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Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general,
unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials.
Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists
of representing the charge disturbances by a displacement field in the positions of the moving particles (elec-
trons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electro-
magnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are com-
puted, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence
angle and polarization. Bulk and surface plasmon–polariton modes are identified. As is well known, the field
inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection co-
efficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total

reflection). © 2009 Optical Society of America
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. INTRODUCTION
lasmons, polaritons, and, in general, electromagnetic
elds interacting with matter in structures with special,
estricted geometries have always enjoyed particular in-
erest. There is a vast literature on this subject regarding
tructures such as a half-space (semi-infinite) plasma, a
lasma slab of finite thickness, a two-plasma interface
two plasmas bounding each other), a two-dimensional
heet with an aperture, a slab with a cylindrical hole,
tructures with surface gratings or regular hole patterns,
ayered films, cylindrical rods, and spherical particles,
tc. These studies were aimed mainly at identifying new
lasmon modes such as surface plasmons [1–8], and ex-
eriments accounting for electron energy loss and explor-
ng the interaction of the electron plasma with electro-

agnetic radiation (polariton excitations) [9–21]. More
ecently, a possible enhancement of the electromagnetic
adiation scattered on electron plasmas with special ge-
metries enjoyed a particular interest [22–24]. In all
hese studies the plasmon and polariton modes are of fun-
amental importance [25–29]. The methods used in deriv-
ng such results are of great diversity, resorting often to
articular assumptions, such that the basic underlying
echanism of plasmons or polaritons is often obscured.
he need is therefore felt for having a general, unifying
rocedure for deriving plasmon and polariton modes in
tructures with special geometries, as based on the equa-
ion of motion of the charge density and Maxwell’s equa-
ions. Such a procedure is presented in this paper for an
deal semi-infinite plasma.

We represent the charge disturbances as �n=−n div u,
here n is the (constant, uniform) charge concentration
nd u is a displacement field of the mobile charges (elec-
1084-7529/09/071747-7/$15.00 © 2
rons). This representation is valid for Ku�K��1, where
is the wave vector and u�K� is the Fourier component of

he displacement field. We assume a rigid neutralizing
ackground of positive charge, as in the well-known jel-
ium model. In the static limit, i.e., for Coulomb interac-
ion, the Lagrangian of the electrons can be written as

L =� dr�1

2
mnu̇2 −

1

2 � dr�U��r − r����n�r��n�r���
+ e� dr��r��n�r�, �1�

here m is the electron mass, U�r�=e2 /r is the Coulomb
nergy, −e is the electron charge, and ��r� is an external
calar potential. Equation (1) leads to the equation of mo-
ion,

mü = n grad � dr�U��r − r���div u�r�� + e grad �, �2�

hich is the starting equation of our approach. We leave
side the dissipation effects [which can easily be included
n Eq. (2)].

By using the Fourier transform for an infinite plasma it
s easy to see that the eigenmode of the homogeneous Eq.
2) is the well-known bulk plasmon mode given by �p

2

4�ne2 /m. On the other side, the relation �n=−n div u is
quivalent to Maxwell’s equation div Ei=−4�e�n, where
i=4�neu is the internal electric field (equal to −4�P,
here P is the polarization). Making use of the electric
isplacement D=−grad �=��D+Ei�, we get the well-
nown dielectric function �=1−�p

2 /�2 in the long-
avelength limit from the solution of the inhomogeneous
009 Optical Society of America
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q. (2). Similarly, since the current density is j=−enu̇, we
et the well-known electrical conductivity �= i�p

2 /4��.
We apply this approach to a semi-infinite plasma. First,

e derive the surface and bulk plasmon modes and obtain
he dielectric response. Further on, we consider the inter-
ction of the semi-infinite plasma with the electromag-
etic field, as described by the usual term �1/c��drjA
�dr�� in the Lagrangian, where A is the vector poten-

ial, �=en div u is the charge density and � is the scalar
otential. We limit ourselves to the interaction with the
lectric field, and compute the reflected and refracted
elds, as well as the reflection coefficient. Generalized
resnel relations are obtained for any incidence angle and
olarization. The well-known continuity of the tangential
omponents of the electric field and the normal compo-
ent of the electric displacement at the surface follow
rom our calculation, as well as the continuity of the nor-
al component of the Poynting vector. We find it more

onvenient to use the radiation formulas for the retarded
otentials, instead of using directly the Maxwell equa-
ions, and the resulting integral equations are solved.
ulk and surface plasmon–polariton modes are identified.
he field inside the plasma is either damped (evanescent)
r propagating (transparency regime), and the reflection
oefficient exhibits an abrupt enhancement on passing
rom the propagating to the damping regime (total reflec-
ion). The present approach can be extended to various
ther plasma structures with special geometries.

. PLASMA EIGENMODES
e consider an ideal semi-infinite plasma extending over

he half-space z	0 (and bounded by the vacuum for z
0). The displacement field u is then represented as

v ,u3���z�, where v is the displacement component in the
x ,y�-plane, u3 is the displacement component along the
-direction and ��z�=1 for z	0 and ��z�=0 for z
0 is the
tep function. In equation of motion (2) div u is then re-
laced by

div u = �div v +
�u3

�z 	��z� + u3�0���z�, �3�

here u3�0�=u3�r ,z=0�, r being the in-plane �x ,y� posi-
ion vector. Equation (2) becomes

mü = ne2 grad � dr�dz�
1


�r − r��2 + �z − z��2

��div v�r� . z�� +
�u3�r�,z��

�z�
�

+ ne2 grad � dr�
1


�r − r��2 + z2
u3�r�,0� + e grad �

�4�

or z	0. One can see the (de)polarizing field occurring at
he free surface z=0 [the second integral in Eq. (4)].

We use Fourier transforms of the type
u�r,z;t� = �
k
� d�u�k,z;��eikre−i�t �5�

for in-plane unit area), as well as the Fourier represen-
ation

1


r2 + z2
= �

k

2�

k
e−k�z�eikr �6�

or the Coulomb potential. Then, it is easy to see that Eq.
4) leads to the integral equation

�2v =
1

2
k�p

2�
0




dz�ve−k�z−z��

+
1

2k
�p

2�
0




dz�
�v

�z�

�

�z�
e−k�z−z�� −

iek

m
�, �7�

nd iku3=�v /�z, where we have dropped out for simplicity
he arguments k, z, and �. The v-component of the dis-
lacement field is directed along the wave vector k (in-
lane longitudinal waves). This integral equation can eas-
ly be solved. Integrating by parts in its r.h.s we get

�2v = �p
2v −

1

2
�p

2v0e−kz −
iek

m
�, �8�

ence

v =
iek�p

2

m

�0

��2 − �p
2��2�2 − �p

2�
e−kz −

iek

m

�

�2 − �p
2 ,

u3 = −
ek�p

2

m

�0

��2 − �p
2��2�2 − �p

2�
e−kz −

e

m

��

�2 − �p
2 , �9�

here v0=v�z=0�, �0=��z=0� and ��=�� /�z. One can
ee the surface contributions (terms proportional to
0e−kz) and bulk contributions (� ,�� terms).
The solutions given by Eqs. (9) exhibit two resonances,

he bulk plasmon �b=�p and the surface plasmon �s

�p /
2, as is well known. Indeed, the homogeneous Eq.
8) ��=0� has two solutions: the surface plasmon v
v0e−kz for �2=�p

2 /2 and the bulk plasmon v0=0 for �2

�p
2. Making use of this observation we can represent the

eneral solution as an eigenmode series

v�k,z� = 
2kv0�k�e−kz + �
�


 2k2

�2 + k2v�k,��sin �z,

�10�

or z	0, where v�k ,−��=−v�k ,��, and iku3�k ,z�
�v�k ,z� /�z. Then, it is easy to see that the Hamiltonian
=T+U corresponding to the Lagrangian L=T−U given

y Eq. (1) becomes

T = nm�
k

v̇0
*�k�v̇0�k� + nm�

k�

v̇*�k,��v̇�k,��,
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U = 2�n2e2�
k

v0
*�k�v0�k� + 4�n2e2�

k�

v*�k,��v�k,��,

�11�

here T is the kinetic energy and U is the potential en-
rgy. We can see that this Hamiltonian corresponds to
armonic oscillators with frequencies �s=�p /
2 and �b
�p.
Making use of Ei=4�neu and Eqs. (9) we can write the

nternal field (polarization) as

E��k,z;�� =
ik�p

4��k,0;��

��2 − �p
2��2�2 − �p

2�
e−kz −

ik�p
2��k,z;��

�2 − �p
2 ,

E��k,z;�� = −
k�p

4��k,0;��

��2 − �p
2��2�2 − �p

2�
e−kz −

�p
2���k,z;��

�2 − �p
2 ,

�12�

here E� is directed along the in-plane wave vector k and
� is parallel to the z-axis (perpendicular to the surface
=0). Equations (12) give the dielectric response of the
emi-infinite plasma to an external potential.

We take an external potential of the form ��k ,z�
�0�k�ei�z (leaving aside the frequency argument �) and
et the electric displacement D��k ,z�=−ik�0�k�ei�z and
��k ,z�=−i��0�k�ei�z from D=−grad �. We can see that

he surface terms do not contribute to this response, as
xpected, since these terms are localized. Making use of
i= �1/�−1�D, we get the well-known dielectric function

�� ,��=1−�p
2 /�2 in the long-wavelength limit.

. INTERACTION WITH THE
LECTROMAGNETIC FIELD: POLARITONS
e assume a plane wave incident on the plasma surface

nder angle �. Its frequency is given by �=cK, where c is
he velocity of light and the wave vector K= �k ,�� has the
n-plane component k and the perpendicular-to-plane
omponent �, such as k=K sin � and �=K cos �. In addi-
ion, k=k�cos � ,sin ��. The electric field is taken as E0
E0�cos � ,0 ,−sin ��eikrei�ze−i�t, and we impose the condi-

ion cos � sin � cos �−sin � cos �=0 (transversality condi-
ion KE0=0). The angle � defines the direction of the po-
arization of the incident field.

In the presence of an electromagnetic wave we use the
quation of motion

�2u =
e

m
E +

e

m
E0ei�z, �13�

or z	0, where E is the polarizing field; in Eq. (13) we
ave preserved explicitly only the z-dependence (i.e., we

eave aside the factors eikre−i�t). We find it convenient to
mploy the vector potential

A�r,z;t� =
1

c � dr�� dz�
j�r�,z�;t − R/c�

R
�14�

nd the scalar potential
��r,z;t� =� dr�� dz�
��r�,z�;t − R/c�

R
, �15�

here

j = − neu̇��z�eikre−i�t

s the current density,

� = ne div u = ne�ikv + �u3/�z���z�eikre−i�t

+ neu3�0���z�eikre−i�t

s the charge density, and R=
�r−r��2+ �z−z��2. The inte-
rals in Eqs. (14) and (15) imply the known integral [30]

�
�z�




dxJ0�k
x2 − z2�ei�x/c =
i

�
ei��z�, �16�

here J0 is the zeroth-order Bessel function of the first
ind (and �2 /c2=�2+k2). It is convenient to use the pro-

ections of the in-plane displacement field v on the vectors
and k�=k�−sin � , cos ��, k�k=0. We denote these com-

onents by v1=kv /k and v2=k�v /k and use also the com-
onents E1=kE /k, E2=k�E /k and similar ones for the
xternal field E0. We give here the components of the ex-
ernal field,

E01 = E0 cos � cos �, E02 = − E0 cos � sin �,

E03 = − E0 sin �. �17�

ne can check immediately the transversality condition
01k+E03�=0. Making use of E=−1/c�A /�t−grad �, Eqs.

14) and (15) give the electric field

E1 = − 2�ine��
0

dz�v1�z��ei��z−z��

− 2�ne
k

�
�

0

dz�u3�z��
�

�z�
ei��z−z��,

E2 = − 2�ine
�2

c2�
�

0

dz�v2�z��ei��z−z��,

E3 = 2�ne
k

�
�

0

dz�v1�z��
�

�z
ei��z−z��

− 2�ine
k2

�
�

0

dz�u3�z��ei��z−z�� + 4�neu3, �18�

or z	0. It is worth observing in deriving these equations
he nonintervertibility of the derivatives and the integrals
ccording to the identity

�

�z�0

dz�f�z��
�

�z�
ei��z−z�� = �2�

0

dz�f�z��ei��z−z�� − 2i�f�z�

�19�

or any function f�z�, z	0; this is due to the discontinuity
n the derivative of the function ei��z−z�� for z=z�. Now, we
mploy equation of motion (13) in Eqs. (18) and get the
oupled integral equations
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�2v1 = −
i�p

2�

2 �
0

dz�v1�z��ei��z−z��

−
�p

2k

2�
�

0

dz�u3�z��
�

�z�
ei��z−z�� +

e

m
E01e

i�z,

�2v2 = −
i�p

2�2

2c2�
�

0

dz�v2�z��ei��z−z�� +
e

m
E02e

i�z,

�2u3 =
�p

2k

2�
�

0

dz�v1�z��
�

�z
ei��z−z��

−
i�p

2k2

2�
�

0

dz�u3�z��ei��z−z�� + �p
2u3 +

e

m
E03e

i�z,

�20�

or the coordinates v1,2 and u3 in the region z	0.
The second of Eqs. (20) can be solved straightforwardly

y noting that

�2

�z2�
0

dz�v2�z��ei��z−z�� = − �2�
0

dz�v2�z��ei��z−z�� + 2i�v2.

�21�

e get

�2v2

�z2 + ��2 − �p
2/c2�v2 = 0. �22�

he solution of this equation is

v2 =
2eE02

m�p
2 ·

��� − ���

K2 ei��z, �23�

here

�� = 
�2 − �p
2/c2 =

1

c

�2 cos2 � − �p

2. �24�

he wave vector �� can also be written in a more familiar
orm ��= �� /c�
�−sin2 �, where �=1−�p

2 /�2 is the dielec-
ric function. The corresponding component of the (total)
lectric field (the refracted field), can be obtained from Eq.
13); it is given by �m�2 /e�v2. For �2
�p

2 /c2�� cos �
�p�
his field does not propagate. For �2	�p

2 /c2 (� greater
han the transparency edge �p / cos �) it represents a re-
racted wave (transparency regime) with the refraction
ngle �� given by Snell’s law:

sin ��

sin �
=

1


1 − �p
2/�2

= 1/
�. �25�

he polariton frequency is given by

�2 = c2K2 = �p
2 + c2K�2, �26�

s is well known, where K�2=��2+k2.
The first and the third of Eqs. (20) can be solved by us-

ng an equation similar to Eq. (21) and by noting that
hey imply
��2u3 = ik
�v1

�z
. �27�

e get

v1 =
2eE01

m�p
2 ·

���� − ���

��� + k2 ei��z �28�

nd

u3 =
2eE03

m�p
2 ·

��� − ���

��� + k2 ei��z. �29�

imilarly, the corresponding components of the refracted
eld are given by Eq. (13). It is easy to check the trans-
ersality condition v1k+u3��=0 [and the vanishing of the
ulk charge ne�ikv+�u3 /�z�=0].
We can see that the polarization field E in Eq. (13) can-

els out the original incident field E0 and gives the total,
efracted field m�2u /e inside the plasma. This is an illus-
ration of the so-called Ewald–Oseen extinction theorem
14,31].

It is worth investigating the eigenvalues of the homo-
eneous system of integral Eqs. (20), for parameter �

iven by �=
�2 /c2−k2. Such eigenvalues are given by the
oots of the vanishing denominator in Eqs. (28) and (29),
.e., by the relation ���+k2=0. This equation has real
oots for � only for the damped regime, i.e., for �= i��� and
�= i����. Providing these conditions are satisfied, there is
nly one acceptable branch of excitations, that given by

�2 =
2�p

2c2k2

�p
2 + 2c2k2 + 
�p

4 + 4c4k4
. �30�

e can see that �
ck in the long-wavelength limit, and
t approaches the surface-plasmon frequency �
�p /
2 in
he nonretarded limit �ck→
�. These excitations are sur-
ace plasmon–polariton modes. We note that they imply

2=0 and v1 ,u3
e−����z. In addition, a careful analysis of
he homogeneous system of Eqs. (20) reveals another
ranch of excitations, given by �=�p, which, occurring in
his context, may be termed the bulk plasmon–polariton
odes. They are characterized by v2=0 and v1�k ,0�=0.
or all these modes we have u3= �ic2k / ��2−c2k2

�p
2���v1 /�z.

In order to get the reflected wave (the region z
0) we
urn to Eqs. (18) and use therein the solutions given
bove for v1,2 and u3. It is worth noting here that the dis-
ontinuity term �p

2u3 no longer appears in these equa-
ions (because z�	0 and z
0 and we cannot have z=z�).
he integrations in Eqs. (18) are straightforward and we
et the fields

E1 = E01

� − ��

� + ��
·

��� − k2

��� + k2e−i�z, �31�

E2 = E02

� − ��

� + ��
e−i�z, �32�

nd
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E3 = − E03

� − ��

� + ��
·

��� − k2

��� + k2e−i�z. �33�

e can see that this field represents the reflected wave
�→−��, and we can check its transversality to the propa-
ation wave vector. Making use of the reflected field Erefl
iven by Eqs. (31)–(33) and the refracted field Erefr ob-
ained from Eqs. (13) and (18) �Erefr=E+E0=m�2u /e�,
ne can check the continuity of the tangential components
f the electric field and the normal component of the elec-
ric displacement at the surface �z=0� in the form
1,2refl+E01,2=E1,2refr, E3refl+E03=�E3refr, where �=1
�p

2 /�2. The angle of total polarization (Brewster’s angle)
s given by ���−k2=0, or tan2 �=1−�p

2 /�2=� (for �
� /4). The above equations provide generalized Fresnel

elations between the amplitudes of the reflected, re-
racted, and incident waves at the surface for any inci-
ence angle and polarization. They can also be written by
sing �2=�p

2 / �1−��, where � is the dielectric function.
Making use of the reflected field Erefl and the refracted

eld Erefr we can also check the continuity of the energy
ow across the surface. Indeed, the Poynting vector S
�c /4��E�H= �c2 /4���KE2, where H= �c /��K�E is the
agnetic field, has a normal component that is continu-

us at the surface, i.e., S3refl+S03=S3refr, while its in-
lane components are discontinuous. These latter compo-
ents are related by S1,2refl+ ��� /��S1,2refr=S1,20. One can
ee that, along the surface, the energy flows at different
ates in the vacuum and in the plasma.

Usually, Fresnel relations are given for two particular
ases: �=0 ��=� /2�, E01=E03=0, which corresponds to
he so-called s-wave (electric field perpendicular to the
lane of incidence); and �=� ��=0�, E02=0, corresponding
o the so-called p-wave (electric field in the plane of inci-
ence) [31–33]. For the former case we get

E2refl =
cos � − 
� − sin2 �

cos � + 
� − sin2 �
E02e

−i�z,

E2refr =
2 cos �

cos � + 
� − sin2 �
E02e

i��z. �34�

hich is one well-known pair of Fresnel relations. An-
ther set of Fresnel relations is obtained from our equa-
ions given above for E1,3refl and E1,3refr components
p-wave); usually, this pair of Fresnel relations is given in
erms of the magnetic field. Making use of our equations
erived above we get the well-known p-wave Fresnel re-
ations

H2refl =
� cos � − 
� − sin2 �

� cos � + 
� − sin2 �
H02e

−i�z,

H2refr =
2� cos �

� cos � + 
� − sin2 �
H02e

i��z. �35�

he generalization given here in Eqs. (23), (28), (29), and
31)–(33) consists in extending these relations to any in-
idence angle and polarization, together with including
he dielectric function �=1−�p
2 /�2, which follows from the

resent treatment.
The reflection coefficient R= �Erefl�2 / �E0�2 can be ob-

ained straightforwardly from the reflected fields given by
qs. (31)–(33). It can be written as

R = R1 cos2 � sin2 � + R2�cos2 � cos2 � + sin2 ��, �36�

here

R1 = �� cos � − 
�2 cos2 � − �p
2

� cos � + 
�2 cos2 � − �p
2�2

= � cos � − 
� − sin2 �

cos � + 
� − sin2 �
�2

�37�

nd

R2 = � ��2 − �p
2�cos � − �
�2 cos2 � − �p

2

��2 − �p
2�cos � + �
�2 cos2 � − �p

2�2

= � � cos � − 
� − sin2 �

� cos � + 
� − sin2 �
�2

. �38�

he first term in the r.h.s. of Eq. (36) corresponds to the
-wave (�=0, �=� /2), while the second term corresponds
o the p-wave (�=�, �=0). It is easy to see that there ex-
sts a cusp (shoulder) in the behavior of the function R���
ccurring at the transparency edge �=�p / cos �, where
he reflection coefficient exhibits a sudden enhancement
n passing from the propagating regime to the damped
ne, as expected (total reflection). The condition for total
eflection can also be written as sin �=
�, where R=1
R1,2=1�, as is well known. For illustration, the reflection
oefficient is shown in Fig. 1 for �=� /6 and various inci-
ence angles. The reflection coefficient vanishes at �2

�p
2 / �1−tan2 �� �tan �=
�� for �=�
� /4 (R2=0, �=0).

The results obtained in this section for the interaction
f the electromagnetic field with a semi-infinite plasma
re the same as those obtained within the so-called theory
f “effective medium permittivity,” where the dielectric
unction �=1−�p

2 /�2 is introduced into Fresnel relations,
he latter being derived by continuity conditions at the
urface. On the other hand, we can see that Eqs. (23),
28), and (29) relate the total field m�2u /e inside the
lasma to the amplitude of the external field E0. However,
hile the former runs like ei��z, the latter runs like ei�z, so
e cannot define properly a dielectric function in usual

erms (plane waves) for this semi-infinite plasma (the di-
lectric function �=1−�p

2 /�2 corresponds to the bulk
lasma). The same is true for the nonretarded dielectric
esponse, which contains a surface term 
e−kz. This par-
icular feature is related to the nonlocality of the dielec-
ric response and it holds for any structure with restricted
eometry.

Finally, we note that we do not use in our approach
oundary (continuity) conditions at the surface; instead,
he usual continuity conditions follow from our approach
ith respect to the transverse components of the electric
eld and the normal component of the electric induction.
here is no need for additional boundary conditions be-
ause the problem is completely determined by our equa-
ions and the external field.
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. CONCLUSIONS
he approach presented here is a quasi-classical one,
alid for wavelengths much longer than the amplitude of
he Fourier components of the displacement field u. This
s not a particularly restrictive condition for the classical
ynamics of the electromagnetic field interacting with
atter. When this condition is violated, as, for instance,

or wavelengths much shorter than the mean separation
istance between electrons, there appear both higher-
rder terms in the equations of motion and the coupling to
he individual motion of the electrons. These couplings af-
ect in general the dispersion relations and introduce a fi-
ite lifetime (damping) for the plasmon and polariton
odes.
Making use of the equations of motion for the displace-
ent field u and the radiation formulas for the electro-
agnetic potentials, we have computed herein the plas-
on and polariton modes for an ideal semi-infinite

lectron plasma, as well as the dielectric response, the re-
ected and refracted fields, and the reflection coefficient.
eneralized Fresnel relations have been obtained for any

ncidence angle and polarization. We have also identified
he bulk and surface plasmon–polariton modes. The field
nside the plasma is either damped (evanescent) or propa-
ating, as is well known, and the reflection coefficient ex-
ibits a sudden enhancement on passing from the propa-
ating to the damped regime, as expected. The
ransparency edge is given by � cos �=�p, where � is the
ncidence angle, � is the frequency of the incident wave,
nd �p is the plasma frequency.
Other effects related to the dynamics of a semi-infinite

lectron plasma, or, in general, various plasmas with rect-
ngular geometries, can be computed similarly by using
he method presented here. The method can also be ap-
lied to plasmas with other, more particular, geometries.
issipation can be introduced (as for metals), and a model

an be formulated for dielectrics, amenable to the method

0 0.5 1
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ig. 1. Reflection coefficient for a semi-infinite plasma for �=� /6
he transparency edge �p / cos � and the zero occurring at �2=�p

2

resented here. This will allow the treatment of more re-
listic cases as well as various interfaces, in particular
lasmas (or metals) bounded by dielectrics. These inves-
igations are left for forthcoming publications.
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