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The fundamental equations of thermoelectricity are reviewed in a more general and rigorous context
and the efficiency quotient of the thermoelements is derived, with emphasis on the relevance of the
figure of merit parameter. The Joule–Lenz, thermoelectric and thermoconducted heat are identified,
and the ideal situation of a perfectly homogeneous sample subjected to small temperature and
voltage gradients is discussed. Thomson heat and the related Peltier effect arising at local
inhomogeneities, such as junctions, are also analyzed. In this context, the efficiency quotient is
derived for an ideal thermoelectric sample, which reveals a new figure of merit parameter. It is
checked explicitly that the efficiency quotient is always lower than the Carnot efficiency quotient,
and it is shown that the new figure of merit never exceeds unity. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2974789�

I. INTRODUCTION

It is well known that thermoelements, which may be
used either as Seebeck electric generators or as Peltier elec-
tric coolers, are characterized by a figure of merit, according
to which the Seebeck thermopower and the electric conduc-
tivity must be as high as possible, while the thermoconduc-
tivity must be as low as possible, in order to get a high
efficiency quotient.1–3 We limit ourselves to the classical way
of operating the thermoelectric circuits, where the local ther-
modynamic equilibrium is ensured, while small and continu-
ous temperature and voltage gradients are established along
the sample. In addition, the sample is assumed to be homo-
geneous on the macroscopic scale, as for a stable thermody-
namical phase. Under these circumstances, the electric flow j
and heat flow q, i.e., the electric charge and, respectively,
heat flowing across the unit area of the cross section per unit
time, are given by the basic equations of the
thermoelectricity4

j = �E − �Q grad T �1�

and

q = �j + QTj − K grad T , �2�

where � is the electric conductivity, E is the electric field, Q
is the thermopower, T is the temperature, � is the electric
potential �E=−grad ��, and, finally, K denotes the thermo-
conductivity; the gradient may be specialized to the x direc-
tion, i.e., grad=� /�x. One can see from Eq. �1� that a tem-
perature gradient gives rise to an electric field E=
−Q grad T, controlled by the Seebeck thermopower coeffi-
cient Q; this is the Seebeck effect; while, from Eq. �2�, the
continuity of the flows across a junction leads to a released
heat −�Q ·Tj=�j=−��K grad T� per unit time and per unit
area of the junction, which is the Peltier effect, and �=
−T�Q denotes the Peltier coefficient. One can already notice

from Eqs. �1� and �2� that a high efficiency requires a high Q
and � and a low K.

II. JOULE–LENZ, THERMOELECTRIC AND
THERMOCONDUCTED HEAT

Heat per unit volume and unit time is given by

− div q = Ej − j grad�QT� + div�K grad T� �3�

from Eq. �2� �since div j=0, as for a steady flow which con-
serves the charge�, or, making use of Eq. �1�,

− div q = j2/� − Tj grad Q + div�K grad T� . �4�

We note that Eq. �4� holds irrespective of the presence or
absence of the external electric field E. In the right hand side
of Eq. �4� the first term is the dissipated Joule–Lenz heat, the
second term is heat associated with thermoelectric effects,
while the third contribution is the thermoconducted heat.
Rigorously speaking, for an inhomogeneous sample there
may be problems with establishing the thermodynamical
equilibrium, so it is appropriate to restrict ourselves to ho-
mogeneous samples, as it was said above. For homogeneous
samples at equilibrium �, Q, and K are constant, and the
conservation of steady charges div j=0 in neutral conduc-
tors, i.e., div E=−��=0, requires grad T=const from Eq.
�1�, so the only heat is the dissipated heat j2 /�. Under these
circumstances there is no thermoelectric heat −Tj grad Q and
no volume contribution to the thermoconducted heat,
div�K grad T�=0; both the thermoelectric heat and the ther-
moconducted heat are fully transported through the sample.
It is also worth noting that Eqs. �1� and �2� correspond to
small j, E, grad T, and q; j and E are small in comparison
with their counterpart on the atomic scale, since they are
produced by macroscopic sources. Equations �1� and �2�
should also be viewed as series expansions in grad T, which
must be small in comparison with T; if not, the second-order
contribution in grad T, which would lead to nonlinear ther-
moelectrics equations, may imply unphysical temperature
gradients, according to material constants, by the same rea-a�Electronic mail: apoma@theory.nipne.ro.
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son of charge conservation. It is also worth stressing the fact
that the density of heat per unit time given by Eq. �3� or �4�
is a second-order effect, so that T in the QTj term in Eq. �2�
must be viewed as the local temperature, and, consequently,
position dependent. This is related to Onsager’s symmetry of
kinetic coefficients, and ensures the increasing in the entropy
with time;5–7 indeed, the time variation of entropy is easily
obtained from Eq. �4� as

�S/�t = −� dr
div q

T
=� dr · �j2/�T + K�grad T�2/T2� � 0,

�5�

and it is worth noting that the fully transported thermocon-
ducted heat does not produce, in fact, entropy, since the vol-
ume term in Eq. �5� cancels out the surface contribution �the
latter not written in Eq. �5��. This assertion can also be veri-
fied directly by performing the integral �dr div�K grad T� /T
with grad T=const �and K=const�. From such a standpoint,
corresponding to a perfectly ideal situation, the only source
of entropy, and the only true dissipation, is through the
Joule–Lenz heat, as expected.

III. THOMSON HEAT

It is therefore appropriate to restrict ourselves to the lin-
ear equations of thermoelectricity �1� and �2� in the sense
discussed above, which provide a consistent description of
the thermoelectric phenomena in homogeneous samples;
they imply also a small heat flow, in comparison with sample
internal energy, as expected, and in agreement with the mac-
roscopic nature of heat flows. Under these circumstances
there is no internal �i.e., volume� thermoelectric or thermo-
conducted heat, as remarked before, and the only source of
increasing the entropy is the Joule–Lenz dissipation. Never-
theless, in order to preserve some generality, though at the
price of possible certain inconsistencies, it is customary to
include the thermoconduction contribution to the increase in
entropy in Eq. �5�, and, similarly, one may admit localized
inhomogeneities for material constants, as appropriate for
junctions, for instance. In particular, Q may vary locally, as
K may do as well �which does not mean that charge accu-
mulates on, or disappear at junctions, as the normal compo-
nents of the electric flow are continuous according to the
boundary conditions�. So, we are led to define the Thomson
coefficient �=T��Q /�T�, and get the Thomson thermoelec-
tric heat in Eq. �4�

− Tj grad Q = − Tj��Q/�T�grad T = − �j grad T , �6�

per unit time; � is, in fact, closely related to Peltier coeffi-
cient through ��=−T� �� /T� /�T. However, one must be
aware, for instance, that negative-valued nonvanishing sur-
face contributions may appear in the entropy variations
through a position dependent Q, which are unphysical; in
fact, the Thomson heat must be viewed as corresponding to
Peltier heat, expressed, however, in terms of volume contri-
butions and not as discontinuities at a junction which has a
slight spatial extension.

IV. EFFICIENCY QUOTIENT AND FIGURE OF MERIT

The critical analysis made above is meant to point out
the kinds of difficulties which may be encountered in prac-
tical operation of the thermoelements, as the practitioners are
well aware of.

According to the above discussion we limit ourselves to
the perfectly ideal situation, where the only volume heat is
the dissipated Joule–Lenz heat j2 /� per unit time and unit
volume. This heat may, in principle, be used, as heat pro-
duced by thermoelectric effects. Indeed, in addition, we as-
sume that there is no external electric field, such that j=
−�Q grad T. Actually, as it is well known, only half of this
amount of heat may, in fact, be used in an external electric
circuit, at most; however, in principle, the whole amount
j2 /� may be used in an ideal situation where the thermoele-
ment is at the same time both source and user of electricity.
The same amount of energy is consumed by the thermoele-
ment for establishing the electric flow; in addition, the ther-
moconducted heat injected at the hot end of the sample, and
integrally recuperated at the cold end, is also a consumed
energy; it is given from Eq. �4� by K grad T per unit area of
the cross section and per unit time. It follows that the trans-
formed energy can be written as j2 /� · lA=Q2���T�2 ·A / l per
unit time, where l is the length of the sample, A is the area of
its cross section and �T is the temperature drop along the
sample. Similarly, the consumed thermoconduction heat is
K�grad T� ·A=K�T ·A / l per unit time. In addition, according
to Eq. �2�, the Peltier heat −QTj=Q2�T�grad T� per unit area
of the cross section and per unit time is also consumed; it can
be written as Q2�T�grad T� ·A=Q2�T�T ·A / l. Consequently
one may write down successively the efficiency quotient

� =
j2/� · lA

j2/� · lA + Q2�T�grad T� · A + K�grad T� · A

=
Q2���T�2 · A/l

Q2���T�2 · A/l + Q2�T�T · A/l + K�T · A/l

=
�T

�T + T + K/Q2�
=

�c

�c + 1/ZT
�7�

of this perfect, ideal thermoelectric “machine,” where �c

=�T /T is the efficiency quotient of a perfect Carnot engine,
and

ZT = Q2�T/�K + Q2�T� �8�

is the figure of merit of the thermoelement; it can also be
written as

ZT =
Q2

L + Q2 , �9�

where L=K /�T is the Lorenz number.

V. DISCUSSION

Usually, Q2�T /K is called figure of merit,8 but the defi-
nition �8� employed here is more appropriate. From Eqs. �8�
and �9� we can see that ZT can never exceed unity, ZT�1.9
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Since � must be smaller than �c, i.e., ���c, it follows also
ZT�1 / �1−�c�=1 / �1−�T /T� for any �T, which shows
again that

ZT � 1. �10�

Accordingly, the maximal value of the efficiency coeffi-
cient is �=�c / �1+�c�, which can never be attained. It is
worth noting that, in contrast to the dissipated Joule–Lenz
heat, any other amount of heat, like the Thomson heat, or
heat arising from thermoconduction are not utilizable in a
thermoelectric thermal engine. It is worth noting that previ-
ous work10–12 focused on Joffe’s definition of the figure of
merit ZT=Q2�T /K.

In conclusion, a detailed analysis has been developed
herein with special emphasis on the range of values taken on
by the efficiency quotient and the figure of merit, and its
implications were discussed.
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