mÞ!
f ð2m�1Þ

ð0Þ, ð27Þ

where Bm are the Bernoulli’s numbers and

f ðkÞ ¼ S_c

2p

Z
dkk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þk2

q
, ð28Þ

introducing u¼ k2
þk2, Eq. (27) becomes

DE¼
_cS

4p
X

m ¼ 1

ð�1ÞmBmðp=dÞ2m�1

ð2mÞ!

Z
k2

du
ffiffiffi
u
p

� �ð2m�1Þ

0

, ð29Þ

The only contribution to Eq. (29) comes from the third-order
derivative. We get (B2 ¼ 1=30)

DE¼�
p2_cS

720
�

1

d3
, ð30Þ

and an attractive force

F ¼�
p2_cS

240
�

1

d4
, ð31Þ

which is the well-known Casimir force, acting between two half-
spaces with parallel surfaces separated by distance d. We can
see that it is the same for dielectrics and conductors (under the
conditions given before), including the pair conductor-dielectric,
does not depend on the nature of the two semi-infinite bodies and
arises from the zero-point (vacuum) fluctuations of the motion of
the charge carriers in the two polarizable bodies. We may say that
it has a universal character.

The effect of the temperature T ¼ 1=b can be incorporated in
Eq. (29) by the changeZ
k2

du
ffiffiffi
u
p

-

Z
k2

du
ffiffiffi
u
p

coth
1

2
b_c

ffiffiffi
u
p

� �
: ð32Þ

For realistic values of the parameters we have b_c=db1, so we
get a small temperature correction factor Ccothðb_c=dÞ in the
expression of the force.

For shorter distances d, the electromagnetic field acquires the
non-retarded regime corresponding to l-0; it follows that kC ik,
i.e., the electromagnetic field is damped along the z-direction,
both inside and outside the half-spaces. In this limit we have

k0Ck�
l2o2

p

2kðo2�o2
c Þ

, kk0 þk2Cl2 1�
o2

p

2ðo2�o2
c Þ

" #
, ð33Þ
and kk0�k2C�2k2. Making use of these approximations, the
second Eq. (21) leads to

ðo2�o2
c1�

1
2 o

2
p1Þðo

2�o2
c2�

1
2 o

2
p2Þ ¼

1
4o

2
p1o

2
p2e�2kd: ð34Þ

We solve this equation for large values of the kd, which bring the
main contribution to integrals over k. Within this approximation,
the rhs of Eq. (34) may be treated as a small perturbation. From
the zero-point energy, we get the van der Waals–London force
(per unit area) for distinct bodies

F ¼�
_op1op2

16p
ffiffiffi
2
p

C1C2ðop1C1þop2C2Þ
�

1

d3
, ð35Þ

where

C1,2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e01,2þ1

e01,2�1

s
, ð36Þ

e01,2 being the static dielectric constants (for conductors, C1,2-1).
For identical bodies, the force becomes

F ¼�
_op

32p
ffiffiffi
2
p

e0�1

e0þ1

� �3=2

�
1

d3
ð37Þ

(for conductors 9e09-1).
5. A third body

We assume now that a slab of thickness d and parameters
op3,oc3 (body 3) is inserted in the gap between the two half-
spaces. All the calculations given in the previous sections are
repeated for this body, which brings its own component k03 of the
wavevevector along the z-axis, given by

k023 ¼ k
2�

l2o2
p3

o2�o2
c3

¼ e3l
2
�k2, ð38Þ

e3 being the dielectric function of this body. The first dispersion
Eq. (21) becomes now

k01þk
k01�k

�
1

k03þk
�

1

k03�k

� �
k02þk
k02�k

�
1

k03þk
�

1

k03�k

� �
e2ik0

3
d

¼
k01þk
k01�k

�
1

k03�k
�

1

k03þk

� �
k02þk
k02�k

�
1

k03�k
�

1

k03þk

� �
, ð39Þ

while the second dispersion Eq. (21) can be written as

ða1b��bþ Þða2b��bþ Þe
2ik0

3
d ¼ ða1bþ�b�Þða2bþ�b�Þ, ð40Þ

where

ai ¼
kk0iþk2

kk0i�k2
�
k0iþk
k0i�k

¼
eikþk0i
eik�k0i

, i¼ 1,2, ð41Þ

and

b7 ¼
kk037k2

k038k : ð42Þ

We can see that the dispersion Eqs. (21) can be retrieved from
Eqs. (39) and (40) by putting formally k03 ¼ k, as for vacuum.

For large values of 9k01,29 (either conductors or dielectrics),
Eqs. (39) and (40) have solution k03d¼ pn, n integer, which implies
e3ðoÞl2

¼ c2K 023 , where K03 ¼ ðk,pn=d). This equation has two

branches of solutions, one starting at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

p3þo2
c3

q
with an asymp-

tote CcK 03, and another starting as vK 03 and asymptote oc3, where

v¼ c
oc3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
p3þo2

c3

q ¼
cffiffiffiffiffiffiffie30
p , ð43Þ

e30 being the (static) dielectric constant of the body 3. These
are the well-known polariton branches in a polarizable body.
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It follows that the Casimir force is given by the same Eq. (31) with
the renormalized light velocity (polariton velocity) v, as expected.
For a conducting body inserted in the gap (k03 purely imaginary),

the force is vanishing.
In the non-retarded regime kC ik the situation is more

complicated. Eq. (40) leads to

½4ðo2�D1Þðo2�D3Þ�o2
p1o

2
p3�½4ðo

2�D2Þðo2�D3Þ�o2
p2o

2
p3�

¼ 4½o2
p1ðo

2�D3Þ�o2
p3ðo

2�D1Þ�½o2
p2ðo

2�D3Þ�o2
p3ðo

2�D2Þ�e
�2kd,

ð44Þ

where

Di ¼
1

2
o2

pi

e0iþ1

e0i�1
, i¼ 1,2,3: ð45Þ

The zero-point energy associated with the solutions of this
equation leads to the van der Waals–London force. It is easy to
see that for large values of D3 (weak dielectric in-between),
Eq. (44) becomes Eq. (34), which means that the effect of a weak
dielectric introduced in the gap between the two half-spaces is a
second-order correction. For two identical conductors 1 and 2 and
a distinct conductor 3 in-between the force is given by

F ¼�
_

32p
ffiffiffi
2
p

o2
p�o2

p3

ðo2
pþo2

p3Þ
3=2
�

1

d3
: ð46Þ

More complicated situations can be treated by solving Eq. (44).
6. Formulae of the theory of the electromagnetic fluctuations

We give here a formal deduction of the formulae obtained
within the framework of the theory of the electromagnetic
fluctuations, following Refs. [8,10,11].

Suppose that the eigenvalues OnðkÞ are given by the roots of an
equation written as Gðo,kÞ ¼ 0, like one of Eqs. (21). Then, the
zero-point energy can be written as

E¼
1

2
_
X
nk

OnðkÞ ¼
_

4pi

X
nk

Z
do o

o�OnðkÞ
, ð47Þ

or

E¼
_

2i

Z
dkk

Z
doo @

@o
ln G ð48Þ

(per unit area), where the integration with respect to o is
performed around the positive o-axis (we assume that function
G has no poles). We pass from the variables (o,kÞ to the variables
ðx,pÞ defined by

o¼ ix, p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2k2=x2

q
sgnðxÞ: ð49Þ

The jacobian of this transformation is

@ðo,kÞ

@ðx,pÞ
¼

ixp

cðp2�1Þ1=2
, ð50Þ

and the integration is represented asZ �1

�1

dp

Z 0

�1

dx�
Z 1

1
dp

Z 1
0

dx: ð51Þ

We take for G¼0 Eqs. (21), which, with the new variables, become

G1 ¼
ðs1þpÞðs2þpÞ

ðs1�pÞðs2�pÞ
e2xpd=c�1¼ 0,

G2 ¼
ðs1þe1pÞðs2þe2pÞ

ðs1�e1pÞðs2�e2pÞ
e2xpd=c�1¼ 0, ð52Þ

where si ¼ ðei�1þp2Þ
1=2, i¼1, 2 and k is replaced by k¼�ixp=c.

The derivative with respect to o in Eq. (48) becomes
@G

@o
¼�i

@G

@x
þ i

p2�1

px
@G

@p
: ð53Þ

In order to get the force, we take the (minus) derivative with
respect to d in Eq. (48) and make use of

@G

@d
¼

2xp

c
ðGþ1Þ: ð54Þ

Combining Eqs. (53) and (54), we get easily

@

@d

1

G

@G

@o

� �
¼

2

ic

1

p
þ

1

pG
�
xp

G2

@G

@x
þ

p2�1

G2

@G

@p

� �
: ð55Þ

An integration by parts in F ¼ @E=@d leads to the force

F ¼�
_

2p2c3

Z 1
1

dpp2
Z 1

0
dxx3 1

G1
þ

1

G2

� �
, ð56Þ

which is the well-known formula given in Refs. [15–20]. The
formal equivalence given here can be found entirely in Ref. [10].
For finite temperatures the integration over x is replaced by a
summation over the integers n, such as b_xn ¼ 2pn, where b¼ 1=T

is the reciprocal of the temperature T.
For conductors, in the retarded limit, Eq. (56) leads to the

Casimir force given by Eq. (31). For poor dielectrics, or combina-
tions of poor dielectrics with conductors, Eq. (56) brings a small
correction factor to the Casimir force (see, for instance, Eq. (82.6)
in Ref. [18]), which indicates, in fact, that the force is vanishing in
this case. In the limit of good dielectrics, Eq. (56) leads to the
same universal Casimir force given by Eq. (31).

In the non-retarded limit o-0 (x-0), the most important
contribution to the p-integral in Eq. (56) comes from pb1, due
to the presence of the exponential in the denominator. Conse-
quently, we may take s1,2Cp, which leads to

FC�
_

16p2d3

Z 1
0

dxx2
Z 1

0
dx
ð1þe1Þð1þe2Þ

ð1�e1Þð1�e2Þ
ex�1

� ��1

, ð57Þ

which is the well-known formula given in Refs. [15–20] for the
van der Waals–London force. The evaluation of the x-integral is
difficult, so we cannot compare the result with Eq. (35).

Both Eqs. (56) and (57) can be extended to very rarefied bodies,
leading to well-known forces computed quantum-mechanically
for two interacting atoms (molecules) [18]. In general, Eqs. (56)
and (57) are valid provided equation Gðo,kÞ ¼ 0 has solutions (i.e.,
Eqs. (21) have solutions). Unfortunately, Eqs. (56) and (57) may
also indicate false solutions (as for poor dielectrics).
7. Concluding remarks: sphere and half-space

Let us denote by F1=2 ¼ CS=dn the van der Waals–London or
Casimir force acting between two half-spaces separated by dis-
tance d, where C is a constant, S is the transverse area of the two
half-spaces, n¼3 for the van der Waals–London force and n¼4 for
the Casimir force. We look for a force df ¼ C1=9z9

n1 dV , acting
between the half-space and a ‘‘macroscopically infinitesimal’’
element of volume dV placed at distance 9z9 from the half-space,
such asZ

df ¼ F1=2, ð58Þ

where the integration is performed over the other half-space. We
find easily C1 ¼ Cn and n1 ¼ nþ1. Now we compute the force

Fs ¼

Z
df ¼ Cn

Z
dV

1

ðRþd�r cos yÞnþ1
ð59Þ

acting between the half-space and a sphere of radius R placed at
distance d from the half-space (the distance between the half-
space and the surface of the sphere); the integration in Eq. (59) is
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performed over the volume of the sphere. The integration in
Eq. (59) is elementary, and, for Rbd, we get the force

FsC
2pCR

ðn�1Þdn�1
: ð60Þ

The force acting between a half-space and a spherical shell of
radius R is 2pCR2=dn. In a similar way we can derive the force
acting between two bodies of any shape. The force acting between
two macroscopic particles is given by

f ¼
nðnþ1Þðnþ2ÞC

2pdnþ4
v1v2, ð61Þ

where v1,2 are the volumes of the two particles.
In conclusion we may say that the van der Waals–London and

Casimir forces are calculated here explicitly for two semi-infinite
solids (half-spaces) separated by a third, polarizable body inserted in
the gap between the two half-spaces. In contrast with previous,
well-known treatments of the problem, the polarization degrees of
freedom are introduced here explicitly, and their dynamics is
included, beside the Maxwell equations of the electromagnetic field.
The equations off motion are solved (both for polarization and the
electromagnetic field) for these electromagnetically coupled bodies,
the normal modes are identified as harmonic-oscillators modes, and
the corresponding eigenfrequencies are computed. The force is
calculated from the zero-point energy of the vacuum fluctuations
of the polarization. The extension of the results to bodies of any
shape is done, and the force acting between a sphere and a half-
space is calculated explicitly.
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