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Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general,
unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials.
Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists
of representing the charge disturbances by a displacement field in the positions of the moving particles (elec-
trons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electro-
magnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are com-
puted, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence
angle and polarization. Bulk and surface plasmon—polariton modes are identified. As is well known, the field
inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection co-
efficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total

reflection). © 2009 Optical Society of America
OCIS codes: 000.3860, 260.2110, 260.3910.

1. INTRODUCTION

Plasmons, polaritons, and, in general, electromagnetic
fields interacting with matter in structures with special,
restricted geometries have always enjoyed particular in-
terest. There is a vast literature on this subject regarding
structures such as a half-space (semi-infinite) plasma, a
plasma slab of finite thickness, a two-plasma interface
(two plasmas bounding each other), a two-dimensional
sheet with an aperture, a slab with a cylindrical hole,
structures with surface gratings or regular hole patterns,
layered films, cylindrical rods, and spherical particles,
etc. These studies were aimed mainly at identifying new
plasmon modes such as surface plasmons [1-8], and ex-
periments accounting for electron energy loss and explor-
ing the interaction of the electron plasma with electro-
magnetic radiation (polariton excitations) [9-21]. More
recently, a possible enhancement of the electromagnetic
radiation scattered on electron plasmas with special ge-
ometries enjoyed a particular interest [22-24]. In all
these studies the plasmon and polariton modes are of fun-
damental importance [25—-29]. The methods used in deriv-
ing such results are of great diversity, resorting often to
particular assumptions, such that the basic underlying
mechanism of plasmons or polaritons is often obscured.
The need is therefore felt for having a general, unifying
procedure for deriving plasmon and polariton modes in
structures with special geometries, as based on the equa-
tion of motion of the charge density and Maxwell’s equa-
tions. Such a procedure is presented in this paper for an
ideal semi-infinite plasma.

We represent the charge disturbances as n=-n divu,
where n is the (constant, uniform) charge concentration
and u is a displacement field of the mobile charges (elec-

1084-7529/09/071747-7/$15.00

trons). This representation is valid for Ku(K)<1, where
K is the wave vector and u(K) is the Fourier component of
the displacement field. We assume a rigid neutralizing
background of positive charge, as in the well-known jel-
lium model. In the static limit, i.e., for Coulomb interac-
tion, the Lagrangian of the electrons can be written as

1 1
L= f dr{gmnuz -5 f dr'U(jr —r'|)dn(r)én(r’)

+e f drd(r)dén(r), (1)

where m is the electron mass, U(r)=e?/r is the Coulomb
energy, —e is the electron charge, and ®(r) is an external
scalar potential. Equation (1) leads to the equation of mo-
tion,

mii=n grad Jdr’U(|r—r’)divu(r’)+egrad<b, (2)

which is the starting equation of our approach. We leave
aside the dissipation effects [which can easily be included
in Eq. (2)].

By using the Fourier transform for an infinite plasma it
is easy to see that the eigenmode of the homogeneous Eq.
(2) is the well-known bulk plasmon mode given by wﬁ
=47mne?/m. On the other side, the relation sn=-n div u is
equivalent to Maxwell’s equation div E;=—4medn, where
E;=4mneu is the internal electric field (equal to -4 7P,
where P is the polarization). Making use of the electric
displacement D=-grad ®=¢(D+E;), we get the well-
known dielectric function e=1- w12)/ ®? in the long-
wavelength limit from the solution of the inhomogeneous
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Eq. (2). Similarly, since the current density is j=-enu, we
get the well-known electrical conductivity o= wf,/ 47w.

We apply this approach to a semi-infinite plasma. First,
we derive the surface and bulk plasmon modes and obtain
the dielectric response. Further on, we consider the inter-
action of the semi-infinite plasma with the electromag-
netic field, as described by the usual term (1/c)fdrjA
—[drp® in the Lagrangian, where A is the vector poten-
tial, p=en div u is the charge density and & is the scalar
potential. We limit ourselves to the interaction with the
electric field, and compute the reflected and refracted
fields, as well as the reflection coefficient. Generalized
Fresnel relations are obtained for any incidence angle and
polarization. The well-known continuity of the tangential
components of the electric field and the normal compo-
nent of the electric displacement at the surface follow
from our calculation, as well as the continuity of the nor-
mal component of the Poynting vector. We find it more
convenient to use the radiation formulas for the retarded
potentials, instead of using directly the Maxwell equa-
tions, and the resulting integral equations are solved.
Bulk and surface plasmon—polariton modes are identified.
The field inside the plasma is either damped (evanescent)
or propagating (transparency regime), and the reflection
coefficient exhibits an abrupt enhancement on passing
from the propagating to the damping regime (total reflec-
tion). The present approach can be extended to various
other plasma structures with special geometries.

2. PLASMA EIGENMODES

We consider an ideal semi-infinite plasma extending over
the half-space z>0 (and bounded by the vacuum for z
<0). The displacement field u is then represented as
(v,u3)0(z), where v is the displacement component in the
(x,y)-plane, ug is the displacement component along the
z-direction and 6(z)=1 for z>0 and 6(z)=0 for z<0 is the
step function. In equation of motion (2) div u is then re-
placed by

(9LL3
diva= (divv+ E) 0(z) + us(0)8(2), (3)

where u3(0)=us(r,z=0), r being the in-plane (x,y) posi-
tion vector. Equation (2) becomes

1
mi = ne? grad J dr'dz’
Ve -r)2+(z-2")*
ﬁuS(r’,Z’)
X|divv(r'.z2')+ ———
oz’
1

+ne? grad us(r',0) +e grad ®

dr' —
V(- r')?+22

(4)

for z>0. One can see the (de)polarizing field occurring at

the free surface z=0 [the second integral in Eq. (4)].
We use Fourier transforms of the type
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u(r,z;t):E fdwu(k’z;w)eikre—iwt (5)
k

(for in-plane unit area), as well as the Fourier represen-
tation

1

21 .
- == E _e—k|z\etkr (6)
Jri+z22 gk

for the Coulomb potential. Then, it is easy to see that Eq.
(4) leads to the integral equation

1 o0

’

w?v = —kwIZ,J dz've*='l
2 0

1 v 9 . ek
+—o? | de'——e - —a, (7)
2k 0 a' o' m

and ikug=dv/dz, where we have dropped out for simplicity
the arguments k, z, and . The v-component of the dis-
placement field is directed along the wave vector k (in-
plane longitudinal waves). This integral equation can eas-
ily be solved. Integrating by parts in its r.h.s we get

2 2 1 o -k iek
WV = w0 - —wve - —, 8
D 9 pY 0 m ( )
hence
. iekaw, D, L lek @
m (o?- wf,)(sz - wlz,) m o’ - wlz, ’

ekw? [ON e @

uy=-—— Yt s T )
m (0 - w,)(20" - w,) mo” - w,

where vg=v(z=0), Py=P(z=0) and ®’'=¢P/dz. One can
see the surface contributions (terms proportional to
®oe*?) and bulk contributions (®,®d’ terms).

The solutions given by Egs. (9) exhibit two resonances,
the bulk plasmon w,=w, and the surface plasmon w;
=w,/ \5, as is well known. Indeed, the homogeneous Eq.
(8) (=0) has two solutions: the surface plasmon v
=vge™#* for w?=w’/2 and the bulk plasmon vy=0 for o’
= wﬁ. Making use of this observation we can represent the
general solution as an eigenmode series

2k*
v(k,2) = \2kvo(k)e ™ + > A /2—k20(k, K)sin kz,
K K™+

(10)

for z>0, where v(k,-x)=-v(k,x), and ikusk,z)
=dv(k,z)/dz. Then, it is easy to see that the Hamiltonian
H=T+U corresponding to the Lagrangian L=T-U given
by Eq. (1) becomes

T=nm, i} (K)vo(k) +nmY, i*(k,x)i(k,«),
k kx
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U=2mm%>, v(k)vo(k) + 42’ v*(k, x)v (K, «),
k kk

(11)

where T is the kinetic energy and U is the potential en-
ergy. We can see that this Hamiltonian corresponds to
harmonic oscillators with frequencies w;=w,/y2 and w,
=w,.

Making use of E;=47mneu and Egs. (9) we can write the
internal field (polarization) as

ikw,®(k,0i0) ) ik ®(k,z;0)

E (kz;,0)= e ,
! ) (- wz)(QwZ - wg) w? - wz
kwﬁ@(k,o;w) wf,@’(k,z;w)
E(k,z;0)=- 3 3 etz — >
(0? - wp)(2a)2 - ) w? - w,

12)

where E | is directed along the in-plane wave vector k and
E, is parallel to the z-axis (perpendicular to the surface
z=0). Equations (12) give the dielectric response of the
semi-infinite plasma to an external potential.

We take an external potential of the form ®(k,z)
=dO(k)ei* (leaving aside the frequency argument o) and
get the electric displacement D, (k,z)=-ik®(k)e** and
D(k,z)=-ik®’(k)e!* from D=-grad ®. We can see that
the surface terms do not contribute to this response, as
expected, since these terms are localized. Making use of
E;=(1/¢-1)D, we get the well-known dielectric function
e(k,w)=1- wi/ ®? in the long-wavelength limit.

3. INTERACTION WITH THE
ELECTROMAGNETIC FIELD: POLARITONS

We assume a plane wave incident on the plasma surface
under angle a. Its frequency is given by w=cK, where c is
the velocity of light and the wave vector K=(k, k) has the
in-plane component k and the perpendicular-to-plane
component «, such as =K sin a« and «=K cos «. In addi-
tion, k=*~k(cos ¢,sin ¢). The electric field is taken as E,
=E(cos 8,0,-sin Ble’KTei*%e~i® and we impose the condi-
tion cos B sin a cos ¢—sin Bcos a=0 (transversality condi-
tion KE;=0). The angle B defines the direction of the po-
larization of the incident field.

In the presence of an electromagnetic wave we use the
equation of motion

e e )
wu=—E + —Ege', (13)
m m

for z>0, where E is the polarizing field; in Eq. (13) we
have preserved explicitly only the z-dependence (i.e., we

leave aside the factors e™e~*%). We find it convenient to
employ the vector potential

1 jx',z";t —= Rlc)
A(r,z;t)z—jdr’fdz’T (14)
c

and the scalar potential
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p(r',z";t — Rlc)
<I>(r,z;t)=Jdr’ J dz’T, (15)

where

j = —neuf(z)e™e it

is the current density,
p=ne divu = ne(iKv + duy/dz) 0(z)e e "
+ neus(0)8(z)e™ et

is the charge density, and R= \s"(r—r’)2+ (z—z")2. The inte-
grals in Eqgs. (14) and (15) imply the known integral [30]

” _ P
dao(k\x? - 22)e! e = —i k], (16)

K
ll

where J; is the zeroth-order Bessel function of the first
kind (and w?/c2=«%+k2). It is convenient to use the pro-
jections of the in-plane displacement field v on the vectors
k and k| =k(-sin ¢, cos ¢), k k=0. We denote these com-
ponents by v;=kv/k and vo=k , v/k and use also the com-
ponents E{=KE/k, Eo=k E/k and similar ones for the
external field Ej. We give here the components of the ex-
ternal field,

Ey=Eycos Bcos ¢, Ey=—Ejcos Bsin ¢,

E03=—E0 Sinﬁ. (17)

One can check immediately the transversality condition
Ey1k+Ey3k=0. Making use of E=—-1/cdA/dt—grad @, Eqgs.
(14) and (15) give the electric field

E,=- 277'ine/<f dz’vl(z’)eiklz‘zl‘
0

k J
- 2mne— dz’ug(z’)—,e“‘lz'z )
KkJ, 0z
> ) ,
Ey=-2mine—— dz’vz(z’)e"“z'z I
c“kJ,

k J .,
E;=2mne— dz’vl(z’)—e”“z'z |
KkJ, dz

2 o
- 27n'ne—f dz’ug(z’)e““z'z ‘+47Tneu3, (18)
K
0

for z>0. It is worth observing in deriving these equations
the nonintervertibility of the derivatives and the integrals
according to the identity

1% J o
_f dzrf(z/)_em\z—z = K2f dz/f(z/)ezk\z—z | _ 2ixf(z)
ZHN a2’ 0

(19)

for any function f(z), z>0; this is due to the discontinuity
in the derivative of the function e*#='l for z=2". Now, we
employ equation of motion (13) in Eqgs. (18) and get the
coupled integral equations
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lw

0 o
w201=— dz/vl(zr)em|z—z |
2 0

2

wyk J ., e )

_ dz/ug(z/)_em\z—z \+ _E01em,
!

2k 0 oz m

iw§w2 L, e )
wvy=— 3 dz’vg(z’)e“‘lz'z L+ —Epe"?,

2¢°k o m

a)gk J
wug=—| dz'vi(z')—e
2k J, oz

iklz—2'|

iw§k2 o ) e )
- dz'us(z")e' =" 4 wyug + —Ege"?,
2k J, m

(20)

for the coordinates vy 9 and u3 in the region z>0.
The second of Eqgs. (20) can be solved straightforwardly
by noting that

e , .
_ZJ dz’vz(z’)e““z'z I=— K2J dz’vz(z’)e"“z'z I+ 2iKv4.
%" J, 0

(21)
We get
Pv 2 2,2
? + (K - wp/c )Uz =0. (22)
The solution of this equation is
2eEy, k(k—k') |
Vg=—F +————e'"?, 23
where
K = \/K2 - a)i/c2 = ;\,/w2 cos® a - wlz,. (24)

The wave vector «’' can also be written in a more familiar
form «’=(w/c)\e—sin? a, where e=1- wI%/w2 is the dielec-
tric function. The corresponding component of the (total)
electric field (the refracted field), can be obtained from Eq.
(13); it is given by (mw?/e)vy. For k*< w’/c*(w cos a< w,)
this field does not propagate. For ;<2>w12,/c2 (w greater
than the transparency edge w,/cos ) it represents a re-
fracted wave (transparency regime) with the refraction
angle ' given by Snell’s law:

sin o' 1
— = =1/\s. (25)
sina 1 - wo?
The polariton frequency is given by
o?=c’K?= wﬁ +c’K'?, (26)

as is well known, where K'2=x’2+£2.

The first and the third of Egs. (20) can be solved by us-
ing an equation similar to Eq. (21) and by noting that
they imply
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2y
K'*ug=ik—. (27)
oz
We get
2eEy; «'(k—«') i @8)
U1 = . e
! mo? kK +k?
and

2eEy; k(k— k') i @9)
Ug=——F5  —5 €7,
3 mwzz, KK +k?

Similarly, the corresponding components of the refracted
field are given by Eq. (13). It is easy to check the trans-
versality condition vk +u3x’=0 [and the vanishing of the
bulk charge ne(ikv+dus/dz)=0].

We can see that the polarization field E in Eq. (13) can-
cels out the original incident field E; and gives the total,
refracted field mw?u/e inside the plasma. This is an illus-
tration of the so-called Ewald—-Oseen extinction theorem
[14,31].

It is worth investigating the eigenvalues of the homo-
geneous system of integral Eqs. (20), for parameter «
given by «=+w?/c2—k?. Such eigenvalues are given by the
roots of the vanishing denominator in Egs. (28) and (29),
i.e., by the relation x«'+k2=0. This equation has real
roots for  only for the damped regime, i.e., for k=i|«| and
k' =i|k'|. Providing these conditions are satisfied, there is
only one acceptable branch of excitations, that given by

) Zuﬁczk2
W= . (30)
w2+ 202k% + |0 + 4c*R?

We can see that w~ck in the long-wavelength limit, and
it approaches the surface-plasmon frequency w~ w,/ V2 in
the nonretarded limit (ck — ). These excitations are sur-
face plasmon—polariton modes. We note that they imply
vy=0 and vy,u3~e k. In addition, a careful analysis of
the homogeneous system of Egs. (20) reveals another
branch of excitations, given by w=w,, which, occurring in
this context, may be termed the bulk plasmon—polariton
modes. They are characterized by vy=0 and v;(k,0)=0.
For all these modes we have us=[ic?k/(w?-c?k?
— )]/ dz.

In order to get the reflected wave (the region z<0) we
turn to Egs. (18) and use therein the solutions given
above for vy 5 and u3. It is worth noting here that the dis-
continuity term wzug no longer appears in these equa-
tions (because z’ >0 and z<0 and we cannot have z=z").
The integrations in Eqgs. (18) are straightforward and we
get the fields

K-k kK — k2

E.=E . el 31

! Mtk ki + k2 (31)
k—k

Ey=Ey -e ™", (32)
K+ K

and
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k- k' -kZ
ES =- E03—, . /—Ze_LKZ' (33)
k+ k' k' +k

We can see that this field represents the reflected wave
(k——k), and we can check its transversality to the propa-
gation wave vector. Making use of the reflected field E,.4
given by Egs. (31)-(33) and the refracted field E,e[r ob-
tained from Eqs. (13) and (18) (E,,s=E+Ej=mo“u/e),
one can check the continuity of the tangential components
of the electric field and the normal component of the elec-
tric displacement at the surface (z=0) in the form
E1,2reﬂ+E01,2 =E1,2refr7 ESreﬂ +Eg3= 8E3refra where e=1
- wﬁ/ 2. The angle of total polarization (Brewster’s angle)
is given by «kx'-k%=0, or tan? a:l—wﬁ/wzzs (for a
<m/4). The above equations provide generalized Fresnel
relations between the amplitudes of the reflected, re-
fracted, and incident waves at the surface for any inci-
dence angle and polarization. They can also be written by
using w?=w?/(1-¢), where ¢ is the dielectric function.

Making use of the reflected field E,.; and the refracted
field E,.; we can also check the continuity of the energy
flow across the surface. Indeed, the Poynting vector S
=(c/4mExH=(c%/47w)KE2, where H=(c/w)KXE is the
magnetic field, has a normal component that is continu-
ous at the surface, i.e., Ss,q+S3=S3s, While its in-
plane components are discontinuous. These latter compo-
nents are related by Sq g+ (k'/k)S1 9rer=S1,20- One can
see that, along the surface, the energy flows at different
rates in the vacuum and in the plasma.

Usually, Fresnel relations are given for two particular
cases: B=0 (¢p=mu/2), Ey1=E43=0, which corresponds to
the so-called s-wave (electric field perpendicular to the
plane of incidence); and B=a (¢=0), E(3=0, corresponding
to the so-called p-wave (electric field in the plane of inci-
dence) [31-33]. For the former case we get

=2
cos a—\,s—sm2a )
— —lKZ
E2reﬂ - /—,ZEOQe ki
cos a+ e —sin” «

2 cos a .,
- 12,94
Esrepe = ", (34)
cos a+ e —sin” «a

which is one well-known pair of Fresnel relations. An-
other set of Fresnel relations is obtained from our equa-
tions given above for E;g.; and Ejjs,.; components
(p-wave); usually, this pair of Fresnel relations is given in
terms of the magnetic field. Making use of our equations
derived above we get the well-known p-wave Fresnel re-
lations

.9
£ oS a— \& —sin® &

_ —iKz
H2reﬂ = f—_2H02e ’
€COS a++e—sIn” «
2& cos a .,
— K 2
Hopefr = ————Hope" " (35)

€€0s a+e—sin‘ o

The generalization given here in Eqgs. (23), (28), (29), and
(31)—(33) consists in extending these relations to any in-
cidence angle and polarization, together with including
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the dielectric function e=1- wﬁ/ w?, which follows from the
present treatment.

The reflection coefficient R=|E,.4/*/|E¢|* can be ob-
tained straightforwardly from the reflected fields given by
Eqgs. (31)—(33). It can be written as

R =R cos? Bsin? ¢+ Ry(cos® Bcos? ¢ +sin? B), (36)

where

2 2

—
COS @ —\e—SIN" o

2
wcosa—\wzcos2a—w§

R1= =

——
w cos a + o” cos® a - wf, cos a + e —sin’ &
(37)
and
(0® - w?)cos @ - wyw? cos® @ — w? 2
P Al P
2
2 2 s 2 2
(w® - w,)cos a + w\w” cos” a -,
3|2
ecos a—\e—sin®a
= 9 (38)
gcos a+\e—smn” «a

The first term in the r.h.s. of Eq. (36) corresponds to the
s-wave (B=0, ¢=m/2), while the second term corresponds
to the p-wave (B=«a, ¢=0). It is easy to see that there ex-
ists a cusp (shoulder) in the behavior of the function R(w)
occurring at the transparency edge w=w,/cos @, where
the reflection coefficient exhibits a sudden enhancement
on passing from the propagating regime to the damped
one, as expected (total reflection). The condition for total
reflection can also be written as sin a= V“Z, where R=1
(R12=1), as is well known. For illustration, the reflection
coefficient is shown in Fig. 1 for f=7/6 and various inci-
dence angles. The reflection coefficient vanishes at w?
=w2/(1-tan® a) (tan a=\¢) for a=B<7/4 (Ry=0, $=0).
The results obtained in this section for the interaction
of the electromagnetic field with a semi-infinite plasma
are the same as those obtained within the so-called theory
of “effective medium permittivity,” where the dielectric
function e=1 —wf,/ w? is introduced into Fresnel relations,
the latter being derived by continuity conditions at the
surface. On the other hand, we can see that Egs. (23),
(28), and (29) relate the total field mw2u/e inside the
plasma to the amplitude of the external field E,. However,

while the former runs like ei"’z, the latter runs like e*?, so
we cannot define properly a dielectric function in usual
terms (plane waves) for this semi-infinite plasma (the di-
electric function &= 1—w}2)/ w?® corresponds to the bulk
plasma). The same is true for the nonretarded dielectric
response, which contains a surface term ~e~*?. This par-
ticular feature is related to the nonlocality of the dielec-
tric response and it holds for any structure with restricted
geometry.

Finally, we note that we do not use in our approach
boundary (continuity) conditions at the surface; instead,
the usual continuity conditions follow from our approach
with respect to the transverse components of the electric
field and the normal component of the electric induction.
There is no need for additional boundary conditions be-
cause the problem is completely determined by our equa-
tions and the external field.
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Fig. 1. Reflection coefficient for a semi-infinite plasma for 8= /6 and various incidence angles a. One can see the shoulder occurring at
the transparency edge w,/cos @ and the zero occurring at w’= wf,/ (1-tan? a) for a=B=m/6 (Ry=0, ¢=0).

4. CONCLUSIONS

The approach presented here is a quasi-classical one,
valid for wavelengths much longer than the amplitude of
the Fourier components of the displacement field u. This
is not a particularly restrictive condition for the classical
dynamics of the electromagnetic field interacting with
matter. When this condition is violated, as, for instance,
for wavelengths much shorter than the mean separation
distance between electrons, there appear both higher-
order terms in the equations of motion and the coupling to
the individual motion of the electrons. These couplings af-
fect in general the dispersion relations and introduce a fi-
nite lifetime (damping) for the plasmon and polariton
modes.

Making use of the equations of motion for the displace-
ment field u and the radiation formulas for the electro-
magnetic potentials, we have computed herein the plas-
mon and polariton modes for an ideal semi-infinite
electron plasma, as well as the dielectric response, the re-
flected and refracted fields, and the reflection coefficient.
Generalized Fresnel relations have been obtained for any
incidence angle and polarization. We have also identified
the bulk and surface plasmon—polariton modes. The field
inside the plasma is either damped (evanescent) or propa-
gating, as is well known, and the reflection coefficient ex-
hibits a sudden enhancement on passing from the propa-
gating to the damped regime, as expected. The
transparency edge is given by w cos a=w,, where « is the
incidence angle, w is the frequency of the incident wave,
and o, is the plasma frequency.

Other effects related to the dynamics of a semi-infinite
electron plasma, or, in general, various plasmas with rect-
angular geometries, can be computed similarly by using
the method presented here. The method can also be ap-
plied to plasmas with other, more particular, geometries.
Dissipation can be introduced (as for metals), and a model
can be formulated for dielectrics, amenable to the method

presented here. This will allow the treatment of more re-
alistic cases as well as various interfaces, in particular
plasmas (or metals) bounded by dielectrics. These inves-
tigations are left for forthcoming publications.
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