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A model of phase transition of the first kind is introduced, based on the assumption that
a classical gas of particles condenses in composite particles made up of various numbers
of gas molecules. The transition temperature and the latent heat are derived, and the
phase diagram is characterized.
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Phase transitions represent a widely-investigated field of research in condensed

matter, especially in connection with their critical behavior. Comparatively, and

despite their ubiquitous occurrence, the phase transitions of the first kind, which

exhibit finite discontinuities in thermodynamic functions, received less attention

than the phase transitions of the second kind, characterized by discontinuities in

the derivatives of the thermodynamic potentials. It is known that the latter are asso-

ciated with a symmetry breaking and quantum-statistical correlations. Typical ex-

amples are the superconductivity, superfluidity, or structural modifications of solids.

Technically, they are driven by a continuous change in an order parameter, which

generates singularities characterized by power laws with critical exponents (indices).

The particular mechanisms for the phase transitions of the first kind remain elu-

sive, though both kinds of transitions are related to a certain condensation to a

macroscopically-occupied state. A typical example of such phase transitions is pro-

vided by the gas-liquid transition. The van der Waals theory, which captures much

of the general features of the problem, is an interpolation between an ideal classical

gas and a strongly interacting gas (liquid). Near the critical point, the particle den-

sity may be viewed as an order parameter, as for a phase transition of the second

kind. On the other hand, dealing with an interacting ensemble of particles, the van

der Waals theory fails to incorporate the particle condensation in the form of bound

states. Previous attempts to describe the condensation of matter are known,1–11

as quoted by ter Haar.12 They are mainly related to the droplet model,13–16

and extensive studies regarding metastable states and the kinetics (nucleation,
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coalescence, Oswald ripening, etc.) of the phase transition of the first kind,17 as

well as scaling and renormalization-group properties of their critical behavior have

been advanced.18,19 Such subjects are still a matter of current investigations.20,21

The equivalence of a latticial gas with the Ising ferromagnet in an external magnetic

field is also known,22 where the gas-liquid transition in the former is associated to

the jump in the magnetization of the latter. We present here a direct condensation

in the phase space of the molecules of a classical gas, in the form of composite

particles, which exhibits typical features of a phase transition of the first kind. It

may be viewed as a generic model for such phase transitions.

Let an ideal classical gas of N molecules of mass m be enclosed in a volume V

at temperature T . As is well-known, leaving aside the internal degrees of freedom

of the molecules, the particle distribution is given by

dN =
gV

(2π~)3
eµ/T e−p2/2mT dp , (1)

where g is the statistical weight, µ is the chemical potential and p denotes the

particle momentum. The energy is E = 3NT/2 and the thermodynamic potential

Ω = −pV = −NT , where p is the pressure. The chemical potential is given by

µ = −T ln[g(mT/2π~
2)3/2/n] , (2)

where n = N/V is the density, and g(mT/2π~
2)3/2/n � 1 (condition for a clas-

sical gas). We introduce the characteristic temperature T0 = ~
2n2/3/m, and write

approximately µ ' −(3/2)T ln(T/T0) for T � T0.

We assume that the gas condenses in various species labeled by j = 1, 2, 3, . . . ,

consisting of composite particles made up of nj = 2, 3, . . . original molecules.a

These composite particles have an energy εj = −ε0j + p2/2Mj, where −ε0j < 0

is their cohesion energy and Mj is the mass of the jth particle. These condensed

species form an ideal classical gas. We impose the conservation of the number of

gas molecules

Nc =
∑

njρj , (3)

and the conservation of the energy Ec of the condensed phase,

Ec =
∑

εjρj , (4)

where ρj = dNj/dnjdpj is the probability distribution of Nj particles in species j

over phase space (nj ,pj). The summations in (3) and (4) are extended to all the

states of the particles, characterized by number nj and momentum pj . Then, we

get straightforwardly the distribution of particles in the condensed phase

dNj =
gjVc

(2π~)3
eµcnj/T e−εj/T dnjdpj , (5)

aThis assumption could be related to the comments made by L. van Hove, Revs. Mod. Phys.

29 (1957) 200, p. 202, on the coexistence of distinct phases during transition. See also related
comments22 on Mayer’s theory.
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where gj is the statistical weight of the jth species, µc is the chemical potential of the

condensate and Vc is the volume of the condensate. We leave aside other degrees of

freedom, corresponding to the internal motion of the composite particles. We write

nj as a continuous variable for convenience, but we understand the summation over

discrete values nj = 2, 3, . . . .

The integration over momenta pj in (5) is straightforward. It gives

dNj = gjVc(MjT/2π~
2)3/2eµcnj/T eε0j/T dnj . (6)

It is reasonable to assume that the condensate is a multiple of its constituents,

i.e. Mj = mnj and, similarly, ε0j is an increasing function of nj which goes like

ε0j ∼ nj for large nj . We assume ε0j = ε0nj , where ε0 is a parameter of the

average cohesion energy. Any other reasonable function ε0j(nj) can be used, without

affecting the subsequent conclusions. Equation (6) becomes

dNj = gjVc(mT/2π~
2)3/2n

3/2
j e(µc+ε0)nj/T dnj . (7)

The number total of condensed particles is given by∑
j

Nj = Vc(mT/2π~
2)3/2

∑
nj

gjn
3/2
j e(µc+ε0)nj/T , (8)

and the number of the original particles in the condensate given by (3) reads

Nc = Vc(mT/2π~
2)3/2

∑
nj

gjn
5/2
j e(µc+ε0)nj/T . (9)

Similarly, the energy of the condensate given by (4) now reads

Ec = −Ncε0 + (3/2)T
∑

j

Nj , (10)

and the thermodynamic potential Ωc is given by Ωc = −pcVc = −T
∑

j Nj . The

summations in (8) and (9) are convergent, since the chemical potential µc assumes

large, negative values, as for a classical gas.

Let us first consider only one type of composite particles, labeled by j = s − 1,

with a constituency nj = s. Then, the summations in (8) and (9) reduce to the sth

term only, and we get

Ns = Vc(mT/2π~
2)3/2gss

3/2e(µc+ε0)s/T = Nc/s . (11)

Hence, we get straightforwardly the chemical potential of the condensate

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~

2)3/2/nc] , (12)

where nc = Ns/Vc. The pressure of the condensate is given by pc = TNs/Vc,

while the pressure of the original gas is given by p = TNc/V . At equilibrium,

the two values of the pressure must be equal, pc = p, and, since Ns = Nc/s, it

follows that Vc = V/s, which shows indeed that this is a condensation. It follows

that at equilibrium the two concentrations, n = Nc/V of the original gas and

nc = Ns/Vc of the condensate, are equal, n = nc, while the number Ns of particles
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in the condensate and the volume Vc of the condensate are decreased by factor s,

according to Ns = Nc/s and Vc = V/s, respectively. The chemical potential of the

condensate given by (12) becomes

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~

2)3/2/n] , (13)

and it may be compared now with the chemical potential of the original gas of

molecules given by (2). The equilibrium between the two phases, the original gas

and the resulting condensate, is attained for µc = µ. Making use of (2) and (13),

this equation can be written as

3(s − 1)

2s
ln(T/T0) = ε0/T , (14)

for T , ε0 � T0. Its solution gives the transition temperatureb

Tt '
2s

3(s − 1)
·

ε0

ln(ε0/T0)
. (15)

The chemical potential acquires the value µt ' −sε0/(s − 1) at the transition

temperature. Below the transition temperature the condensate is favored (µc < µ

for T < Tt), while above the transition temperature it is the gas which is favored

(µc > µ for T > Tt), as expected. Introducing T0 = ~
2(p/T )2/3/m in (14) we get

the (p, T )-equilibrium curve of the gas-condensate ensemble. It reads

p = (m/~
2)3/2T 5/2 exp[−sε0/(s − 1)T ] . (16)

In between the two isotherms pV = NcT and pVc = NsT there exists a plateau at

the transition temperature, as it can be seen from the decreasing of the volume from

V to Vc = V/s and the decreasing of the constant NcT from NcTt to NsTt = NcTt/s.

Below the transition temperature the condensation is fully attained, and Nc =

N . The thermodynamic potentials suffer a discontinuity at the transition tempera-

ture, as a result of the condensation. For instance, the thermodynamic potential of

the condensate Ωc = −pVc = −NTt/s differs from Ω = −NTt by a relative jump

−(1 − s)/s, and the volume of the condensate decreases to Vc = V/s. Similarly,

the energy of the condensate given by (10) now reads Ec = −Nε0 + 3NsTt/2 =

−Nε0 +3NTt/2s, and exhibits a discontinuity given by ∆E = 3NTt(1−s)/2s. The

heat function of the original gas is given by W = E + pV = 5NT/2, while the heat

function of the condensate reads Wc = −Nε0 + 5NsT/2 = −Nε0 + 5NT/2s, so the

latent heat is Q = Wc − W = −Nε0 + 5(1 − s)NTt/2s. Similarly, the entropy of

the original gas can be written as S = (3N/2) ln(T/T0) + 5N/2, while the entropy

of the condensate is given by Sc = (3N/2s) ln(T/T0) + 5N/2s, and, by making use

of Eq. (14), one gets ∆S = Sc − S = −Nε0/Tt + 5(1 − s)N/2s = (1/s − 1)S at

equlibrium. One can check that the latent heat is given by Q = Tt∆S, according

bFor a general function ε0j(nj) for the cohesion energy the parameter ε0 in Eq. (15) is replaced
by ε0(s)/s.
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to the Clapeyron–Clausius law. There is also a jump in heat capacities, which are

given by C = 3N/2 and, respectively, Cc = 3N/2s, at constant volume.

We move on to the estimation of the entire ensemble of composite particles

in the condensate. The summation in Eq. (8) can be aproximated by an integral,

according to

∑
j

Nj = Vcgc(mT/2π~
2)3/2

∫
s

dn · n3/2e(µc+ε0)n/T , (17)

where gc is a mean statistical weight and the lower limit of integration is s = 2.

Integrating by parts, the integral in (17) can be written as
∫

s

dn · n3/2e−λn =
s3/2

λ
e−λs +

3s1/2

2λ2
e−λs +

3s−1/2

4λ3
e−λs + . . . , (18)

where λ = −(µc + ε0)/T . Since λ � 1 we may approximate this integral by the

first term in the right-hand side of (18), so that Eq. (17) becomes

λeλs ' gcs
3/2(mT/2π~

2)3/2/n , (19)

where n =
∑

j Nj/Vc, as for equilibrium. The solution of this equation for large

values of λ can be written as

λ = (1/s) ln[gcs
3/2(mT/2π~

2)3/2/n]

− (1/s) ln(1/s) ln{[gcs
3/2(mT/2π~

2)3/2/n]}+ · · · , (20)

and we may retain only the first term in this expansion. Thus, we get the chemical

potential of the condensate

µc ' −ε0 − (T/s) ln[gcs
3/2(mT/2π~

2)3/2/n] , (21)

which is identical with the one given by (13) for s = 2. We can say that the con-

densate is dominated by pair composites made out of two particles of the original

gas. Therefore, the discussion made above for one type of composite applies here

for the entire ensemble of the condensate, for s = 2. In particular the transition

temperature is given by (15) for s = 2. The fluctuations in the size of the com-

posite particles are readily obtained as 〈(δnj)
2〉 ' T 2/(µc + ε0)

2. At the transition

temperature they are given by 〈(δnj)
2〉1/2 ' (s−1)Tt/ε0. According to the approx-

imation employed here for solving Eq. (17), the number of particles in species with

s + 1, s + 2, . . . particles are exponentially small in comparison with the number of

particles corresponding to s = 2.

Isotherms of the gas-condensate ensemble are shown in Fig. 1. They consist of

two families of curves, denoted by g for gas and, respectively, c for condensate.

The g-curves are given by p(V ) = NT/V , while the c-curves are given by p(V ) =

(
∑

j Nj)T/V ' NT/sV for various T = const. These two families of isotherms are

linked to each other by horizontal plateaux, connecting the points corresponding to

the abscissa V to points corresponding to the abscissa Vc ' V/s. The connecting

points V are given by the intersection of the gas isotherms p(V ) = NT/V with the
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Fig. 1. Gas-condensate isotherms p = NT/V (gas, curves g), p = NT/sV (condensate, curves c)
and the transition (coexistence) curve pt given by pt = NTt/V = sNε0/(s−1)V ln(V/v) according
to Eq. (22) for sNε0/(s − 1) = 1, (s − 1)T/sε0 = 0.450, 0.475, . . . , 0.550 (step 0.025), v = 3 and
s = 2. The left-hand side coexistence curve is pushed in fact towards a limiting volume v (not
shown in figure), as discussed in the text and shown in Fig. 2.

transition (coexistence) curve pt(V ) = NTt/V , where Tt is given (15). The equation

of this curve reads

pt(V ) =
s

s − 1
·

Nε0

V ln(V/v)
, (22)

where v = N(~2/mε0)
3/2 is a cutoff volume corresponding to the localization (con-

densation) of a gas molecule with cohesion energy ε0, for all the gas molecules. The

volume V in Fig. 1, where the transition is initiated, is given by

V = v exp[sε0/(s − 1)T ] . (23)

The isotherms shown in Fig. 1 for the present model of condensation differ from

the van der Waals isotherms by the discontinuities corresponding to the horizontal

plateaux, instead of the continuous transition region of the latter. At the same

time, the transition region is open (in contrast with the van der Waals isotherms),

as defined by the curves pt(V ) and p′t(V ) = pt(sV ) (the latter not shown explicitly

in Fig. 1). However, the validity of these isotherms is limited to V � v. As we

shall see below, they are in fact limited by a critical point, and the left-hand side

coexistence curve p′t(V ) = pt(sV ) in Fig. 1 is in fact pushed towards the limiting

volume v, as shown in Fig. 2.

It is worth noting that the essential element of the condensation mechanism

presented here for a phase transition of the first kind, consists in the conserva-

tion of the number of condensed particles as expressed by Eq. (3). It makes it
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possible to express the chemical potentials of the two phases, say µ1 and µ2, in

terms of the same quantities, namely the density of the original particles (beside

temperature), thus making possible their comparison for identifying the equilib-

rium and the transition temperature. In addition, it is also worth noting that,

technically, the mechanism described here is not limited to the classical statistics

(though this is the most typical situation). In general, if there is a transition at

temperature Tt, then the equilibrium is given by the equality of the two chemical

potentials µ1(Tt) = µ2(Tt) (for the same pressure, i.e. density). In the neighbor-

hood of the transition temperature Tt we may expand the chemical potentials as

µ1 = µ1(Tt) + (T − Tt)(∂µ1/∂T )t and µ2 = µ2(Tt) + (T − Tt)(∂µ2/∂T )t, and one

can see that µ1 < µ2 for T > Tt, and, similarly, µ1 > µ2 for T < Tt, i.e. we have

a phase transition, providing (∂µ1/∂T )t < (∂µ2/∂T )t < 0. On the other hand,

∂µ/∂T = −S, where S denotes the entropy per particle, so that the above inequal-

ities read S1 > S2 > 0, i.e. the transition to the condensed phase (phase 2) implies

a decrease of entropy, i.e. the condensed phase is more “macroscopically-occupied”

than the original one, as expected. If we express the entropy as the logarithm of

the phase-space volume, S ∼ ln ∆q∆p, then for s independent particles we have the

entropy per particle S1 ∼ (1/s) ln(∆q∆p)s = ln ∆q∆p, while for a composite made

up of s particles we have the entropy per particle S2 ∼ (1/s) ln ∆q∆p, because

their phase space diminish. We can see indeed that S1 > S2 > 0, i.e. the condensed

phase is indeed more “macroscopically-occupied”, and, in addition, we see that the

relative jump in entropy is 1/s− 1 = (1− s)/s, as obtained in the model described

above.

The mechanism of condensation described herein is unstable with respect to the

formation of composite particles. Indeed, at the transition temperature given by

(15) the condensate is dominated by composite particles with constituency s = 2.

They may be viewed as a gas with characteristic temperature T ′

0 = T0/2 (since the

mass of its molecules is m′ = 2m, while its concentration is almost the same as

that of the original gas). The condensation mechanism can be applied to this gas,

with the parameter ε′0 = 2ε0. Its transition temperature T ′

t is therefore given by

Eq. (15) with ε0 → ε′0 = 2ε0 and T0 → T ′

0 = T0/2. It is easy to see that T ′

t > Tt,

i.e. the new condensate, made out, mainly, of particles with constituency nj = 4

now, is already formed at the transition temperature Tt.
c This holds also for all

values of nj , so that one may say that at the temperature Tt there appears an

avalanche of bigger and bigger composite particles, which evolves quickly towards

the liquid state. Therefore, the liquid volume is limited by a cutoff volume v, and the

transition region in Fig. 1 can be viewed as being limited, in fact, on its left-hand

side, approximately, by the vertical line V = v, as shown in Fig. 2. The actual form

of the left-hand side coexistence curve cannot, however, be determined without a

particular mechanism of interaction between the gas molecules, and its solution for

the liquid state.

cThis is also valid for a general function ε0j(nj) of cohesion energy.
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Fig. 2. Schematic representation of the gas-liquid isotherms (curves g and, respectively, l), with
the critical region indicated by the cutoff volume v to 2v. The coexistence curve pt is given by
Eq. (22).

The extension of the transition region in Fig. 1 upward to higher pressures is

also limited by the condition Vc = V/s = v, i.e. sε0/(s − 1)T = ln s according

to Eq. (23), for s = 2. This may be taken as the critical point Tc = 2ε0/ ln 2 for

the gas-liquid transition, corresponding to a critical volume Vc of the order v to

2v and the critical pressure pc = Nε0/v ln 2. These critical values for pc and Tc

agree with the (p, T )-curve given by Eq. (16) (up to some minor numerical factors

arising from the approximations made in deriving the transition temperature Tt in

Eq. (15) from Eqs. (13) and (14)). At the same time, these critical values indicate

the termination of the (p, T )-curve given by (16). Making use of the well-known van

der Waals critical values Tc = 8a/27b and pc = a/27b2 one can extract the van der

Waals parameters a = 27ε0v/16N ln 2 and b = v/4N (they correspond to parameter

ε0 and to s = 2). The van der Waals critical volume Vc = 3Nb = 3v/4 agrees with

the critical volume found here Vc ∼ v. A schematic representation of the gas-liquid

isotherms is given in Fig. 2. The equations employed here for characterizing the

critical point Vc ∼ v are not valid for this region (they hold for V � v). The

model presented here should in fact be employed with two parameters, one ε0 and

another a cutoff volume v (which is not given, in realistic situations, by the quantum

localization corresponding to energy ε0). As was said above, the connection between

two such parameters would require a well-determined mechanism of interaction

between the gas molecules, and the corresponding solution for the cohesion of the

liquid state.
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Finally, we may note that, technically, according to the transition theory given

here for an equilibrium process, it may also be viewed that the liquid state is

attained for all the Nj vanishing, except for one Nj = 1. The liquid is then made of

only one, big composite “particle”, consisting of s = N → ∞ particles of the original

gas. The distributions given by (7) lose then their statistical meaning (the entropy

vanishes), and the chemical potential of the liquid is exactly µc = −ε0. The critical

temperature of the gas-liquid transition is then given by Eq. (15) for s → ∞. The

liquid would then have the volume Vc = V/N and density N/Vc = N2/V (distinct

from density nc = 1/Vc = N/V = n which enters the equation of state pcVc = T ).

The thermodynamics of such a liquid state is meaningless. This indicates that the

transition proceeds in fact through the avalanche phenomenon described above.
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