
Chemical Physics 472 (2016) 262–269
Contents lists available at ScienceDirect

Chemical Physics

journal homepage: www.elsevier .com/locate /chemphys
Molecular dynamics in high electric fields
http://dx.doi.org/10.1016/j.chemphys.2016.03.015
0301-0104/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: apoma@theory.nipne.ro (M. Apostol).
M. Apostol ⇑, L.C. Cune
Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 February 2016
In final form 22 March 2016
Available online 29 March 2016

Keywords:
Rotation molecular spectra
High electric fields
Parametric resonance
Spontaneous polarization
Highly-oscillating electric fields
Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an
external time-dependent electric field, are discussed in a few particular conditions which can be of some
experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of intro-
ducing an approximate method which consists in the separation of the azimuthal and zenithal motions.
Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are
analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles
consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric
resonances. For strong fields a large macroscopic electric polarization may appear. This situation may
be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a
polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new
polarization modes appear for a spontaneous macroscopic electric polarization (these modes are
tentatively called ‘‘dipolons”); one of the polarization modes is related to parametric resonances. The
extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended
to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers.
It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective,
renormalized, static electric field.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Usually, the molecular dynamics in the presence of static
electric fields is limited to weak fields, as those produced currently
in the laboratory. A small, orientational polarization of the electric-
dipole moments is well known in this case, governed by the Curie–
Langevin–Debye law. Comparatively, more information is available
for the dynamics of the magnetic moments in the presence of static
magnetic fields available in the laboratory, although the magnetic
moments are much smaller than the electric-dipole moments.
Orientation, deflection, trapping of polar molecular beams in static
electric fiels are well known [1–7]. Various basic aspects of the
dynamics of the polar molecules (rigid spatial rotators) in com-
bined static and non-resonant electric fields has also been studied
extensively in Refs. [8–14].

With the advent of high-power lasers, the interest for the
molecular dynamics in high electric fields may be revived.
Although the electric fields produced in the laser beams are
oscillating in time, we show in this paper that their effect on the
molecular dynamics is that of weaker, renormalized, static fields,
as a consequence of their much higher frequency in comparison
with the molecular rotation or vibration frequencies.

First, we review briefly the spherical-pendulum molecular
model with the aim of defining our working method, which
consists in the separation of the azimuthal and zenithal motions.
This approximate method is valid for heavy molecules. Second,
we apply this method to high electric fields, where parametric res-
onances are highlighted in the molecular rotation spectra. Similar
results are briefly discussed for weak electric fields. Further, the
dipolar interaction is analyzed in polar matter, where it may pro-
duce a spontaneous polarization. A continuous model is introduced
for the motion of this polarization, whose excitations are tenta-
tively called ‘‘dipolons”; it is shown that their interaction with a
time-dependent electric field may also exhibit parametric reso-
nances. Such arguments are briefly extended to similar features
exhibited by magnetic moments.
2. Free rotations

In many cases the free molecular rotations are described satis-
factorily by a spherical-pendulum model (spatial, rigid rotator,
spherical top) [15,16]. A spherical pendulum consists of a point
of mass M which rotates freely in space at the end of a radius.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemphys.2016.03.015&domain=pdf
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r ¼ rðsin h cosu; sin h sinu; cos hÞ, as described by the
hamiltonian

H ¼ 1
2
M _r2 ¼ 1

2
Mr2ð _h2 þ _u2 sin2 hÞ; ð1Þ

if the point has a charge q, then there is a dipole d ¼ qr which can
couple to an external electric field E cosxt, with an interaction
hamiltonian HintðtÞ ¼ �dE cos h cosxt. We take the electric field
directed along the z-axis. As it is well known, the hamiltonian given
by Eq. (1) can be writen as H ¼ L2=2I, where L is the angular
momentum and I ¼ Mr2 is the moment of inertia. The eigenfunc-
tions are the spherical harmonics, with the energy levels

El ¼ �h2lðlþ 1Þ=2I; l ¼ 0;1;2; . . ..
As it is well known, in the first-order of the perturbation theory

for the interaction HintðtÞ ¼ �dE cos h cosxt the rate of quantum
transitions with frequency x0 ¼ ðElþ1 � ElÞ=�h ¼ ð�h=IÞðlþ 1Þ is
@ clmj j2
@t

¼ pd2E2

2�h2 ðcos hÞlm
�� ��2dðx0 �xÞ; ð2Þ

where the matrix elements denoted ðcos hÞlm are given by

ðcos hÞlm ¼ ðcos hÞlþ1;m;l;m ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 �m2

ð2lþ 1Þð2lþ 3Þ

s
; ð3Þ

in Eq. (2) clm are the coefficients of the superposition of the wave-
functions, m being the quantum number of the component Lz of
the angular momentum. The absorbed power (the spectrum) is

P ¼ �hx0

Xl

m¼�l

@ clmj j2
@t ¼ pd2E2

2�h x0

Xl

m¼�l

ðcos hÞlm
�� ��2dðx0 �xÞ

¼ pd2E2
6�h x0ðlþ 1Þdðx0 �xÞ ¼ pd2E2

6I ðlþ 1Þ2dðx0 �xÞ
ð4Þ

and the net absorbed power at finite temperatures is given by

Pth ¼pd2E2

2�h
x0�

Xl

m¼�l

ðcoshÞlm
�� ��2 e�b�h2 lðlþ1Þ=2I�e�b�h2ðlþ1Þðlþ2Þ=2I

h i
dðx0�xÞ=Z;

ð5Þ
where

Z ¼
X
l¼0

ð2lþ 1Þe�b�h2 lðlþ1Þ=2I ð6Þ

is the partition function and b ¼ 1=T is the reciprocal of the temper-
ature T (we set the Boltzmann’s constant kB equal to unity, kB ¼ 1);

for b�h2
=2I � 1 the partition function is Z ’ 2I=b�h2 and

Pth ¼ pd2E2
12I ðlþ 1Þ3 b�h2

I

� �2
e�b�h2 lðlþ1Þ=2Idðx0 �xÞ

¼ 1
2 Pðlþ 1Þ b�h2

I

� �2
e�b�h2 lðlþ1Þ=2I:

ð7Þ

For illustrative purposes we use I ¼ 10�38 g � cm2, which is a typical
numerical value for the molecular moment of inertia (molecular
mass M ¼ 105 electronic mass me ¼ 10�27g (heavy molecules), the
dipole length r ¼ 10�8 cm (1 Å)), and get �h=I ¼ 1011 s�1 ’ 1 K
(x0 ¼ �hðlþ 1Þ=I); at room temperature there are many levels occu-

pied, and we may use the inequality b�h2ðlþ 1Þ=I � 1 for a wide
range of the quantum number l.

It is worth investigating to what extent the classical dynamics,
properly quantized, may be used as an approximate representation
for the quantum-mechanical spectrum of the spherical pendulum
given above. An approximate scheme is useful for treating compli-
cated situations, like the presence of high electric fields. The clas-
sical dynamics corresponding to the hamiltonian given by Eq. (1)
is governed by the equations of motion

€h ¼ _u2 sin h cos h; I
d
dt

ð _u sin2 hÞ ¼ 0; ð8Þ
from the second Eq. (8) we get _u ¼ Lz=I sin
2 h, which indicates

the conservation of the component Lz of the angular momentum
(as it is well known, the angular momentum is conserved in free
rotations). The hamiltonian given by Eq. (1) can be written as

H ¼ 1
2
I _h2 þ L2z

2I sin2 h
; ð9Þ

we can see that an effective potential function Ueff ¼ L2z=2I sin
2 h

appears, which has a minimum for h ¼ p=2. The relevant motion
may be limited to small oscillations about the equatorial plane
h ¼ p=2. Introducing dh ¼ h� p=2 we get

L2z
2I sin2 h

¼ L2z
2I

þ L2z
2I

dh2 þ . . . ð10Þ

and

H ’ 1
2
Id _h2 þ L2z

2I
dh2 þ L2z

2I
: ð11Þ

We can see that there is a precession u ¼ x0t about the z-axis
and an oscillation dh ¼ A cosðx0t þ dÞ, where A is an undetermined
amplitude and d is an undetermined phase, according to the small
oscillations governed by the hamiltonian given by Eq. (11); the
frequency x0 is given by x0 ¼ Lz=I. We can check easily that
the angular momentum is conserved ( _L ¼ 0); the components of
the angular momentum are Lx ¼ I Ax0 cos d; Ly ¼ I Ax0 sin d, and
Lz ¼ Ix0. We can rotate the equatorial plane h ¼ p=2 by an angle

given by sina ¼ I Ax0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x2

0 þ I2A2x2
0

q�
’ A, such that the motion

will be an in-plane motion [17,18]. This approximation
corresponds to Lz ’ L (m ’ l, L2x þ L2y � L2z ’ L2).

The dh-motion governed by the harmonic-oscillator
hamiltonian given by Eq. (11) can be quantized, the energy levels
being �hx0ðnþ 1=2Þ;n ¼ 0;1;2 . . ., where x0 ¼ Lz=I ¼ �hm=I,
m ¼ 0;1;2 . . .; the harmonic-oscillator frequency x0 ¼ �hm=I corre-
sponds to the quantum-mechanical frequency x0 ¼ ðElþ1 � ElÞ=�h ¼
ð�h=IÞðlþ 1Þ (for large m values close to l values). The interaction
HintðtÞ ¼ �dE cos h cosxt, where h ¼ p=2þ dh produces transitions
of the type n ! nþ 1, with an absorbed power

Pn ¼ pd2E2

4I
ðnþ 1Þdðx0 �xÞ ð12Þ

(where the harmonic-oscillator matrix elements
ðdhÞnþ1;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðnþ 1Þ=2Ix0

p
are used). The total power is obtained

by summing Pn with respect to n up to some value N given by

ðdhÞNþ1;N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðN þ 1Þ
2Ix0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
2m

r
< 1; ð13Þ

which gives

Posc ¼
XN
n¼0

Pn ¼ pd2E2

2I
mðmþ 1=2Þdðx0 �xÞ ð14Þ

for N ¼ 2m� 1; for large (and comparable)m and l this result can be
compared with the exact absorbed power given by Eq. (4). We can
see that there is a discrepancy of a numerical factor 1=3, which
arises from the summation over m in Eq. (4); the main feature,
which is the presence of the resonance at frequency x ¼ x0, is
preserved in this approximation scheme.

The nature of this approximation can also be seen from an
expansion of the energy levels El in Taylor series with respect to l
in the vicinity of a large value l0 � 1; denoting n ¼ l� l0 we get

El ’ El0 þ
�h2

I
ðl0 þ 1=2Þn ’ El0 þ �hx0n ð15Þ
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for m ’ l0; on the right in Eq. (15) we can see the approximate har-
monic-oscillator energy levels. We note (from Eqs. (7) and (14)) that
the maximum of the transitions amplitudes is reached for

l ’
ffiffiffiffiffiffiffiffiffiffiffiffi
I=b�h2

q
(which at room temperature acquires large values),

and the harmonic-oscillator approximation overestimates the
absorbed power at room temperature.

3. High electric field

Consider a constant, uniform electric field E0 ¼ E0ð0;0;1Þ
oriented along the z-axis; the potential energy of an electric
dipole d ¼ dðsin h cosu; sin h sinu; cos hÞ of arbitrary orientation
h; u is U ¼ �dE0 cos h. The hamiltonian of rotations in this field is
given by

H ¼ 1
2
Ið _h2 þ _u2 sin2 hÞ � dE0 cos h ð16Þ

(for the Schroedinger equation with this hamiltonian see Refs.
[19,20]). We apply to this hamiltonian the method of quantization
of the classical motion described in the previous section. We show
here that this method leads to special features in the spectrum,
related to parametric resonance. The component Lz of the angular

momentum is conserved, _u sin2 h ¼ Lz=I; consequently, an effective
potential function

Ueff ¼ L2z
2I sin2 h

� dE0 cos h ð17Þ

appears in the hamiltonian. We assume that the dipole energy dE0 is
much greater than the rotation energy L2z=I, which is of the order of

the temperature T. For typical value d ¼ 10�18 statcoulomb � cm and
temperature T ¼ 300 K ’ 4� 10�14 erg this condition requires an
electric field E0 � T=d ¼ 4� 104 statvolt=cm ’ 1:2� 109 V=m.
This is a high electric field; for comparison, the electric field cre-
ated by an electron charge at distance 1 Å ¼ 10�8 cm is
4:8� 10�10=10�16 ¼ 4:8� 106 statvolt=cm (atomic fields). Such a
high electric field may appear as an internal field in polar con-
densed matter (e.g., pyroelectrics, ferroelectrics). At low tempera-
tures the free molecular rotations may be hindered, and the
dipoles get quenched in parallel, equilibrium positions; they may
only perform small rotations and vibrations around these equilib-
rium positions. The transitions from free rotations to small vibra-
tions around quenched positions in polar matter is seen in the
curve of the heat capacity vs temperature [21,22]. The electric field
produced by the nearest neighbors, averaged over their small vibra-
tions and rotations, gives rise to a local, static (mean) electric field,
which can be as high as the atomic fields. The condition E0 � T=d
shows also that at lower temperatures (and high values of the elec-
tric dipoles) the field E0 may be weaker. Similarly, high electric
fields may appear locally near polar impurities with large moments
of inertia, embedded in polar matter. Under such conditions the
effective potential given by Eq. (17) has a minimum value for

h0 ’ ðL2z =IdE0Þ1=4 ’ ðT=dE0Þ1=4 � 1; it can be expanded in powers
of dh ¼ h� h0 around this minimum value,

Ueff ’ �dE0 þ 2dE0dh
2; ð18Þ

the hamiltonian given by Eq. (16) becomes

H ’ 1
2
Id _h2 þ 1

2
Ix2

0dh
2 � dE0; ð19Þ

where x0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
dE0=I

p
is sometimes known as Rabi’s frequency

[23,24]; according to our condition of high field, we have
x0 > 1012s�1 (we consider electric fields that are not as high as to
produce rotation frequencies comparable with the molecular
vibration frequencies). Therefore, the dipoles exhibit quenched
equilibrium positions in the static electric field E0, where they per-
form small oscillations and rotations. The angle u rotates freely

with the frequency _u ’ Lz=I sin
2 h0 ¼ 1

2x0 (u ¼ 1
2x0t). It is worth

noting that the frequency x0 is determined by the external field
E0. An attempt to derive the harmonic-oscillator hamiltonian given
by Eq. (19) has been made in Ref. [25].

Consider an external time-dependent field EðtÞ ¼ EðtÞðsina;0;
cosaÞ, EðtÞ ¼ E cosxt, which makes an angle a with the z-axis;
its interaction with the dipole is

Hint ¼ �dEðtÞðsina sin h cosuþ cosa cos hÞ ; ð20Þ
which provides two relevant interaction hamiltonians:

H1int ¼ � 1
2dE sina cosðxþ 1

2x0Þt þ cosðx� 1
2x0Þt

� �
dh;

H2int ¼ 1
2 dE cosa cosxt � dh2: ð21Þ

The interaction hamiltonian H1int produces transitions between
the harmonic-oscillator states n and nþ 1 with the resonance fre-
quency X ¼ 1

2x0;
3
2x0. In general, for an interaction Hint ¼ h cosxt

(where h is a time-independent interaction hamiltonian), the tran-
sition rate between two states n and nþ s, with energies En; Enþs is

@ cnþs;n

�� ��2
@t

¼ p
2�h2 hnþs;n

�� ��2dðxn;s �xÞ ð22Þ

in the first order of the perturbation theory, where
xn;s ¼ ðEnþs � EnÞ=�h and cnþs;n are the coefficients of the superposi-
tion of the wavefunctions. For H1int we get

@ cnþ1;n

�� ��2
@t

¼ p
16�hIx0

d2E2ðnþ 1Þ sin2 adðx�XÞ ð23Þ

and the absorbed power

P ¼ �hX
@ cnþ1;nj j2

@t ¼ p
16Ix0

d2E2Xðnþ 1Þ sin2 adðx�XÞ
¼ p

16Ix0
d2E2Xðnþ 1Þ sin2 adðx�XÞ:

ð24Þ

In order to compute the mean power the thermal weights
e�b�hx0n=

P
e�b�hx0n should be inserted, where b ¼ 1=T is the inverse

of the temperature T; in addition, the reverse transitions must be
taken into account. Since b�hx0 � 1, only the lowest states n are
excited by interaction. The temperature dependence is given by

Pth ¼ p
16Ix0

d2E2X
X
n¼0

ðnþ 1Þ e�b�hx0n � e�b�hx0ðnþ1Þ� �
� sin2 adðx�XÞ

X
n¼0

e�b�hx0n

,
; ð25Þ

where the summation over n is, in principle, limited.
We should limit ourselves to the lowest states of the harmonic

oscillator, since the oscillation amplitude dh must be much smaller
than the angle h0. The matrix element ðdhÞnþ1;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðnþ 1Þ=2Ix0

p
for the harmonic oscillator should be much smaller than

h0 ’ ðL2z=IdE0Þ1=4, which implies �hðnþ 1Þ � 4Lz ’ 4
ffiffiffiffiffi
IT

p
; for typical

values I ¼ 10�38 g � cm2 we get n � 80 for T ¼ 300 K (and n � 8
for T ¼ 3 K). Consequently, for b�hx0 � 1 we may extend the sum-
mation in Eq. (25) to large values of n; we get Pth independent of
temperature. Making use of the expressions for the transverse
components Lx;y of the angular momentum we get
Lx ’ �ð1=2ÞIx0h0 cosxot=2 and Ly ’ �ð1=2ÞIx0h0 sinxot=2, which
show that the high-field approximation corresponds to
L2x þ L2y ’ L2 � L2z (small values of the component Lz).

Under the same conditions, the harmonic-oscillator hamilto-
nian given by Eq. (19) and the interaction hamiltonian H2int given
by Eq. (21),
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H0 ¼ H þ H2int ¼ 1
2
Id _h2 þ 1

2
Ix2

0ð1þ h cosxtÞdh2; ð26Þ

where h ¼ E
2E0

cosa, lead to the classical equation of motion

d€hþx2
0ð1þ h cosxtÞdh ¼ 0; ð27Þ

which is the well-known equation of parametric resonance
(Mathieu’s equation) [26]. As it is well known, beside periodic solu-
tions, the classical Eq. (27) has also aperiodic solutions, which may
grow indefinitely with increasing time; these are (parametrically)
resonant solutions, which occur for x in the neighborhood of
2x0=n; n ¼ 1;2;3 . . .. As we can see immediately, the solutions of
Eq. (27) are determined by the initial conditions dhðt ¼ 0Þ and
d _hðt ¼ 0Þ (as for any second-order differential equation). The initial
conditions are vanishing due to thermal fluctuations, so the classi-
cal solutions of Eq. (27) are ineffective.

The quantum-mechanical dynamics is different. The interaction
hamiltonian H2int produces transitions between the harmonic-
oscillator states n and nþ 2, due to the matrix elements of dh2 (this
is an example of a double-quanta process [27]). These transitions
have frequency 2x0, in accordance with the classical dynamics.
The transition rate is

@ cnþ2;n

�� ��2
@t

¼ ph2

128
x2

0ðnþ 1Þðnþ 2Þdð2x0 �xÞ ð28Þ

and the absorbed power

P ¼ 2�hx0
@ cnþ2;n

�� ��2
@t

¼ ph2

64
�hx3

0ðnþ 1Þðnþ 2Þdð2x0 �xÞ ð29Þ

where we may restrict, in principle, to the lowest states. The inten-
sity given by Eq. (29) is small, because, especially, of the factor

ðE=E0Þ2 (h ¼ E
2E0

cosa). The temperature dependence is given by

Pth ¼ ph2

64
�hx3

0

X
n¼0

ðnþ 1Þðnþ 2Þ

� e�b�hx0ð2nþ1Þ � e�b�hx0ð2nþ3Þ� �
dð2x0 �xÞ

X
n¼0

e�b�hx0n

" #2

;

,
ð30Þ

in accordance with the direct transitions n ! nþ 1 ! nþ 2 and the
corresponding reverse transitions; Pth is diminished by the thermal
factor e�b�hx0 for b�hx0 � 1.

The parametric resonance disappears for a ¼ p
2, i.e. for the

applied field E at right angle with the quenching field E0. The effect
of the parametric resonance depends on the orientation of the
(solid) sample; in amorphous samples the average over angles a

should be taken cos2 a ¼ 1
3

� �
. In solids, the width of the absorption

line (the damping parameter) originates, very likely, in the dipolar
interaction. Since the dipolar interaction is taken mainly in the
quenching effect, we may expect a small damping, and, conse-
quently, rather sharp resonance lines. In liquids, beside the random
distribution of the dipoles (and the average over angle aÞ, we may
expect the usual motional narrowing of the line. In gases the (inter-
nal) quenching field is weak, and the parametric resonance is not
likely to occur.

4. Weak electric field

Consider now the opposite case, when the field E0 is weak, such
that dE0 � L2z=I. The effective potential Ueff given by Eq. (17) has a
minimum value for h0 ’ p

2 and the hamiltonian reduces to the free
hamiltonian given by Eq. (11); the field E0 brings only a small
correction to the p=2-shift in h, while its contribution to the hamil-
tonian is a second-order effect. The angle u moves freely with
angular velocity _u ¼ x0 ¼ Lz=I. In contrast with the high-field case,
where the frequency _u is fixed by the high static field E0, in the
low-field case we may quantize the u-motion, according to
Lz ¼ �hm, m integer, such thatx0 ¼ �h

I m; the lowest value of this fre-

quency is �h=I ’ 1011 s�1 for typical values I ¼ 10�38 g � cm2. The
molecular rotations are described by a set of harmonic oscillators
with frequencies x0 ¼ �h

I m, beside the u-precession (which has

the same frequencies x0). The energy quanta are �hx0 ¼ �h2

I m, with

the lowest value �h2

I ¼ 1 K (for our numerical values). The approxi-

mation described above is valid for dhnþ1;n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hðnþ 1Þ=2Ix0

p � 1,
which leads to �hðnþ 1Þ � 2Lz, or nþ 1 � m. Similarly, the trans-
verse components of the angular momentum are very small,
L2x þ L2y � L2 ’ L2z (m ’ l); at room temperature m may acquire as
high values as m ¼ 300. All this is practically the same as for the
free rotations.

The interaction hamiltonian given by Eq. (20) leads to two rel-
evant interactions

H1int ¼ dE cosa cosxt � dh;
H2int ¼ 1

4 dE sina cosðxþx0Þt þ cosðx�x0Þt½ � � dh2: ð31Þ

The interaction H1int produces transitions between the har-
monic-oscillator states n and nþ 1, with an absorbed power

Pn ¼ p
4I

d2E2ðnþ 1Þ cos2 adðx0 �xÞ: ð32Þ

For n � m we restrict ourselves to small values of n in Eq. (32)
and sum over a few values of m in dðx0 �xÞ ¼ dð�hm=I �xÞ
with the statistical weight e�b�h2m2=2I (low temperatures). As
long as �h=I � c, where c is the resonance width, the spectrum
exhibits a few, distinct absorption lines at frequencies x0 ¼ �hm=I
(a band of absorption). In general, the temperature dependence is
given by

Pth ¼ p
4I

d2E2 cos2 a � C
X
m>0

e�b�h2m2=2I

�
X
n¼0

ðnþ 1Þ e�b�hx0n � e�b�hx0ðnþ1Þ� �,X
n¼0

e�b�hx0n

( )
dðx0 �xÞ;

ð33Þ

wherex0 ¼ �hm=I and C
P

m>0e
�b�h2m2=2I ¼ 1. At room temperature we

may extend the summation over n; m and get the envelope of this
function

Pth ¼ p
4
d2E2 cos2 a

ffiffiffiffiffiffiffiffiffi
2pb
I

r
e�bIx2=2: ð34Þ

The interaction hamiltonian H2int given by Eq. (31) produces
transitions between states n and nþ 2 (separated by frequency
2x0) for external frequencies X ¼ x0; 3x0. The absorbed power is

Pn ¼ p�hX
128I2x2

0

d2E2ðnþ 1Þðnþ 2Þ sin2 adðX�xÞ: ð35Þ

These parametric resonances, occurring at frequencies
X ¼ x0; 3x0, are superposed over the transitions produced by
H1int . The temperature dependence is given by

Pth ¼ p�h
128I2

d2E2 sin2a �C
X
m>0

X
x2

0

e�b�h2m2=2I

�
X
n¼0

ðnþ1Þðnþ2Þ e�b�hx0ð2nþ1Þ �e�b�hx0ð2nþ3Þ� �, X
n¼0

e�b�hx0n

" #2
8<:

9=;
�dðX�xÞ; ð36Þ

summation over n gives
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Pth ¼ p�h
64I2

d2E2 sin2 a � C
X
m>0

X
x2

0

e�b�h2m2=2I e�b�hx0

ð1þ e�b�hx0 Þ2
dðX�xÞ

ð37Þ
whence we can get either the band of absorption or the envelope.

It is worth noting that the weak field E0 does not appear explic-
itly in the above formulae; its role is that of setting the z-axis, to
highlight the directional effect of the interaction field E through
the angle a, and to reduce the conservation of the angular momen-
tum L to the conservation of only one component (Lz). It is also
worth noting that the expansion of the effective potential function
Ueff in powers of dh is an approximation to free rotations with con-
stant Lz, instead of constant L.

It is also worth noting that a weak static electric field has an
influence on the statistical behavior, as it is well known. Indeed,
the hamiltonian of rotations

H ¼ 1
2
Ið _h2 þ _u2 sin2 hÞ ð38Þ

can also be written as

H ¼ 1
2I

P2
h þ

1

2I sin2 h
P2
u ð39Þ

with the (angular) momenta Ph ¼ I _h and Pu ¼ I _u sin2 h. The classical
statistical distribution is

const � dPhdPudhe�bP2h =2Ie�bP2u=2I sin
2 h; ð40Þ

or, integrating over momenta, 1
2 sin hdh. In the presence of the field

we have the distribution ’ 1
2 sin hdh � ebdE0 (since bdE0 � 1), which

leads, for example, to cos h ¼ bdE0=3. This is the well-known
Curie–Langevin–Debye law [28–31]. In the quantum-mechanical

regime, for dE0 � �h2
=I, the interaction �dE0 cos h brings a second-

order contribution to the energy levels El ¼ �h2lðlþ 1Þ=2I and
renormalize the wavefunction in the first-order of the theory of
perturbation; using these renormalized wavefunctions, there
appear diagonal matrix elements of cos h, which we denote by

ð gcos hÞlm;lm; the mean value of this quantity is given by

cos h ¼ P gðcos hÞlm;lmDðbElÞe�bEl=
P

e�bEl , which leads to the classical
result ¼ bdE0=3, as expected.
5. Dipolar interaction

Although many molecules possess an electric dipole moment d,
even in their ground state, usually the dipole–dipole interaction is
neglected in rarefied condensed matter, on the ground that the dis-
tance between the dipoles is large. In these conditions, at finite
temperatures, the electric dipoles are randomly distributed; they
get slightly aligned in the presence of a static external electric field
E0, which provides a small interaction energy, leading to an

induced orientational polarization d ¼ bd2E0=3, as noted above.
For typical values of the dipole moments d ¼ 10�18

statcoulomb � cm separated by distance of the order a ¼ 10�8 cm

(1 Å) the interaction energy is ’ d2
=a3 ¼ 10�12 erg ’ 103 K

(1 eV ¼ 1:6� 10�12 erg;1 K ¼ 1:38� 10�16 erg;1 eV ¼ 1:1� 104 K).
This is not a small energy (it corresponds approximately to a fre-
quency 1013 Hz), and, apart from special circumstances, the electric
dipole–dipole interaction cannot be neglected. (The estimation
given here should take into account the time average of the dipole
interaction energy with respect to molecular motion). The corre-
sponding dipolar field is of the order d=a3 ¼ 106 statvolt=cm (i.e.,
of the order of the atomic fields).
The interaction energy of two dipoles d1 and d2 separated by
distance a is given by

U ¼ �3ðd1d2Þa2 � ðd1aÞðd2aÞ
a5

: ð41Þ

We introduce the angles ðh1; u1Þ and ðh2; u2Þ for the directions
of the two dipoles with respect to the axis a and the interaction
energy becomes

U ¼ � d1d2

a3
½2 cos h1 cos h2 þ 3 sin h1 sin h2 cosðu1 �u2Þ� ; ð42Þ

this energy has four extrema for h1 ¼ h2 ¼ 0; p=2 and
u1 �u2 ¼ 0; p; only for h1 ¼ h2 ¼ p=2, u1 �u2 ¼ 0 the interaction
energy has a local minimum; in the neighborhood of this minimum
value the interaction energy behaves like

U ¼ d1d2
a3 ½�3þ 3

2 ðdh21 þ dh22Þ � 2dh1dh2 þ 3
2 ðdu1 � du2Þ2�

¼ d1d2
a3 ½�3þ 1

4 ðdh1 þ dh2Þ2 þ 5
4 ðdh1 � dh2Þ2 þ 3

2 ðdu1 � du2Þ2�;
ð43Þ

where dh1;2 ¼ h1;2 � p=2 are small deviations of the angles h1;2 from
the polarization axis p=2; similarly, du1;2 are small deviations of the
angles u1;2 from their equilibrium values u1;2, subjected to the
condition u1 �u2 ¼ 0. It follows that the electric dipoles exhibit
quenched equilibrium positions h1 ¼ h2 ¼ p=2, u1 �u2 ¼ 0, such
that they are parallel to each other and perpendicular to the
distance between them; they may perform small rotations and
vibrations around these equilibrium positions. For the other three
extrema the interaction energy has either a saddle point
(h1 ¼ h2 ¼ 0;u1 �u2 ¼ 0; p) or a maximum (h1 ¼ h2 ¼ p=2;
u1 �u2 ¼ p). It is very likely that the structural environment is dis-
torted such as the dipoles take advantage of the energy minimum.
For instance, a structural elongation along the direction
h1 ¼ h2 ¼ 0 decreases appreciably the dipolar interaction along this
direction (which goes like 1=a3!), such that the corresponding con-
tribution to the energy may be neglected. Under such circum-
stances, for not too high temperatures, we may expect the dipoles
to be (spontaneously) aligned along an arbitrary axis (in isotropic
matter), giving rise to an electric (macroscopic) polarization along
such an axis. The neglect of the interaction along the direction
h1 ¼ h2 ¼ 0 makes this model highly anisotropic, with a layered
structure of the aligned dipoles.

These considerations are based on the dipolar interaction given
by Eq. (41), which, in principle, is valid for distances a much longer
than the dimension of the dipoles. However, since the dipolar
interaction decreases rapidly with increasing distance, we may
also use it for distances equal to a few dipole lengths. In addition,
for heavy molecules the charge imbalance implies a large charge
and, consequently, a small displacement, which amounts to a more
localized dipole; so, the condition for validity of the dipolar inter-
action may be fulfilled much more satisfactorily than we use to
think. It is relevant in this respect the analysis made in Ref. [32].

As it is well known, pyroelectrics (or electrets) have a perma-
nent electric polarization [33]; if the polarization is singular just
below a critical temperature and vanishes above, those substances
are called ferroelectrics (in the state above the critical temperature
they are also called paraelectrics); it seems that all these sub-
stances are piezoelectric. There are also structural modifications
associated with finite discontinuities in polarization, a typical
example being barium titanate (BaTiO3Þ; the dimension of the ele-
mentary cell in the crystal of BaTiO3 is a ’ 4� 10�8 cm (4 Å); the
dipole of a cell is d ’ 5� 10�18 statcoulomb � cm (the saturation
polarization – the dipole moment per unit volume – at room tem-

perature is 8� 104 statcoulomb � cm); if Ba2þ and Ti4þ are displaced
by dwith respect to O2�, then the dipole moment d is achieved for a
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slight displacement d ¼ 0:1 Å; we can see that the distance a
between the dipoles is much longer than the dimension d of the
dipoles. In addition, BaTiO3 exhibits several structural modifica-
tions (from cubic to tetragonal to monoclinic to rhombohedral
with decreasing temperature), in all polarized phases the structure
being elongated along the direction of polarization [34].

In a continuum model of polarized substance the dipolar
interaction given by Eq. (43) (with identical dipoles d) gives the
interaction hamiltonian

Hint ¼ 1
a3

Z
dr

d2

a3
dh2 þ 5d2

4a
ðgraddhÞ2 þ 3d2

2a
ðgradduÞ2

" #
; ð44Þ

which, together with the kinetic part, leads to the full hamiltonian

H ¼ 1
a3

Z
dr

1
2
I _dh2 þ 1

2
I _du2 þ 1

2
Ix2

0dh
2 þ 1

2
Iv2

h ðgraddhÞ2
	

þ 1
2
Iv2

uðgradduÞ2


; ð45Þ

where I is the moment of inertia of the dipoles and x2
0 ¼ 2d2

=Ia3,

v2
h ¼ 5d2

=2Ia ¼ 5x2
0a

2=4; v2
u ¼ 3d2

=Ia ¼ 3x2
0a

2=2. The dipole

density 1=a3 should include the number of nearest neighbors;
if we restrict ourselves to the highly anisotropic (layered) model,
then the hamiltonian density in Eq. (45) is two-dimensional.
We can see that the dipolar interaction may generate dipolar
waves (waves of orientational polarizability), governed by the wave
equations

d2

dt2
dhþx2

0dh� v2
hDdh ¼ 0;

d2

dt2
du� v2

uDdu ¼ 0; ð46Þ

the spectrum of these dipolar waves is x2
h ¼ x2

0 þ v2
hk

2 and, respec-

tively, x2
u ¼ v2

uk
2 (in the layered model the wavevector k is two-

dimensional); for typical values d ¼ 10�18 statcoulomb � cm;

a¼10�8 cm and I¼10�38 g �cm2 we get the frequency x0 ’1013 s�1

(infrared region) and the wave velocities vh;u ’105 cm=s (the

wavelengths are kh;u ’p
ffiffiffi
5

p
a;p

ffiffiffi
6

p
a). It is worth noting that the

coordinates dh;du are the tilting angles of the polarization with
respect to its equilibrium direction. Tentatively, we may call these
polar-matter modes ‘‘dipolons”. They contribute to the anomalous
heat-capacity curve vs temperature.

The dipolar waves can couple to an external time-dependent
electric field. Let Eðr; tÞ ¼ E cosðxt � krÞ be a radiation electric field
(plane wave) which makes an angle a with the polarization direc-
tion; the interaction hamiltonian is

H0 ¼ � 1
a3

Z
drðdEÞ cosðxt � krÞ ; ð47Þ

where E ¼ Eðsina cosu0; sina sinu0; cosaÞ and d ¼ dðsin dh cosu;

sin dh sinu; cos dh); we may limit ourselves to u ¼ u0, and get

H0 ¼ � 1
a3

Z
drðdEÞðdh sina� 1

2
dh2 cosaÞ cosðxt � krÞ ð48Þ

(up to irrelevant terms); we can see that the u-waves do not couple
to the external electric field (within the present approximation).
Moreover, since the wavelength of the radiation field is much
longer than the wavelength of the dipolar interaction (vh;u � c,
where c is the speed of light), we may drop out the spatial depen-
dence (spatial dispersion) both in Eq. (46) and in the interaction
hamiltonian H0; we are left with the equation of motion of a har-
monic oscillator under the action of an external force,

d2

dt2
dhþx2

0dh ¼ dE
I

sina cosxt � dE
I
dh cosa cosxt: ð49Þ
The first interaction term gives

d2

dt2
dhþx2

0dh1 þ 2c
d
dt

dh ¼ dE
I

sina cosxt; ð50Þ

where a damping term (c coefficient) has been introduced; this is
the equation of motion of a harmonic oscillator under the action
of a harmonic force; the (particular) solution is

dh1 ¼ a cosxt þ b sinxt; ð51Þ
where

a ¼ � dE
2Ix0

sina
x�x0

ðx�x0Þ2 þ c2
; b ¼ dE

2Ix0
sina

c
ðx�x0Þ2 þ c2

ð52Þ
for x near x0; we get a resonance for x ¼ x0; the absorbed mean
power is

P ¼ dE sinacosxt _dh1 ¼ 1
2
dE sina � bx0 ¼ p

4I
d2E2 sin2 adðx0 �xÞ:

ð53Þ
The second interaction term in Eq. (49) gives the Mathieu’s

equation

€dh2 þx2
0ð1þ h cosxtÞdh2 ¼ 0; ð54Þ

where h ¼ ðdE=Ix2
0Þ cosa (a damping term can be included). As it

was discussed before the thermal fluctuations wipe out the
parametric resonances associated with this equation. All the above
considerations are valid for a classical dynamics. The quantization
of the hamiltonians H and H0 given by Eqs. (45) and (48) (which is
performed according to the well-known standard rules), leads to
standard absorption and emission processes, and to quantum
transitions similar with Eqs. (28)–(30). It is worth noting that the
static electric field E0 in equations (28)–(30) is replaced here by
E0 ¼ d=2a3 (by comparing the frequencies x0 given in Eqs. (19)
and, respectively, (45)), as expected for a (high) electric field gener-
ated by a dipolar interaction.

The spontaneous polarization caused by the dipolar interaction
as described above may appear in polarization domains, randomly
distributed in polar matter (pyroelectrics, ferroelectrics), or in
granular matter, where charges may accumulate at the interfaces
[35–41]. This is known as the Maxwell–Wagner–Sillars effect (an
average over the angle a should then be taken in the absorbed
power). In the latter case the distance between the dipoles is much
larger than the atomic distances and, consequently, the character-
istic frequency x0 is much lower; for instance, for a distance
a ¼ 1lm (104 ÅÞ we get a frequency x0 ’ 10 MHz.

6. Highly-oscillating electric fields

High-power lasers may provide strong electric fields which
oscillate in time with a frequency xh much higher than the fre-
quencies of molecular rotations or vibrations. Usually, the fre-
quency xh is in the optical range, xh ¼ 2p� 1015 s�1, and the
strength of the electric field may attain values as high as
E0 ¼ 109 statvolt=cm for laser intensities 1020 W=cm2. Under the
action of such strong fields the molecules are usually ionized, but
the molecular ions may retain their electric dipoles which perform
a non-relativistic motion. (Indeed, the non-relativistic approxima-
tion is ensured by the inequality g ¼ qA0=2Mc2 � 1, where q is the
charge of the particle with masss M and A0 is the amplitude of the
vector potential; for a proton in a potential A0 ¼ 5� 103 statvolt,
corresponding to the field amplitude E0 ¼ 109 statvolt=cm, we get
g ¼ 10�3 � 1).
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Consider an electric field E0 cosxht oriented along the z-axis. An
electric dipole d acted by this field performs rapid oscillations of an
angle a about, in general, a certain angle h measured with respect
to the z-axis; the angle h may perform slow oscillations; we
assume a � h. The equation of motion can be written as

I€a ¼ �dE0 sinðhþ aÞ cosxht ’ �dE0 sin h cosxht; ð55Þ
the corresponding kinetic energy is Ekin ¼ I _a2=2 ¼
ðd2E2

0=2Ix2
hÞ sin2 h sin2 xht; its time average

Ekin ¼ d2E2
0

4Ix2
h

sin2 h ð56Þ

replaces the interaction energy �dE0 cos h of the static field in the
effective potential energy Ueff given by Eq. (17); the effective poten-
tial becomes

Ueff ¼ L2z
2I sin2 h

þ d2E2
0

4Ix2
h

sin2 h : ð57Þ

This function has a minimum value for eh0 ¼ arcsin h0=R
1=4 andeh0 0 ¼ p� eh0, where R ¼ dE0=2Ix2

h is a renormalization factor and

h0 ¼ ðL2z =IdE0Þ1=4 < R1=4, i.e. the h0 value corresponding to high fields,
as expected; it is worth noting that there are two values of the equi-

librium angle: eh0 and p� eh0. The molecules are practically aligned
along the field [42,43]. The dipole may perform small vibrations
about these equilibrium angles with the frequencyex0 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffi
3R=4

p
, where x0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
dE0=I

p
is the characteristic fre-

quency for high static fields given in Eq. (19) (for eh0 � 1). We can
see that for highly-oscillating electric fields we get the results for

static fields renormalized according to E0 ! eE0 ¼ E0R.

From h0=R
1=4 < 1 and a ¼ ðdE0=Ix2

hÞeh0 � eh0 we get the
inequalities

L2z
IdE0

<
dE0

2Ix2
h

� 1 ð58Þ

(which are compatible because Lz � IxhÞ; these inequalities implyffiffiffi
2

p
Lzxh

d
< E0 � 2Ix2

h

d
: ð59Þ

For L2z =I ¼ T and our numerical parameters I ¼ 10�38 g � cm2,

T ¼ 300 K ¼ 4� 10�14 erg; d ¼ 10�18 statcoulomb � cm and xh ¼
2p � 1015 s�1 we get approximately 108 statvolt=cm < E0 �
1010 statvolt=cm, which corresponds to a renormalization parame-
ter R ¼ 10�10E0=8p2 � 1. We conclude that in strong, highly-
oscillating electric fields, like those provided by high-power lasers,
the molecular rotation spectra are affected in the samemanner as in
static electric field, providing the time-dependent field strength is
renormalized by the factor R � 1 introduced here. It is worth noting
that the interaction �dE0 cos h cosxht linear in the field is replaced
by an effective interaction which is quadratic in the field, as shown
in Eq. (57); while this effective interaction affects the slow
rotations, it does not couple to the (slow) translation motion.

7. Discussion and conclusions

We have shown here that the approximate method of separat-
ing the azimuthal rotations from zenithal oscillations may be used
to get insight into the rotation spectrum of heavy molecules
(viewed as a spherical pendulum) in electric fields. Using this
method, a particular feature has been pointed out in these spectra,
related to parametric resonance. Arguments have been given that
in polar matter there could appear local, strong, static electric
fields, which can lead to quenched equilibrium positions for the
dipoles and a macroscopic electric polarization. The small rotations
and oscillations which these dipoles may perform about their equi-
librium positions give rise to special features in the spectrum, in
particular to parametric resonances. Similar parametric resonances
appear in the presence of weak static electric fields, although they
are small contributions, superposed over regular transitions. It was
shown that the dipole–dipole interaction can lead to an equilib-
rium state of quenched dipoles, which possesses a macroscopic
polarization; the motion of this macroscopic polarization proceeds
by particular modes which have been tentatively called ‘‘dipolons”
(polarization waves). The excitation of these modes may also lead
to parametric resonances. It was also shown that a strong, highly-
oscillating electric field, like the fields provided by the high-power
lasers, behaves in the same manner as static electric fields, renor-
malized by factors much smaller than unity (factor R above).

All the discussion made in this paper for electric dipole
moments can also be applied to magnetic moments, magnetic
fields, magnetization and magnetic matter (e.g., ferromagnetics).
The main difference is the magnitude; the nuclear magnetic
moments are five orders of magnitude smaller than the electric
dipole moments (l ’ 10�23 erg=Gs); if the magnetic moments are
in thermal equilibrium, their interaction energy l2=a3 ’ 10�6 K is
effective at much lower temperatures; the characteristic

frequency of ‘‘electric dipolons” x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

=Ia3
q

’ 1013 s�1

becomes x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2=Ia3

q
’ 108 s�1 for ‘‘magnetic dipolons”. For

electronic magnetic moments l ’ 10�20 erg=Gs the interaction
energy is ’ 1 K and the characteristic frequency is x0 ’ 1011 s�1.
If the magnetic moment is higher by a factor of, say, 5 and the
number of nearest neighbors is 4, then the effective magnetic dipo-
lar energy (for electronic moments) increases to ’ 100 K , which is
of the order of magnitude of usual ferromagnetic transition tem-
peratures; then, the ‘‘magnetic dipolons” become magnons (ferro-
magnetic resonances) [34]. The dipole interaction as source of
ferromagnetism is different from the Weiss mean field approach;
it resembles more the Bloch theory of magnons [44].
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