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The formation of polariton wave-packets created by high-intensity laser beams focused in plasmas
is analyzed, and the velocity, energy, size, structure, stability, and electron content of such
polaritonic pulses are characterized. It is shown that polaritonic pulses may transport trapped
electrons with appreciable energies, provided the medium behaves as a rarefied classical plasma.
The relativistic electron energy is related to the polariton group velocity, which is close to the
velocity of light in this case. The plasma pulse is polarized, and the electron number in the pulse is
estimated as being proportional to the square root of the laser intensity and the 3/2-power of the
pulse size. It is shown that Compton �Thomson� backscattering by such polaritonic pulses of
electrons may produce coherent X- and gamma rays, as a consequence of the quasirigidity of the
electrons inside the polaritonic pulses and their relatively large number. The classical results of the
Compton scattering are re-examined in this context, the energy of the scattered photons and their
cross-section are analyzed, especially for backscattering, the great enhancement of the scattered flux
of X- or gamma rays due to the coherence effect is highlighted and numerical estimates are given
for some typical situations. © 2011 American Institute of Physics. �doi:10.1063/1.3530599�

I. INTRODUCTION

It is well known that high-intensity laser pulses focused
in a rarefied plasma can accelerate electrons up to consider-
able relativistic energies in the range of megaelectron volts
or even gigaelectron volts.1–13 Various models, both analyti-
cal and numerical, in particular the particle-in-cell simula-
tions of such electron “bubbles,” point toward the basic role
played by plasmons and polaritons in laser-driven electron
acceleration,14–18 as it was suggested long ago.19 It is widely
agreed that the propagation of the laser radiation in plasma is
governed by polaritonic excitations, arising from electrons
interacting with the electromagnetic radiation. We give here
a description of the formation of polaritonic wave-packets
generated by high-intensity laser beams focused in a plasma,
and characterize the velocity, energy, size, structure, stability,
and electron content of such plasma pulses. It is shown that a
coherent Compton �Thomson� backscattering by such high-
energy pulses may result in brilliant fluxes of X- or gamma
rays.

II. POLARITONIC PULSES

We consider the well-known plasma model consisting of
electrons with density n, mass m, and charge −e moving in a
neutralizing, rigid �or quasirigid� background of positive
ions. Let u�r , t� be a displacement field in electron positions,
such as to create a small volume density imbalance �n=
−n div u. We have, therefore, a charge density �=en div u

and a current density j=−enu̇. The polarization electric �E�
and magnetic �H� fields obey the Maxwell equations

div E = 4�en div u, div H = 0,

curl E = −
1

c

�H

�t
, curl H =

1

c

�E

�t
−

4�en

c

�u

�t
, �1�

where we assume a nonmagnetic plasma �i.e., the magneti-
zation is zero, and the magnetic field is equal to the magnetic
induction�. It is easy to see that Eqs. �1� lead to

1

c2

�2E

�t2 − �E = − 4�en grad · div u +
4�en

c2

�2u

�t2 . �2�

We assume that the effect of the pulsed electromagnetic
fields on the electron motion is nonrelativistic, as a conse-
quence of the high polarization field which may compensate
to a large extent the original laser field. We assume therefore
the Newton’s law for the electron motion

mü = − eE − eE0 �3�

under the action of the electric field, where E0 is the external
electric field of the laser pulse. We note in Eq. �3� the ab-
sence of the Lorentz force and the approximation of the total
time derivative with the partial time derivative, as for non-
relativistic motion.

Making use of Fourier transforms of the type

u�r,t� =
1

�2��4� dkd�u�k,��ei�kr−i�t�, �4�

we get easily from Eqs. �2� and �3�
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�2��2 − �p
2 − c2k2�u + �p

2c2k�ku� =
e

m
��2 − c2k2�E0, �5�

where �p=�4�ne2 /m is the plasma frequency. Hence, we
get

�2��2 − �p
2 − c2k2�u = −

e�p
2c2

m
k

kE0

�2 − �p
2

+
e

m
��2 − c2k2�E0, �6�

where we can read the two well-known branches of elemen-
tary excitations: longitudinal plasmons, with frequency �p,
and transverse polaritons, propagating with frequency �1

=��p
2 +c2k2.19 The plasmons do not “propagate,” in the sense

that their group velocity is vanishing, so we leave them
aside. Or, more realistically, we assume that the external field
is transverse �kE0=0�, and get rid of the plasmon term in Eq.
�6�. We get therefore ku=0 �and kE=0�, i.e., a vanishing
volume charge density, as expected, and a transverse dis-
placement field given by

u =
e

m

�2 − c2k2

�2��2 − �1
2�

E0. �7�

Making use of Eq. �3�, we can see easily that the total field is
given by Etot= �m�2 /e�u, so we may define a “dielectric
function” � in this context, through E0=�Etot, given by

��k,�� =
�2 − �1

2

�2 − c2k2 . �8�

It is convenient to introduce the vector potential A0=
−�ic /��E0 in Eq. �7�, where we perform first the inverse
Fourier transform with respect to the frequency, and retain
only the �1-contribution. The full inverse Fourier transform
of Eq. �7� reads

u�r,t� = −
e�p

2

4mc

1

�2��3� dk
1

�1
2A0�k,�1�ei�kr−�1t�. �9�

We focus now, in Eq. �9�, on a certain wave vector k0 and
perform a series expansion of �1 in powers of q=k−k0,
where 0�q�qc, the cutoff wave vector qc being such that
qc	k0. We assume an isotropic cutoff wave vector. As it is
well known, we get an isotropic wave-packet extending ap-
proximately over the length d=2� /qc
�10, where �10 is the
wavelength of the wave with frequency �10=��p

2 +c2k0
2. This

pulse is propagating with the group velocity v=��1 /�k for
k=k0. We get easily

v =
c2k0

��p
2 + c2k0

2
�10�

and the displacement field u�r , t� from Eq. �9� which can be
represented as

u�r,t� � −
e�p

2

4mc�10
2 A0�k0,�10���r − vt� . �11�

It is worth emphasizing that the �-function of the pulse is in
fact a representation for a function of the type 	�sin qcx /x�

��sin qcy /y��sin qcz /z�, along the propagation direction,
where x=r−vt is the coordinate along the pulse motion and
y , z denote the transverse coordinates, perpendicular to the
direction of motion. We can see that this function is localized
over the volume 	d3, and has a peaked height 	qc

3	1 /d3.
Let us assume �p	�0=ck0. Then, Eq. �10� gives a

group velocity

v � c
1 −
�p

2

2�0
2� , �12�

which is close to the velocity of light c. An electron trapped
in such a pulse gets an energy

Eel =
mc2

�1 − v2/c2
�

�0

�p
mc2. �13�

For realistic values �0=1 eV ��0=2�c /�0�1 �m and 
is Planck’s constant� and an electron density n=1018 cm−3

we get �p=3�10−2 eV and Eel�17 MeV.
With this assumption the displacement in the pulse given

by Eq. �11� can be written as

u0 � −
e�p

2

4mc�0
2d3A0�k0,�0� . �14�

It is easy to see that a similar pulse is obtained for the vector
potential A0. We take it of the form

A0�r,t� = A0d3��r − vt� , �15�

where A0 is real. It consists of a superposition of frequencies
in the range ��=cqc=2�c /d, so we have approximately
A0�k0 ,�0��A0d4 /c and get finally

u0 � −
e�p

2d

4mc2�0
2A0. �16�

As we said above, the displacement u0 is transverse �k0u0

=0�, and there is no volume charge density in the pulse. The
charge is distributed transversally toward the pulse surface.
Let us assume that this distribution extends over a region of
thickness l; then, we may take approximately �n0=nu0 / l for
the electron density imbalance, where l is of the order of the
wavelength �0, for a perfect �-pulse. We get the total number
of electrons in the pulse

N � �nd3 e�p
2

4mc2�0
2A0, �17�

where we can see that N does not depend on the thickness l.
It is convenient to express the vector potential A0 by means
of the density of the field energy w0=k0

2A0
2 /4�. In addition,

we introduce the notations �p=�p, �0=�0, and �el=e2 /d,
the later being the Coulomb energy of an electron localized
in the pulse. We get

N = nd2�0
�p

2

4mc2�0
2
���elW0, �18�

where W0 is the total amount of field energy in the pulse
�W0= I0d3 /c, where I0 is the laser intensity�.

For typical values I0=1018 W /cm2, d=1 mm �W0

=1023 eV and �el=10−6 eV�, n=1018 cm−3 ��p=3
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�10−2 eV�, �0=1 eV ��0�1 �m�, and mc2=0.5 MeV we
get N�1011 electrons in the pulse, transported with the en-
ergy �17 MeV. Their total energy is Wel�1018 eV, the re-
maining energy �up to W0=1023 eV� being left in the polar-
ized laser pulse. Numerical data from recent experimental
measurements11–13 seem to be in fair agreement with Eqs.
�13� and �18� given here.

It is worth noting the �W0 �	�I0�-dependence of the
total number of electrons in the pulse. Making use of Eqs.
�13� and �18�, we can estimate the electron energy per pulse
Wel=EelN and the efficiency coefficient

� =
Wel

W0
= nd2�0

�p

4�0
���el

W0
, �19�

which goes like the inverse square root of the field energy
�laser intensity�. Equation �19� sets a limit on the present
approach, given by �=1. In this limit �which can be ap-
proached, for instance, by decreasing the pulse energy W0�,
the electrons in the pulse are as rarefied �less than one elec-
tron per wavelength �0, according to Eqs. �18� and �19�� as
the polarization inside the pulse becomes ineffective, and the
pulse cannot be treated anymore as a macroscopic piece of
matter. It is also worth noting the d3/2-dependence of the
number of electrons in the pulse, which may induce the
temptation of increasing the pulse size in order to increase
the efficiency. However, for high values of the size d, the
energy is distributed in fact over many such pulses, with
smaller heights; it is spread over large portions of the sample
in fact, and we get finally a net decrease in efficiency.

Using the same numerical values as above we can esti-
mate the displacement given by Eq. �16� as u0=N /�nd2

�10−2 �m, which is a very small displacement, as ex-
pected. The pulsed fields acquire a very small frequency,
arising from the factor ei��10t−k0r� which is omitted in Eqs.
�11� and �14�. Since �10=��p

2 +�0
2, it is easy to see that this

frequency is of the order of �=�p
2 /2�0, so the electron ve-

locity in the pulse is of the order of �u0=�p
2u0 /2�0. This is

a very small velocity in comparison with the velocity of light
��10−4c�, which justifies the nonrelativistic approximation
in treating the electron motion. The polarization charge os-
cillates slowly in the pulse, with a small phase velocity, v f

=� /k0=c�p
2 /�0

2�10−3c. It is the trapped motion carried
along by the pulse that made the electrons to acquire relativ-
istic velocities. This motion is decoupled from the displace-
ment u, it pertains to the pulse coordinate r. The motion of
the electrons as described here is an inertial transport. The
charge is polarized by the external field E0 and the electrons
are kept inside the pulse by the polarization field E.

The effect of the polarization can be seen in another way,
by estimating the motion of the electrons inside the pulse
under the action of the external field. In this case, we must
use the relativistic equation of motion. We have therefore
mü / �1−v2 /c2�1/2=−eE0, and an amplitude u0

0=eE0�1
−v2 /c2�1/2 /m�0

2 of the displacement produced by the bare,
external field E0. For the numerical values given above, the
external electric field is E0�1012 V /m �107 statvolt /cm�
�and the external magnetic field is H0�103 Ts �107 G s��.
We get u0

0�10−3 �m=0.1u0, where u0 is the displacement

computed above for the total field Etot=E0+E. Making use
of the above equation of motion, we can estimate the total
field as Etot= �� /�0�2u0E0 /u0

0�10−6E0, which shows that
the polarization field practically cancels out the external
field. The total field inside the pulse is almost vanishing, i.e.,
the polarization is highly effective in the pulse, which justi-
fies again the use of the nonrelativistic equation of motion
for the internal motion of the electrons inside the pulse. The
quantity ��0 /��2u0

0 /u0�106, which is very large, can be
viewed as the dielectric constant of the plasma in the pulse.
Indeed, turning back to the dielectric function given by Eq.
�8�, we can see that for k�k0 and ���0=ck0, this dielectric
function becomes infinitely large, which implies that the total
field is vanishing. The electrons move practically in-phase
with the polaritonic pulse.

The dielectric function discussed above is the “micro-
scopic” dielectric function, pertaining to microscopic fields
which affect the electron motion. We can define a macro-
scopic dielectric constant, by using Eq. �8�, and following
the steps leading to the pulse. We get easily ���p

2d /c�0,
which, for our numerical values given above, is of the order
of unity. This latter dielectric function is effective in the mo-
tion of an external �unpolarized� electron affected by the
pulse, which experiences a high field, of the order of the
external field E0.

Even in such an ideal situation as the one discussed here,
the pulse may still have a dispersion. As it is well known,
one source of dispersion originates in high-order contribu-
tions in the q-expansion of the frequency around the wave
vector k0. This dispersion flatens gradually the pulse. An-
other source of a sui-generis dispersion may arise from fluc-
tuations in the plasma density, which are of the order of n �or
simply from plasma inhomogeneities�. These fluctuations in-
duce a corresponding dispersion in the plasma frequency and
the group velocity of the pulse, so that we may speak in fact
of a set of pulses, propagating with various velocities. It is
easy to see that such an effect may give rise to a dispersion
in the electron energy of the order of Eel.

Finally, it is worth commenting on another point. The
positive ions are rigid �or quasirigid� in comparison with the
electrons which are mobile. While the latter are carried along
by the pulse, the former will be depolarized by a wakefield
and an electron backflow, which give rise to plasma oscilla-
tions outside the pulse. This is the well-known picture of
wakefield accelerated electrons, and the related bubble
models.1,14–18 Therefore, the pulse energy is also spend for
creating these depolarizing plasma oscillations in the sample,
as expected. An unpolarized electron in the process of being
accelerated by the pulse will experience an uncompensated
field of the order of E0 �or the compensating polarization
field E�. The energy gain Eel of an accelerated electron is
therefore obtained by the work of the force eE0 over a dis-
tance �. With our numerical values used here we get �
�10 �m, which may give an estimate for the surface thick-
ness l of the pulse �or the contrast thickness of the pulse�.

III. COMPTON „THOMSON… BACKSCATTERING

The propagating polaritonic pulse is polarized, in the
sense that the mobile electrons in the propagating pulse are
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displaced from their equilibrium positions with respect to the
quasirigid background of positive ions, such that the polar-
ization field compensates, practically, the laser field. The
electrons inside the pulse accumulate on the surface of the
pulse, along a direction which is transverse to the direction
of pulse propagation �laser radiation is transverse�, such as a
new equilibrium is reached, in the presence of the laser field.
The polarized, equilibrium electrons in the polaritonic pulse
are practically quasirigid �subjected to very slow density os-
cillations�. They are carried along by the pulse in an inertial
motion, while the quasirigid ions are depolarized by a wake-
field and an electron backflow, which give rise to plasma
oscillations outside the pulse. This is the well-known picture
of wakefield accelerated electrons, and the related bubble
models, as derived by various theoretical models and nu-
merical simulations.1,14–18

The quasirigid electrons in the polaritonic pulse moving
with relativistic velocities offer a unique opportunity of co-
herent Compton backscattering, which may produce coherent
high-energetic X- or even gamma rays, i.e., an X-ray or
gamma-ray laser.

The Compton scattering of gamma rays by a moving
electron is shown schematically in Fig. 1. With usual nota-
tions p= �E ,p� and k= �� ,k� are the electron and, respec-
tively, photon 4-momenta, and we set c==1. E=Eel de-
notes here the electron energy �not to be mistaken for the
electric field�. We assume a head-on �unpolarized� collision.
From the momentum-energy conservation p+k= p�+k�, writ-
ten as p�= p+k−k�, we get pk− pk�−kk�=0, or, making use
of p2= p�2=m2, k2=k�2=0

�� = �
E + �p�

E + �p�cos � + ��1 − cos ��
. �20�

Since �p�=vE=mv /�1−v2, this equation can also be written
as

�� = �
1 + v

1 + v cos � + ��1 − v2�1 − cos ��
, �21�

where �=� /m and v is the velocity of the electron �velocity
of the polaritonic pulse�. For all relevant situations �except
ultrarelativistic limit�, the inequality 2��1+v	�1−v is sat-
isfied �Thomson scattering�. The ratio �� /� given by Eq.
�21� versus angle � is shown in Fig. 2 in this case �4�2�1
+v�	1−v� for a few values of the parameter v. The maxi-
mum value of the frequency �� of the scattered photon is
obtained for the scattering angle ��� �backscatering�. This
increase is sometimes assigned to a Doppler effect, which
would introduce a relativistic factor 4 / �1−v2���1+v� / �1

−v��2 / �1−v� for v�1. For the typical parameter values
used in this paper, 1−v��p

2 /2�0
2�4.5�10−4, which is

much greater than 2��1−v2�10−7 �we take the frequency of
the incident photon �=1 eV, ��2�10−6�. Therefore, we
may neglect the �-term in Eq. �21�, and get a maximum
scattered frequency

�� � �
1 + v
1 − v

� 10 keV, �22�

for the backscattering angle �=�. It is easy to see that an
increase by an order of magnitude in the energy of the ac-
celerated electrons �E=Eel�m�0 /�p� means a decrease by
two orders of magnitude in 1−v �1−v��p

2 /2�0
2�, such that,

by Eq. �22�, we may get ���1 MeV for the frequency of
the backscattered gamma rays. Such high backscattering fre-
quencies are concentrated around �=� within a range ��
��2�1−v� /3v.

The well-known Compton cross-section can be written
as20

d� = 8�re
2 m2d�− t�
�s − m2�2
 m2

s − m2 +
m2

u − m2�2

+
m2

s − m2

+
m2

u − m2 −
1

4

 s − m2

u − m2 +
u − m2

s − m2 �� , �23�

where re=e2 /m is the classical electron radius and

s = �p + k�2 = m2 + 2pk, u = �p − k��2 = m2 − 2pk�,

t = �k� − k�2 = − 2kk� �24�

are the invariant kinematical variables. By straightforward
calculations this expression can be put in the form

d� = �re
2 �1 − v2�sin �d�

�1 + v cos � + ��1 − v2�1 − cos ���2

� 
 v + cos �

1 + v cos �
�2

+ ��1 − v2 1 − cos �

1 + v cos �

+
1 + v cos �

1 + v cos � + ��1 − v2�1 − cos ��
� , �25�

p k

p′

k′
θ

FIG. 1. Head-on electron-photon collision.

FIG. 2. The ratio of the energy of the scattered photon to the energy of the
incident photon vs scattering angle for a few values of the polariton �elec-
tron� velocity v �Eq. �21� for 1−v
4�2�1+v��.
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where the transport velociy v is shown explicitly. Similarly,
for the parameter values used here we may neglect the
�-terms in Eq. �25� �Thomson scattering�, and get

d� � �re
2 1 − v2

�1 + v cos ��2
 v + cos �

1 + v cos �
�2

+ 1�sin �d� .

�26�

This cross-section is shown in Fig. 3 for a few values of the
parameter v. The total backscattering cross-section is given
by

�b � ��re
2 1 − v2

�1 + v cos ��2
 v + cos �

1 + v cos �
�2

+ 1��
�=�

���− cos �� = �re
21 + v
1 − v

����2 � 4�re
2/3 �27�

and the rate of the backscattered photons is dNph /dt
=c�bnph, where nph is the photon density in the incident flux.
The energy loss of the scattered �recoil� electron for back-
scatering is �E=��−��2�v / �1−v� ��E /E
�2�v��1+v� / �1−v�	1�, which is approximately equal
with the energy of the scattered photon �����1+v� / �1
−v� given above for v�1 �since �	���. The momentum
transferred to the electron in the scattering process is very
small, in comparison with the initial momentum of the elec-
tron. For a polaritonic pulse, this momentum is transferred to
the whole ensemble of electrons, as a consequence of the
rigidity of the electrons in the polaritonic pulse. For the sake
of the comparison, we note that the total cross-section is
8�re

2 /3�2�b, as it is well known.
The cross-section computed above refers to one electron

�and one photon�. The field bispinors in the interaction ma-
trix element �the scattering amplitude� between the initial
state and the final state are normalized to unity. If we have N
electrons, then each of them contributes individually to the
cross-section, which is multiplied by N �i.e., �b→N�b�. This
is an incoherent scattering. For the electrons in the polari-
tonic pulse, the situation is different. These electrons are not
independent anymore �because of their rigidity inside the
pulse�, and they suffer the scattering collectively. This

amounts to normalize the bispinors to N, such that each bis-
pinor carries now a factor �N. Consequently, the scattering
amplitude acquires an additional factor N and the cross-
section acquires an additional factor N2. In comparison with
the incoherent scattering we get an additional factor N in the
coherent scattering, which increases considerably the cross-
section for large values of N.21–25

From the above estimations, we can see that the energy
of the backscattered photons is much higher than the energy
of the incident photons. Therefore, in the following estima-
tions we can neglect the energy of the incident photons. The
energy of the scattered photons is produced at the expense of
the energy of the electrons. By successive Compton scatter-
ing we may expect a certain limitation on the duration of the
scattering process for electron pulses �beside the limitations
caused by the pulse duration, both for the electrons and the
incident photons�. Such a limitation is more stringent for the
coherent scattering �due to the occurrence of the factor N2�.

Making use of the rate d2Nph /d�dt=c�d� /d��nph of the
scattered photons we can write down the rate of the energy
produced by Compton �Thomson� scattering

dEcoh = 
� d���dNph/d��dt = N2cnph
� ��d��dt .

�28�

The integral in Eq. �28� can be computed by using �� given
by Eq. �21� �with �=0� and the differential cross-section
given by Eq. �26�. The result is

dEcoh =
8�

3
N2�cre

2nph
1

1 − v
dt . �29�

This energy must be compared with the energy loss of the
electrons in the polaritonic pulse

− NdE = − Nmd
1

�1 − v2
. �30�

Integrating the equation dEcoh=−NdE with the new variable
x=m /E, we get easily

8�

3
N�cnph�t = m�

x0

1

dx
1

1 + �1 − x2
, �31�

where x0=m /E0	1 corresponds to the initial energy �E0� of
the polaritonic pulse. The integral in Eq. �31� can easily be
estimated ��� /2−1�, so we get the duration �t of the scat-
tering

�t � ��/2 − 1�
3mc

8�N�re
2nph

, �32�

where we have re-established in full the universal constants.
We assume an incident flow of photons with intensity I

=1014 W /cm2 focused on a spatial region of size d=1 mm
�picosecond pulses�; the energy is W= Id3 /c�3 J and, for
photon energy �=1 eV, we get a photon density nph�5
�1022 cm−3. For N=1011 given before for the polaritonic
pulse �and re=2.8�10−13 cm� we get �t�10−15 s �femto-
seconds�. This time is an estimate for the duration of the
collision, and for the duration of emission of the backscat-

FIG. 3. Compton cross-section vs scattering angle for a few values of the
polariton �electron� velocity v �Eq. �26�, 1−v
4�2�1+v��.
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tered photons. As we can see, it does not depend, practically,
on the electron energy in the polaritonic pulse �E0�, for high,
relativistic energies. It is expected that the polaritonic pulse
is “stopped,” and, in fact, destroyed, after the lapse of this
time.

The total energy of the backscattered photons can be
estimated similarly, by using Eq. �28� and dt /dE from
dEcoh=−NdE, where dEcoh is given by Eq. �29�. Let us as-
sume that we are interested in the photon backscattering
within an angle ��=��2�1−v� /3v, with �	1. Then, we
get easily

Eb
coh =

1

4
N�2�

m

E0 �1 + v�2

v
dE , �33�

and, following the same technique as above, we get Eb
coh

��2NE0, where we can recognize the total energy of the
polaritonic pulse Wel=NE0. This result is valid for �	1. For
high, relativistic velocities ��1, and practically the whole
polaritonic energy is recovered in the backscattering photons.

IV. CONCLUDING REMARKS

In conclusion, we may say that polaritonic pulses of
electrons transported by high-intensity laser radiation fo-
cused in a rarefied plasma may serve as targets for coherent
Compton backscattering in the X-rays or gamma-rays energy
range, therefore as a means for obtaining an X-ray or
gamma-ray laser. The coherent scattering, which enhances
considerably the photon output and ensures its coherence, is
due to the quasirigidity of the electrons in the propagating
polaritonic pulse, which ensures �within certain limits� the
stability of this interacting formation of matter and electro-
magnetic radiation. The energy and cross-section of the
Compton �Thomson� backscattering was re-examined in this
paper in the context of the coherent scattering by polaritonic
pulses, and the �pulse� duration of the backscattering emis-
sion was also estimated. Similar ideas have been advanced
recently, especially for laser-driven accelerated electron
mirrors.26–32
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