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A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers
which “fly” periodically through the external circuit from the hot end of the sample to the cold end,
with a determined duration of the “on” and “off” times of the electric contacts, while maintaining
continuously the thermal contacts. It is shown that such a “resonant” ideal thermogenerator may
work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the
thermoelectric devices operated in the usual stationary transport regime but the electric flow and
power are increased, as a consequence of the concentration of the charge carriers on pulses of small
spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric
generator or as an electrothermal cooler. © 2010 American Institute of Physics.
�doi:10.1063/1.3456037�

I. INTRODUCTION

It is well known that the classical way of operating the
thermoelectric circuits consists of establishing small and
continuous temperature and voltage gradients along a ther-
moelectric sample, while maintaining the local thermody-
namic equilibrium. The sample is assumed to be homoge-
neous on the macroscopic scale, as for a stable thermo-
dynamical phase. The physics and technology of the classical
thermoelectricity is described in great detail in reference
treatises, textbooks, or handbooks, as those given in Refs.
1–3. The electric flow j and heat flow q, i.e., the electric
charge and, respectively, heat flowing across the unit area of
the cross-section per unit time, are given by the basic equa-
tions of the thermoelectricity4

j = �E − �QgradT , �1�

and

q = �j + QTj − KgradT , �2�

where � is the electric conductivity, E is the external electric
field, Q is the thermopower, T is the temperature, � is the
electric potential �E=−grad��, and K denotes the thermo-
conductivity. The gradient may be specialized to the
x-direction, i.e., grad=� /�x. One can see from Eq. �1� that a
temperature gradient gives rise to an electric field E=
−QgradT, controlled by the Seebeck thermopower coeffi-
cient Q; this is the Seebeck effect. By Eq. �2�, the continuity
of the flows across a junction leads to a released heat
−�Q ·Tj=�j=−��KgradT� per unit time and per unit area
of the junction, which is the Peltier effect, and �=−T�Q
denotes the Peltier coefficient. One can already notice from
Eqs. �1� and �2� that high values of Q and � and low values
of K are desirable. Unfortunately, high values of electronic
properties like � and Q are usually related to a high K, which
lowers the effectiveness of the thermoelectric devices.

There have been long and sustained efforts along the
years to improve upon the performances of the thermoelec-

tric devices. In this respect, a few recent works are given in
Refs. 5–8. Particular emphasis is being given to designing of
new materials and devices, with high efficiency, engineering
functionally graded materials, segmented or cascades de-
vices, or assessing the compatibility of thermoelectric
materials.9–13 Thermoelectric thin films, nanocomposites
and nanostructured materials can enhance the efficiency,14–18

presumably by interface reflection of heat �which may not
impede upon the electrical conductivity�,19 or by highly-
peaked electron density of states, as in low-dimensional
materials.20–22 The inherent limitations of the classical mode
of operating the thermoelectric devices originate in the small,
continuous temperature gradient superimposed along the
whole length of the sample. This circumstance brings about
both small currents and heat flows, on one hand, and may
increase appreciably the risk of heat loss through a spatially-
extended dissipation, on the other. In particular, the undes-
ired effects of a high thermoconductivity are enhanced by a
continuous temperature gradient extending over the whole
length of the sample. We put forward here a different mecha-
nism of thermoelectric transport, based on pulses of heat and
current, which may circumvent, to some extent, the afore-
mentioned limitations. It leads to high electric pulses “fly-
ing” periodically through the external circuit. The objectives
of the pulse thermoelectric device are to increase the deliv-
ered electric flow and power, by concentrating the charge
carriers on pulses of small spatial extent. A former, prelimi-
nary, description of this pulsed thermoelectric transport was
given in Refs. 23–25. We refer here to some other works,
given in Refs. 26–30, which may bear some relevance on the
ideas described here.

II. BASIC THEORETICAL INGREDIENTS

Usually, the transport in condensed matter proceeds by
quasiparticles.31 As it is well-known, quasiparticles are el-
ementary excitations possessing velocity �momentum� and a
finite lifetime �. They obey either a Bose–Einstein distribu-
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tion, like phonons �with a vanishing chemical potential�, or a
Fermi distribution, as for electronic quasiparticles of the
Fermi liquid in metals, or Boltzmann’s distribution, as for the
quasiclassical charge carriers �electrons and holes� in typical
semiconductors. We adopt here a simple, general picture of
this type of entities. For instance, we may assume that the
electronic quasiparticles of a Fermi liquid possess the Fermi
velocity vF, while the quasiclassical charge carriers in semi-
conductors have a mean thermal velocity v̄=�T /m, where T
is the temperature and m denotes a mean effective mass. It is
easy to see �by averaging over the solid angle� that the trans-
port along one direction, say the positive x-direction, pro-
ceeds with a mean transport velocity v= v̄ /2, or, respectively,
v= v̄F /2, where v̄F denotes the average of the Fermi velocity
�which may be anisotropic�. The mean free path of the qua-
siparticles can be represented as �=v�.

Under these conditions the local change �n /�t
+v0�n /�x in the quasiparticle density n�x , t� at position x
and time t, where v0 is a transport velocity, is given by the
local imbalance �1 /2���n�x+� , t�+n�x−� , t�−2n�x , t�� in
the quasiparticle density,

�n/�t + v0 � n/�x = �1/2���n�x + �,t� + n�x − �,t�

− 2n�x,t�� =
1

2
v��2n/�x2. �3�

This is the well-known diffusion equation. It describes a
macroscopic, nonequilibrium transport �in contrast with the
local-equilibrium transport�, for densities varying slowly
over large distances and long times in comparison with the
quasiparticle mean free path and, respectively, lifetime. It
may also be generalized to an anisotropic spatial transport,
and applies also to fluctuations �with the fluctuating time and
length instead of quasiparticle lifetime and, respectively,
mean free path�, describing the approach to equilibrium. In
this form, Eq. �3� has been used by Einstein in his classical
analysis of the Brownian motion.

For an initial �-condition n�x , t=0�=V�n��x�, where V is
the original volume of the �-peak and �n is the quasiparticle
density in the �-peak, Eq. �3� has the well-known Gaussian
solution

n�x,t� =
V�n

�2	v�t
e−�x − v0t�2/2v�t. �4�

The Gaussian pulse given by Eq. �4� may move as a whole
with the transport velocity v0, and has a spatial extension

l� = �v�t �5�

�in one direction�. This is taken as the pulse length. As one
can see, it goes like the square root of the product of velocity
by mean free path by the duration, as it well known. n�x , t�
flattens gradually on increasing the time, and vanishes in the
limit of an infinite duration; in the opposite limit of a very
short time the Gaussian pulse reduces to the original �-pulse,
as expected. Indeed, for very short times and distances the
diffusion term in Eq. �3� may be neglected, and we are left
with the continuity equation whose solution is V�n��x−v0t�
for the original V�n��x� peak. The total number of quasipar-
ticles in the Gaussian peak is V�n, and it may be represented

as 2l��n �for a unit area of the cross-section�, where �n is the
average quasiparticle density; on the other hand, the maxi-
mum value of the density in the Gaussian peak is
V�n /�2	l�=�2 /	�n from Eq. �4�, whence one can see that
the maximum value of the quasiparticle density is very close
�up to a factor of �2 /	=0.8� to the average quasiparticle
density. Therefore, one may take, with a good approxima-
tion, V�n for the total number of quasiparticles in a Gaussian
peak, where V=2l� �for unit area of the cross-section� and �n
is the maximum value of the quasiparticle density; this is
identical with the representation of the �-pulse, and it holds
also for half a Gaussian pulse, of course, where V= l�.

III. THERMAL AND CHARGE PULSES

Let a homogeneous conducting sample of length l and
uniform cross-section, at temperature T, be uniformly heated
at one end, such as to rise locally its temperature by the small
amount �T, as shown in Fig. 1. We may neglect the small
changes in volume, or pressure, and write n= f�
 ,T� for the
concentration n of the quasiparticles at equilibrium, where f
is the integral over statistical distributions and 
 denotes the
chemical potential. As it is well known, for electronic quasi-
particles in metals f�
 ,T�= �2 / �2	��3��dp · �exp���−
� /T�
+1	−1, i.e., the Fermi–Dirac distribution, while f�
 ,T�
= �2 / �2	��3�exp�
 /T��dp · exp�−� /T� is the Boltzmann dis-
tribution of the charge carriers in semiconductors; p denotes
the quasiparticle momentum and �=p2 /2m is the quasiparti-
cle energy �for a spherical Fermi surface�. At constant chemi-
cal potential the quasiparticle density changes by �n
= ��f /�T��T, as a consequence of the change in temperature.
This change evolves in time and space according to Eq. �3�,
so the quasiparticle density is given by the Gaussian in Eq.
�4� for �n= ��f /�T��T. The number of quasiparticles in the
Gaussian pulse increases in proportion of the extension l� of
the pulse �l�
 l�, and, similarly, the temperature drop broad-
ens in the same proportion, by continuously absorbing heat
from the external source. It follows that both the quasiparti-
cle density �n�x , t� and the temperature drop �T�x , t� can be
represented by a Gaussian of the form given by Eq. �2�. The
motion of the pulse as a whole is blocked in one direction by
the sample end-wall, where the quasiparticles are continu-
ously reflected, while its motion in the opposite direction
along the sample is limited by diffusion; along this direction
the pulse only broadens gradually by diffusion, which is a
much slower process than the transport motion. Conse-
quently, the pulse is in fact half of a Gaussian pulse with its
peak just on the hot end of the sample. Such a Gaussian
pulse is shown in Fig. 2.

Everywhere in the present paper we use, for the sake of
the numerical illustration, a set of typical values for the basic
physical quantities. For instance, we take the density n
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FIG. 1. Heating a thermoelectric sample.
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=1022 cm−3 for electrons in metals and the chemical poten-
tial 
=1 eV. We take v=105 m /s for the Fermi velocity
and �=103 Å for the electronic mean free path �at room
temperature�. We denote by t�=�of f the time t in Eq. �5�
needed to build up the pulse. From Eq. �5� we get l�
=105�of f

1/2 
m �microns� for the spatial extension of the pulse,
which is much smaller than the sample length l for suffi-
ciently small �of f. Its limiting value is of the order of the
mean free path �. For instance, for �of f =10−6 s we get l�
=100 
m. For semiconductors we take n=1017 cm−3 as a
typical value, corresponding to a chemical potential given by

 /T
−5.7 �this is easily derived from the Boltzmann distri-
bution given above�. In semiconductors we use v=104 m /s
for velocity and �=102 Å �at room temperature� for the
mean free path. The spatial extent of the pulse is given by
Eq. �5� as l�=104�of f

1/2 
m. For �of f =10−6 s the spatial extent
is l�=10 
m. All these are typical figures for metals and,
respectively, semiconductors, which we use here in order to
get illustrative numerical estimations.

IV. HEAT AND ELECTRIC FLOWS

A thermal pulse needs a time t� to build up, according to
l�=�v�t�, hence t�= l�2 /v�. During this time a heat flow
�heat per unit area of the cross-section and per unit time� q
=cl��T / t�=cv���T / l�� is absorbed, where c is the heat ca-
pacity per unit volume; this heat flow may be represented as
q=−cv�gradT=−KgradT, where K=cv� is a well-known
representation for the thermoconductivity. Similarly, one can
say that the heat flux �heat per unit area of the cross-section�
absorbed by a Gaussian pulse of extension l� is �E
= �Kl� /v���T. In the limit of the �-pulses, whose spatial ex-
tension is of the order of the mean free path �, it reduces to
�E= �K /v��T, and one can see, as expected, that heat ab-
sorbed by a pulse is proportional to its extension. In the
opposite limit of a pulse as broad as the length of the sample,
i.e., l�= l, the stationary transport regime starts to set up,
where a small, uniform, continuous gradient of quasiparticle
density and temperature extends over the whole length of the
sample. This is valid both for charge carriers and for
phonons, and the phonon thermoconductivity �as well as the
thermoconductivity of other quasiparticles� must be added to
the thermoconductivity K of the charge carriers given above.
The diffusion of a Gaussian pulse is shown in Fig. 3, the

stationary transport is shown schematically in Fig. 4, and the
pulse used in the pulsed mode of operation is shown in Fig.
5. For our models of metals and semiconductors used here
�defined by the statistical distributions given above� it is easy
to derive the heat capacity c and the thermoconductivity K.32

Although these expressions are not relevant for the subse-
quent discussion we note them here for the sake of a more
detailed information. The heat capacity per unit volume is
c=	2nT /2
 for metals �Fermi liquids� and c= �3 /2��5 /2
−
 /T�n for semiconductors. The thermoconductvity can be
represented as K=	2nv�T /2
 for metals and K
= �5n�T /2mv��7 /2−
 /T� for semiconductors. These ex-
pressions agree with K=cv� up to some minor numerical
factors.

Heat �E absorbed by the pulse is its internal thermal
energy, due to the thermal excitations of the quasiparticles.
For instance, it is due to the particle–hole excitations of the
electronic quasiparticles in a Fermi liquid. Apart from this
energy, the electronic quasiparticles in a pulse possess also
single-particle energy, arising from the change in the chemi-
cal potential. Indeed, in order to preserve the charge neutral-
ity of the sample, a change ��f /�
��
 occurs in the quasi-
particle density at the cold end of the sample, such as
��f /�T��T+ ��f /�
��
=0; it follows that a voltage drop U
appears at the hot end of the sample, with respect to the rest
of the sample, such as −eU=−�
, or

U = −
1

e
��� f/�T�/�� f/�
���T = Q�T , �6�

where −e is the electron charge and Q=−�1 /e�
����f /�T� / ��f /�
�� is the well-known Seebeck ther-
mopower coefficient. One can see easily that Q acquires
negative values for electrons. The voltage U has the same
spatial dependence as the temperature drop and the quasipar-
ticle density, i.e., the Gaussian given by Eq. �4�. Again, mak-
ing use of the statistical distribution functions, it is easy to
compute the thermopower. For metals Q=−�	2 /6e��T /
�,
while for semiconductors Q=−�1 /e��3 /2−
 /T�. One can
see easily that the thermopower coefficient Q is much higher
for semiconductors than for metals, as it is well known �typi-
cal values for semiconductors are of the order of
200 
V /K�.
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FIG. 2. Diffusion limits the free transport.
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FIG. 3. Diffusion of a Gaussian pulse.
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FIG. 5. A thermoelectric Gaussian half-pulse.
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The voltage U corresponds to an electric field −gradU
=−QgradT, and therefore an electric flow �charge per unit
area of the cross-section and unit time� occurs inside the
pulse, given by j=−�QgradT, where � denotes the electric
conductivity; this is a well-known basic equation of the ther-
moelectricity �in the absence of external electric fields�. It is
worth noting the opposite flow of the electrons with respect
to the temperature gradient as well as the high current den-
sity for pulses due to gradT=�T / l� �not �T / l; l�� l�.

It is also worth noting that j is the electric flow inside the
pulse, as given by the microscopic transport of the charge
carriers. It can also be written as

j = − ev��n�x� − �n�x + �x�� = ev��� f/�T���T/�x� , �7�

hence the electric conductivity

� = − ev��� f/�T�/Q = e2v��� f/�
� . �8�

This is a well-known representation for the electric conduc-
tivity, where �f /�
�n /mv2. Making use of the statistical
distributions given afore, we get �=3e2nv� /2
 for metals
and �=e2nv� /mv2 for semiconductors. Using the thermo-
conductivities computed above, we can obtain the Lorenz
number defined as L=K /�T. It is given by L=	2 /3e2 for
metals and L= �5 /2e2��7 /2−
 /T� for semiconductors, as it
is well known.

The electric power per unit volume is given by
−gradU · j=−QgradT · j= j2 /�, which is the Joule–Lenz dis-
sipated heat. Indeed, a voltage drop U=Q�T implies an elec-
tric potential �=QT, and therefore a heat flow q=QTj; this
is the Peltier heat electrically transported �or the electrother-
mal Peltier heat�, which is included in the basic Eq. �2� of the
thermoelectricity �q=QTj−KgradT�. From q=QTj one gets
easily the dissipated heat per unit volume and unit time
−�q /�x=−Qj��T /�x�= j2 /�, i.e., the Joule–Lenz dissipated
heat. The Peltier heat q=QTj is worth noted: if we are going
to get high currents in the pulsed transport we get a high
Peltier cooling by reversing the mode of operation.

The electric power of a pulse of extension l� is therefore
j2 /� · l�=Uj=−�Q2�T��T /�x� �per unit area of the cross-
section�. The efficiency quotient of such a thermoelectric
pulse is obtained by dividing the electric power j2 /� · l�=
−�Q2�T��T /�x� to the sum of this electric power, the Peltier
heat QTj and the thermoconducted heat −K��T /�x�, using j
= =−�QgradT and dividing both the numerator and the de-
nominator by �Q2T��T /�x�. The result was obtained in Ref.
33. We get straightforwardly

� =
j2/�l�

j2/�l� + QTj − K��T/�x�
=

�c

�c + 1 + K/Q2�T
, �9�

where �c=�T /T is the Carnot efficiency quotient and L
=K /�T is the Lorenz number.

The efficiency quotient can also be written as �
=�c / ��c+1 /ZT�, where ZT=Q2 / �L+Q2� is a “figure of
merit.” This generalized figure of merit has been recently
discussed in a broader context of thermoelectric transport.33

One can see that the figure of merit introduced here can
never exceed unity, and it is related to the usual figure of
merit ZT�=Q2 /L by ZT=ZT� / �1+ZT��. Since L=	2 /3e2

and Q=−�	2 /6e��T /
� for the electronic quasiparticles in

metals, we have L�Q2, and ZT reduces to ZT�; as it is well
known the efficiency quotient is very low in this case. On the
contrary, for electrons in typical semiconductors one obtains
L= �5 /2e2��7 /2−
 /T� and Q=−�1 /e��3 /2−
 /T�, as noted
above, so that L and Q2 are comparable; for large values of
the ratio −
 /T the figure of merit ZT approaches unity, and
the efficiency quotient is increased. On the other hand, how-
ever, the Joule–Lenz heat is drastically diminished, as a con-
sequence of the low electric conductivity of the dilute gas of
charge carriers in typical semiconductors, as it is also well
known.

It is worth noting that the efficiency quotient derived
above for pulses is the same as for an ideal stationary ther-
moelectric transport.33

V. THERMOELECTRICITY OF PULSES

The efficiency quotient, as well as the electric flow, the
electric power, and the basic equations of the thermoelectric-
ity are derived above for the internal, microscopic transport
inside pulses. As expected, they agree �are practically iden-
tical� with the corresponding quantities of the classical, sta-
tionary transport, where a small, uniform, continuous gradi-
ent of temperature and quasiparticle density extends over the
whole length of the sample. One can also say that this mi-
croscopic transport holds for pulses at rest. It is easy to see,
however, that these equations hold also for the macroscopic
pulselike transport as well, whereby a pulse is viewed as a
whole. Indeed, the electric flow of such a pulse is given by

j = − e�nl�/t� = − ev��n/l� = − ev��� f/�T��T/l�, �10�

and one can see that it is identical with the electric flow of
the microscopic transport as given by Eq. �7�. Such an elec-
tric pulse dissipates gradually the Joule–Lenz heat
−e�nl�Q�T �per unit area of the cross-section�; it is easy to
see, by making use of Eqs. �6� and �8�, that the Joule–Lenz
heat can also be written as

− e�nl�Q�T = �j2/���l�3/v�� , �11�

where the electric flow is given by Eq. �10�; hence, making
use of Eq. �5�, the electric power of the pulse is

P = j2/�l�, �12�

�per unit area of the cross-section�, as for the microscopic
transport used in Eq. �9�. Similarly, the flow of the Peltier
heat is QTj and the flow of the thermoconducted heat is
K�T / l�=−K��T /�x�, so the efficiency quotient of the pulse-
like transport is the same as that given by Eq. �9� for the
microscopic transport, as expected. All these flows, as well
as the electric power, last for a time t�, i.e., the time during
which the pulse is built up at the hot end of the sample. In
addition, the pulse contains also its internal heat �E=cl��T.
It is worth emphasizing that the electric flow of the pulselike
transport, as given either by Eq. �7� or Eq. �10�, can also be
written as

j = js�l/l�� , �13�

where js corresponds to the electric flow in the stationary
transport, i.e., to the pulse extending over the whole length
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of the sample �l�= l�. One can see that the electric flow is
increased in the pulselike transport by the ratio l / l� of the
sample length to the pulse extension, as expected. This in-
crease originates in the concentration of the charge carriers
on small spatial extensions of narrow pulses. Similarly, the
dissipated Joule–Lenz heat per unit area of the cross-section
and per time, i.e., the flow of electric power as given by Eq.
�12�, can be written as

P = Ps�l/l�� , �14�

i.e., the electric power produced by the pulse transport is
higher, by the same factor l / l�, than the corresponding elec-
tric power delivered in the stationary transport. It is easy to
see that the stationary power Ps= js

2 /�l �per unit area of the
cross-section� can also be written as Ps=�U2 / l, which is
Ps=U2 /r, where r is the internal electric resistance, as ex-
pected.

VI. FLYING PULSES

A thermoelectric sample with a charge pulse built up at
the hot end evokes an electric “condenser,” and, like any
other condenser, such a “thermoelectric condenser” can be
“discharged” by switching on the electric contacts to the ex-
ternal circuit. Under these circumstances the �ideal� sample
end-wall does not block anymore the motion of the charge
carriers, and the pulse “flies” through the external circuit as a
whole, with the transport velocity v0=v, according to Eqs.
�3� and �4�. This is a macroscopic, nonstationary, fast,
pulsed-like transport, taking place in the transient regime
prior to establishing the extension of the pulse along the
whole length of the sample. In order to allow a smooth “fly,”
the cross-section of the external circuit must be equal to, or
greater than, the cross-section of the sample �and, of course,
the contacts are assumed to be perfect�. The flying of the
pulse through the external circuit of length le takes an on-
time �on= le /v. On the other side, the time t� needed to build
up a pulse at the hot end of the sample is an off-time, �of f

= t�. In addition, it is worth noting that such a flying pulse
does not obey Ohm’s law, as the transport is discontinuous.
The electric charge conserves, so the external �local� electric
flow is

je = − e�nl�/�l�/v� = − ev�n = j�t�/l��v = j��of f/�on��le/l�� ,

�15�

where Eq. �10� has been used. The energy conserves, i.e., the
electric energy Eel=−e�nl�Q�T �per unit area of the cross-
section� as given by Eq. �11� is the energy delivered into the
external circuit. The �discontinuous� momentous power de-

livered into the external circuit is Eel / �l� /v�= ��of f /�on�
��lle / l�2�Ps, where Eq. �14� has been used. It is less rel-
evant; less relevant also is the external power averaged over
the on-time, Eel /�on= ��of f /�on��l / l��Ps. While flying through
the external circuit the pulse dissipates therefore gradually
the Joule–Lenz heat Eel, and gives away the Peltier heat �the
Peltier heat is transported from the hot junction to the cold
junction�, until it reaches the cold end of the sample and
compensates the positive ionic charges there. After complet-
ing its “flight” through the external circuit the pulse is left
with its internal heat �E=cl��T, and it must be “deflated” of
this internal energy in order to have a cyclic process. The
time needed to extract this amount of heat is t�=�of f, i.e.,
precisely the time during which an identical pulse is built up
at the hot end of the sample, such that, after this duration, the
thermoelectric sample is ready for another operation. It fol-
lows that the thermal contacts should be maintained continu-
ously during the operation of such a pulsed-like transport,
while the electric contacts must be switched off once the
pulse arrived at the cold end of the sample; otherwise, the
pulse would move continuously through the entire circuit
and the stationary regime would set up. Therefore, the elec-
tric contacts must be switched on and off periodically, with a
certain frequency f =1 / ��of f +�on�, where �on= le /v, and a
certain duration of the on- and off-times. The building of the
pulse at the hot end is shown in Fig. 6, the flying pulse is
shown in Fig. 7 and the deflating of the pulse at the cold end
is shown in Fig. 8.

As it was said above, the on-time is the flight time �on

= le /v of the pulse through the external circuit, where le is the
length of the external circuit. The off-time, or the waiting
time, is the time t�= l�2 /v� needed for building up a pulse of
length l� at the hot end of the sample �and for “deflating” a
similar pulse of its internal heat at the cold end of the
sample�. The operating frequency is therefore f =1 / ��on

+�of f�=v / �le+ l�2 /��, and it ranges between f0=v / �le+��

v / le, corresponding to �-pulses, and f1=v / �le+ l2 /��, for
pulses extending over the whole length l of the sample,
where the stationary transport regime begins to set up. For
reasonable values of le, the ratios l2 /�le and l�2 /�le acquire
large values, so that one may write f =v� / l�2= f1�l / l��2, i.e.,
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the operating frequency is quadratic in the ratio l / l� of the
sample length l to the pulse extension l�. This corresponds to
very short on-times �on in comparison with the off-times
�of f = t�, and to pulses of large extension l�. For �on� t�, i.e.,
le� l�2 /� the extension of the pulses starts to become micro-
scopic. It is worth noting that during the on-time the sample
is not at local equilibrium, and additional elastic waves may
be excited inside the sample, which takes over the heat ex-
cess, allowing thus the flowing of heat. In addition, the pho-
non thermoconduction may be present in the sample, as well
as heat thermoconducted by other elementary excitations,
which may tend to establish in fact a small, uniform, con-
tinuous gradient of temperature along the sample. However,
this local-equilibrium regime bears no relevance upon the
pulses of the charge carriers as described herein, because the
latter are not at local equilibrium, and are practically decou-
pled from the rest of the sample.

VII. POWER DELIVERED INTO THE EXTERNAL
CIRCUIT

The Joule–Lenz heat Eel as given by Eq. �11� is the total
energy �per unit area of the cross-section� dissipated by a
pulse during its flight. Consequently, the average power pro-
duced in such a pulsed transport operated cyclically is given
by

P̄ = �j2/���l�3/v��
1

�on + �of f
= Ps�l/l��

1

1 + �le/l�2 , �16�

where Eqs. �13� and �14� have been used. One can see that
for macroscopic pulses, corresponding to short on-times, i.e.,
for �le / l�2�1, the average power is practically identical

with the pulse power given by Eq. �14�, P̄= P= Ps�l / l��, i.e.,
it is increased by the factor l / l�. In this case, the operating
frequency f = f1�l / l��2 given above is proportional to the
square of the electric power, i.e., f � P2. In the opposite limit
however, corresponding to microscopic pulses of extension
�, the increase factor is controlled by the ratio l / le of the
sample length to the length of the external circuit �which
may be higher than unity very well�. In both cases the aver-
age power is increased in comparison with the equilibrium-
operated thermoelements. The maximum value of the aver-
age power is obtained for l�=��le, i.e., just for the border
between microscopic and macroscopic pulses, as defined be-
fore. It is given by

P̄max =
1

2

l
��le

Ps; �17�

it corresponds to an optimal �of f = le /v=�on �ratio �on /�of f

=1� and an optimal frequency f =v /2le. It is perhaps more
convenient to refer the power to the maximal power Pdc

=U2 /4r= Ps /4, corresponding to a load electric resistance
equal to the internal resistance in a stationary operating re-

gime �drift current�. One obtains therefore P̄max

=2�l /��le�Pdc. The optimal power in the pulsed-operating
regime as given by Eq. �17� is much higher than the station-
ary power.

The external power given by Eq. �16� can also be written
as

P̄ = Ps�l/l��
�of f

�on + �of f
=

l
�v�

�f�1 − �onf�Ps, �18�

where �on= le /v and �1+ l2 /�le�−1
�onf 
 �1+� / le�−1. It has
a maximum value at the optimal frequency f =1 /2�on given
before, and a characteristic frequency dependence. Making
use of �on= le /v, Eq. �18� gives also a characteristic depen-
dence of the external power on the load resistance �le.

The pulsed-operating mode of the thermoelectric trans-
port is shown in Figs. 9–11. Finally, we give here some nu-
merical estimates. For typical values n=1022 cm−3, 

=1 eV, and v=105 m /s in metals, and for room temperature
T=300 K and �T=100 K one obtains a �-pulse electric
flow j
107 A /cm2, according to Eq. �10�. Indeed, it is easy
to see, making use of the Fermi–Dirac distribution, that the
variation in the charge density is given by �n= �	2 /4�
��nT�T /
2�.32 Making use of a typical mean free path value
�=103 Å one obtains a stationary flow js
103 A /cm2 for
a sample length l=1 mm. The voltage is U
4�10−4 V
�thermopower coefficient Q=−�	2 /6e��T /
�
4�10−6

V /K�. The electric power of the pulse is therefore P

4 kW /cm2, in comparison with the stationary power Ps


0.4 W /cm2, which implies a factor 104. For an optimal
pulse length l�= l /10 the current is j=104 A /cm2, the power

is P
4 W /cm2 and the maximal power is P̄max

�2 W /cm2 for an operating frequency f 
500 kHz, with a
very short on-time ��on
10−6 s and le=10 cm�. This im-
plies an increase factor 5 in comparison with the stationary
regime �Ps
0.4 W /cm2�.

For electrons in semiconductors we may take n
=1017 cm−3 and v=104 m /s as an illustrative example; one
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obtains 
 /T=−5.7 �
 /T=ln�n�2	�2 /mT�3/2 /2� from the
Boltzmann distribution,32� and an electric flow j
4
�104 A /cm2 for a �-pulse ��n=n�3 /2−
 /T��T /T, simi-
larly, from the Boltzmann distribution32�, for the same tem-
perature values as those used above; the voltage is U
6
�10−2V�Q
6�10−4 V /K�, and the electric power P

2.4 kW /cm2. For a mean free path �=100 Å one obtains
js
0.4 A /cm2 for a sample length l=1 mm and a station-
ary power Ps
2.4�10−2 W /cm2. The increase factor is
105. For a pulse of optimal extension l�= l /30, the operating
frequency is approximately f 
50 kHz, the current is j
=12 A /cm2, the electric power P
0.72 W /cm2, and the

maximal power is P̄max�0.36 W /cm2; the on-time is �on


10−5 s �for le=10 cm�. Comparing P̄max�0.36 W /cm2

with Ps
2.4�10−2 W /cm2 we can see an increase factor
15.

VIII. CONCLUSIONS

In conclusion, a mechanism of thermoelectric transport
has been described here, which proceeds by pulses of charge
carriers. It is a macroscopic, cyclic, nonstationary, fast, tran-
sient regime transport, which may diminish the effects of a
spatially-extended thermal diffusion. This pulsed-like trans-
port regime is operated by periodically switching on and off
the electric contacts, while maintaining continuously the
thermal contacts. The operating frequency is determined, as
well as the on- and off-times, as functions of the nature of
the sample, the extension of the pulses and the length of the
external circuit. The electric flow and power are higher for
pulsed-like transport than for stationary, classical transport,
as a consequence of concentrating the charge carriers on
pulses of small spatial extent. Such a pulsed-like transport
may be operated cyclically, with an ideal efficiency quotient
equal with the ideal efficiency quotient of the stationary
transport. It may open the possibility of a practical realiza-
tion of a high-power thermoelectric converter. High values of
thermopower Q and conductivity � are desirable but low
values of thermoconductivity K are not critical.

Of course, the pulsed transport described here is an ideal
process, intended to illustrate the physical principles of an-
other type of thermoelectric transport. As regards practical
purposes, there are several technical issues which must be
addressed, in order to get the increasing performance of this
type of thermoelectric transport. Among these, we may say
that the contacts, both electric and thermal, must be as good
as possible, in order to minimize the loss. In this respect,
although the ideal efficiency coefficient of the pulsed trans-
port is equal to the ideal efficiency coefficient of the station-
ary, continuous regime, the technical efficiency may be in-
creased for the former because the pulsed transport reduces
the risk of heat loss due to spatially-extended dissipation
along the whole length of the sample. Another important
issue related to the pulsed transport is the extraction of the
electric energy delivered into the external circuit. At high
frequencies, the transport proceeds mainly by impedance,
and most of the energy may reside in the electromagnetic
field of the reactances, so the usual Joule–Lenz effect is di-
minished, in fact. Finally, one may also note that the material

parameters which decrease usually the efficiency of a classi-
cal thermoelement are not critical anymore for a pulsed
transport, so way may therefore be open for employing new
classes of thermoelectric materials in pulsed transport.
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