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Abstract: «-like four-nucleon correlations are included in the structure of superfluid ground and low-lying
excited states of atomic nuclei within a BCS-like approach. New metastable superfluid and normal
states are predicted. These statés could be associated with some of the recently discovered 17 =0
states in different regions of atomic nuclei. A new type of elementary excitations may be constructed
on these metastable states in the same way as those constructed on the BCS superfluid ground
states. The region of superfluid cold nuclei is enlarged due to the fact that the neutron and proton
superfluidity can mutually be induced via the a-like four-nucleon ineractions. This type of correla-
tions lead to a further enhancement of the probabilities of the favoured a-clusterization processes
(such as a-decay or a-transfer reactions), two-nucleon transfer reactions and other clusterization
processes such as e.g. the heavy cluster decay.

1. Introduction

Correlations between the nucleons are generally responsble for the existence of
substructures in nuclei. Of these, pairing correlations are by far the best understood
correlations as they affect a lot of nuclear processes, which have been extensively
studied throughout all regions of nuclei. Among these processes, the two-nucleon-,
a-transfer reactions and a-decay display a remarkable degree of selectivity. The
pairing correlations separate among these processes the favoured and hindered ones
deeper than the shell model without residual interactions. For the favoured transi-
tions coherent sums have to be taken over the shell model configurations in the
transition probabilities, in order to include correlations, while for the hindered
transitions this coherence is pattially or totally absent. Absolute values of the
favoured a-decay widths and a-transfer cross-sections are not however sufficiently
well explained in the region of superfluid cold nuclei, by pairing correlations alone.
Despite the fact that for these nuclei the spectroscopic factors corresponding to the
favoured processes are enhanced by factors of thousands when the pairing correla-
tions are included '), they are still insufficient in order to reproduce the experimental
probabilities.

In the course of time extensive nuclear structure and a-decay studies have brought
forth the picture of more or less distinct a-aggregates in nuclei such as a-clusters *™*),
quartets °°), superfluid four-nucleon substructures ') (SaS), or shell model
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clusters '*'?). Thus it is important to distinguish among these two-proton and
two-neutron substructures (a-aggregates). For instance an a-particle cluster in the
nucleus is not the same as a free a=particle. It is naturally distorted by fields of the
surrounding nucleons and may be violently changed by close interactions between
them. By a-clusters one should probably understand aggregates formed from two
protons and two neutrons with relatively strong spatial correlations, so that the
spatial localization of these aggregates be smaller than the spatial localization of
the nucleus itself. The Sa'S may be viewed at least in certain circumstances as formed
of two correlated Cooper pairs (one proton pair and one neutron pair). Certainly
they have weaker spatial correlations (analogously to the spread of the Cooper pair
in a superconductor) as compared to a-clusters, but stronger correlations in the
angular momentum space for finite nuclei (or in the momentum space for nuclear
matter).

Recently '®) similar correlations leading to an a-like condensate have been pro-
posed in the framework of the interacting boson model '). This model conceals the
mechanism of formation of SaS by approximating the pairs by bosons. The underly-
ing fermionic structure of the paired bosons certainly plays an important role in
the formation of SaS in nuclei as far as genuine four-nucleon correlations are looked
for. Such an investigation raises the question whether a condensed state could
directly be obtained by starting with a purely fermionic hamiltonian incorporating
two- and four-nucleon interactions.

Early attempts "'?) to account for Sa$ in nuclei use a trial wave function with
four-nucleon correlations included, simulating the four-fermion condensate, the
interaction remaining of the two-fermion type. In ref. '?) the four-nucleon correla-
tions are included by four-nucleon interactions within an exact diagonalization
procedure. However the two-level model developed in ref.'”) may be applied
probably to light nuclei only, while a generalization to more levels seems to be very
difficult.

A different point of view is assumed in the present work and in our preliminary
report '*); it consists essentially in using the BCS-pairing trial wave function and
accounts for four-fermion correlations by including a residual coherent two pait
(proton and neutron) interaction term in addition to the usual BCS-hamil-
tonian "'**°). Within this simple approximation the four-fermion interactions lead
to condensed superfluid ground and/or metastable states of the Fermi liquid consist-
ing of correlated fermion pairs. Considering a simplified model in which the
single-particle part of the hamiltonian for a deformed axially symmetric nucleus "°),
has equidistant energy level spectra for the two types of fermions (protons and
neutrons) we reach the following conclusions.

For sufficiently large pairing and @-like coupling constants G, G,,, and G,, the
condensed symmetry broken state is energetically favoured with respect to the
normal fluid one. Consequently, under these circumstances, a normal fluid-super-
fluid first-order phase transition is predicted.
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For a region of intermediate and large coupling constants normal fluid and
superfluid metastable phases are predicted too. The possibility of introducing the
concept of normal, superfluid and metastable normal and superfluid bands can also
be discussed. In analogy to the well-known rotational bands the elementary excita-
tions built up on normal or superfluid ground or metastable states constitute a
normal or superfluid band.

The paper is organized as follows. In sect. 2 we formulate the model. The discussion
of the gap equations and the phase diagram is presented in sect. 3 within the
schematic model mentioned above.

The procedure for extracting the pairing G-, G- and a-like Gy-strengths from
the experiment, using the general model formulated in sect. 2, is presented in sect.
4. A new binding energy diflerence involving six nuclei, as a measure for a-like
four-nucleon correlations is proposed. In sect. 5 using the experimental strengths
we calculated the superfluid enhancement factors for favoured a-clusterization
processes, and (wo-nucleon transfer processes. The results show an enhancement
of these factors of about 10-20% for a-clusterization processes and of about 5-10%
for two-nucleon transfer processes when the a-like correlations are included. The
superfluid enhancement factor for '*C decay, for instance is also estimated to increase
up to 100%.

2. Outline of the model

We consider a system of nucleons (protons and neutrons) moving in a certain
single-particle self-consistent field as e.g. a deformed Woods-Saxon one '°).
The hamiltonian for the system of interacting nucleons is

H= Y (H™+H™)+H,, (1)
i=p,n

HY = Z 0 T ()

HY" =-GP[P, P =L I I i=p,n, (3)

H,=-G/P P, P,P,. (4)

Here a;m (awl) are the Fermi operators which create (destroy) a nucleon in
(from) the single-particle state |s,o;), where o; is the sign of the projection of the
angular momentum of the state onto the nuclear symmetry axis, s; being the rest of
the quantum numbers that label the single-particle energy levels.

The last term (4) in eq. (1) is an effective, coherent two-pair (four-nucleon)
interaction term, which is expected to induce the a-like four-nucleon correlations
in the superfluid phases of the atomic nucleus. The other terms in eq. (1) describe
the usual BCS-superfluidity ). The G,, G, and G, quantities are the positive
valued coupling strength constants nonvanishing in a certain energy range (the
cut-off energy range).
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As trial wave function we use the BCS wave function

IBCS)= [I (U, +V.ai.a;)0), ()
7,l=p,n
where U+ V=1 and |0) denotes the absolute vacuum.
Thus the constrained energy functional is:

W =(BCS|H - A,N,—,N,/BCS)
=YL 2UE, —-A)VE+E2E, AV, —Goxi—- Gt — Gaxixi. (6)

r Sn
Here A, denotes the proton (neutron) Fermi level, ﬁp[ﬁn) 1s the proton
(neutron) number aperator and

XE:Z Vs.Us;! (7)

-~

E

Spn)

Evv~ NG+ Gatlio) Vi~ 1GAV2,, 5 V2 ®

Spin) Sp(n) Faip)
Sn(p)

are the modified single-particle energy levels.

Usually the self-consistent field corrections éﬁ — E, are omitted ').

The minimization of W given by ¢q. (6) with respect to the variational parameters
leads to the following gap and constraint equations:

5 1
%( Gp(n]+ G4X:1(p}) E = 1 s
Spin) “Sp(n)
ES- _A.j
E (1 - ) = N; (9)
s £

for doubly even mass deformed nuclei, For odd- or odd-odd-mass deformed nuclei

the egs. (9) are modified according to the blocking effect ).
The new quantities in eq. (9) are defined as follows:

Es,=[(E~s,_Ai)2+A?]l/2s (10)
gy 1 E, — A
(V;',')—:E(ld:—‘s—) ; (11)

The egs. (9) represent a set of coupled nonlinear egs. for the nontrivial (superfluid)
solutions. The original gap and constraint equations including the trivial solutions
are:

Aoy = Xpa( Gp+ G4Xﬁ(p1) s
N;=Y2V; (12)

3
5y

where

=Y (13)
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In the egs. (9) and (12) N, is the number of protons (neutrons) taken into account
in the cut-off energy range.
For a spherical nucleus the labels s, stand for the single-particle shell-model
quantum numbers n, [, j and the eqs. (6) and (9) should be replaced by:
W=Y20,(E, —A)Vi+L 20, (E, - A) Vi = GXs— GoXo— GaXpXa  (14)

Sn

and
ﬂspln!

%( Gp(n) + G4X.!E'J(p)} Z

Sp(ny ©3p(n)

=1,

" (15)
Es_ = Aj
N‘ = z ﬂ*r (1 = ) F
s E,,
where Eﬁ_ has the expression (8) in which x; should be replaced by x; and
o Q.\[Al'
Xi= 1L 5= (16)
Spin) 2551
with
0, =3(2j+1). (17)

4;, e, U, and V, have the same expressions as those given by egs. (10)-(12) in
which the correlation functions (16) should be used.

In practical calculations the corrected single-particle energies E, from eq. (8) are
generated within the Woods-Saxon shell model '*) or the Hartree-Fock approach.

Some more grounds concerning the H, term (4) could be the following. Recently
a Fermi liquid model for a-clusterization and a-decay has been proposed 2') and
tested *>**) on different a-transitions. This model has been born as a result of a
comprehensive analysis **) of the current a-decay models, where it is shown that
the known nuclear structure model wave functions are not sufficient to describe the
«-clusterization process entering the a-decay and a-transfer reactions. A scattering
amplitude form of the transition operator rather than a potential form is necessary.
The Fermi liquid model of a-decay introduces a four-nucleon interaction for the
irreducible reaction amplitude of the a-cluster formation in the four-particle channel
(fig. 1) based on a Migdal’s idea *°) following the Landau theory of quantum liquids.

Fig. 1. The a-four-nucleon vertex.
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As a matter of fact it may be shown that our H, term (4) 1s equivalent to a
field-theoretical one *°) in which the interaction vertex *'**?*) shown in fig. 1 is used.

3. Solutions of the gap equations and the phase diagram

We begin this section by recalling that for G, =0 the gap eqgs. (9) and (15) have
solutions for coupling constants G, exceeding the critical values given by the Belyaev
conditions *°):

3G Z (18)

by~ )\ |
with 2, =1 for a deformed, axially symmetric nucleus and 2, =3(2j,+1) for a
spherical one. The phase structure of this model with respect to the G; control
parameters reduces (independently for protons and neutrons) to normal phases for
G; < G and superfluid phases in the opposite cases, the phase transitions being of
the second order. Such phase transitions have been observed in two-nucleon transfer
reactions *’), a-clusterization processes, etc.

In the case of our model a complete discussion with respect to the three control
parameters G,, G, and G, and arbitrary single-particle spectra is practically impos-
sible. In order to grasp the character of the phase structure and to identify specific
features associated to the new G, coupling we consider a simplified model which
proves to be rich enough to deserve attention by itself and to suggest the highly
nontrivial behaviour of the realistic model.

Let us assume that the single-particle part (2) of our hamiltonian (1) has equidistant
level spectra for the two types of fermions and introducc the following notations;

. k

E. = BE:{ij+—, (19)
A= Ee(i)+2, (20)
g =p.G;, (2])
X = (ﬂ.ﬂdl)z 2 (22)
8.=pGy,  p=3(p,tp,), (23)

where i =p, n and k are entire numbers belonging to the A shells **) (the cut-off
energy range) specified by the intervals [—N,,, N,], while Eg(i) and A; are,
respectively, the Fermi energies for non-interacting and interacting fermions of
type L

Moreover, let us analyse the “symmetric” situation where the protons and neutrons
have the same properties:

Pe=Pa=FP; g, 8. %>
/\p_-)\n__)‘: O,—=0,=0, (24)

P
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for which the gap eqs. have symmetric solutions only

X=%, =X, 5 (25)
and the case of the half-filling of the A-shells:
N,i=n, Ny;=n+1, N;=2(n+1). (26)
Thus the constraint egs. from (9) have the solutions :
o=0=3. (27)
The correlation energy of our model becomes
&= pEco=p(W(x)— W(0))
=2(n+1)*—45,(x)+4xS_,(x) —2g,xS* (x) — g.x’S* ,(x) (28)
with
S0=1 Y [erl-1, (29)
which has to be studied on solutions of the gap equation:
F(x)=[g:+g:x58%,(x)]S ,(x)—1=0. (30)

In order to find the number and character of the solutions of eq. (30) the following
curves in the (g, g4)-plane prove to be useful.

F(x)=0, %::0, (31)
F(0)=0, (32)
e(x)=0, F(x)=0. (33)

For n =20, curve (31) (point-dash GDECF in fig. 2) separates regions in which
the number of solutions of the gap eq. (30) differ by two. Curve (32) (solid and
horizontal ADBF in fig. 2), separates regions in which the number of solutions differ
by one and in the case gy=0 recduccs to the critical value given by the Belyaev
condition (18). The crossing of the curve(33) (dashed HBEIF in fig. 2) changes the
sign of the correlation energy for one solution of the gap equation (30).

One should take into consideration in the following that the global minimum of
the correlation energy (28) corresponds to the ground state of the system, while a
local mininum may describe a metastable state of the system. Bearing then in mind
that the derivatives of the correlation energy (28) with respect to the control
parameters g, and g4, for x = x,, with x, the solution of the gap equation (30):

de
dg‘r

de
— = 38, (x) <0, (35)
dg.

= _2-1‘(13?—1(-’5{1)‘:0 » (34)
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Fig. 2. The phase diagram for the simplified model (see sect. 3).

jump when the gap parameter x, has a discontinuity we reach the following
conclusions.

In the region OADG (see fig. 2), the gap equation has no solutions and the ground
state of the system is in the normal fluid phase. ‘

In the region above ADLCT, the gap equation has one solution, which corresponds
to a negative minimum of the correlation energy. The ground state of the system is
in the superfluid phase of the first kind (see below).

In the region HGDBF, the gap equation has two solutions, one of them being a
minimum. Region DBHG has the ground state belonging to the normal fluid phase,
while the local minimum, with a positive correlation energy may correspond to a
metastable state in a superfluid phase of the second kind (see below).

In the region HBF the ground state of the system belongs to the superfluid phase
of the second kind, while the metastable state belongs to the normal fluid phase.

In the region BDECFB the gap equation has three solutions, two of them
corresponding to minima. The deepest minimum in the region BDCIB describes
the ground state of the system belonging to the superfluid phase of the first kind,
the other is associated with a metastable state belonging to the superfluid phase of
the second kind (having the gap parameter larger than the gap parameter correspond-
ing to the superfluid phase of the first kind).
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The jump from one minimum to the other occurs on curve CIB (in fig. 2), which
may be found by determining the self-intersections of curves

e(x)=const<0, F(x)=0. (36)

Crossing the curve CIBH corresponds to a first-order phase transition, while
crossing the horizontal line ADB corresponds to a second-order phase transition.

A few more comments may be in order here. First of all our mean field approach
is not to be taken too seriously for gaps which are not significantly smaller than the
cut-off. In our case this corresponds to x smaller than (n + 1), otherwise the situation
is one of strong coupling. In particular the transition to the CIB segment that appears
for vx = 20 may raise some doubts about its reality. It may be that a renormalization
group-type argument improving our correlation energy confirms or eliminates this
transition. An alternative approach to clarifying this point may be, to consider the
g, and g, control parameters level dependent, starting for instance from the calcu-
lated g, for the simple pairing problem to be found in refs. ***°), in which case a
natural cut-off would occur. In any case a large part of the regions above the ACDF
and BDECFB, lies deep inside the domain of validity of our approach, so that at
least part of the richness of the behaviour we found is to be taken as granted.

Another interesting aspect is that crossing the CIB segment corresponds to the
transition from a region in which the ground state has evolved continuously from
that at g,=0 which we call the g,-dominated one to the g,-dominated one, the
segment CIB, being the border. If part of the region CIBF in the neighbourhood
of this border 1s taken as granted, the above mentioned transition may be the analog
in our model of a phase transition from a pair superfluid phase (superfluid phase
of the first kind) to a quadruplet («-like) superfluid phase (superfluid phase of the
second kind). As to the difficulties in identifying the latter phase we remark that an
investigation in the framework of the lattice gauge theory of a nonabelian model *')
has failed to find a stable phase (at finite scale) in which the symmetry is dynamically
broken by a four-fermion condensate despite the fact that the necessity of this phase
was strongly motivated from a theoretical point of view. Even if this failure may
be traced back to the mean field approach which was used, our treatment (perhaps
renormalization group improved, quantum corrections included and restoration of
broken symmetries >*°)) seems to be from a pragmatic point of view a better
candidate for describing four-fermion correlations than considering four-fermion
condensation.

4. Determination of the coupling constant from the experiment

To fix the coupling constants G,,, G, and G, entering the hamiltonian (1) from
the experimental data we use the well-known odd-even mass differences '):

P, =28(Z-1,N)—&(Z, N)-&€(Z—-2,N)}, (37)
Py=32%(Z, N-1)-%(Z, N)-%(Z, N-2)}, (38)
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for G, and G, and '°)
P,=%(Z,N)-€(Z-2,N-2)-€(Z+1,N)+&(Z -1, N)-€(Z, N+1)
+&(Z N-1) (39)

for Gy.
Here

E(Z,N)= ¥ 2EVI-Gxi-G.xi-Guxixi (40)

S=0p. ¥a
for a doubly even nucleus and

€(Z-1,N)=E,_+ ¥ 2E V2+Y2E V:-Gi-Gx’-Giix: (41)

sp,ﬁsnp 5n
for an odd-mass one '), where

fp - Z U"D V"p ' (42)

Sp#Sap

The experimental P,, Py and P, quantities are obtained from the egs. (37-39)
by replacing the energies € by experimental *°) binding energies (—B).
The P, quantity has been chosen in the same spirit as the analogous quantity for

“ ' . 2737y
pairing vibrations ~"'), i.e.:

P,=%(Z,N)-%(Z—-2, N=2)—2A,-2A,. (43)

The quantities Pz, Py and P, involve 8 nuclei. For each nucleus of this set we
have so solve the gap egs. (9) or (15). Thus we have (o solve in all a nonlinear
system of 35 equations with 35 unknowns for each nucleus (Z, N). Taking the
A=Z+ N dependence of the coupling strength G, and G, as usual

1 1
G, :H C,MeV, & :E C,MeV, (44)

1
G.:;:;E C4 MeV, (45)

we have calculated for some rare-earth and actinide nuclei the C,, C, and C,
parameters. The results are given in table 1.

The expression (45) may be obtained by using the assumption of an approximate
factorization of the two-pair vertex interaction into two onc-pair vertex interaction
with coupling strengths of the form (44). In the performed calculations the cut-off
energy range contains approximately 40 nucleon energy levels of the deformed
Woods-Saxon potential '°). The 4, and A, gap parameters suffer a small increase
when G, is switched on.
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TasLE 1

Results of the numerical determination of the pairing and a-like correlations coupling strength constants
G,. G, and G,, the gap parameters A, A, and the odd-even P, Py and a-like P, mass differences

Nucleus G [ A 4,(MeV) 4, (MeV)
13Ndg, 193 17.1 27.7 1.170 1.160
26.4 23.6 0 0.920 1.110
1508 My, 183 18.0 29.2 0.777 0.889
24.4 21.8 0 0.685 0.850
ds: 21.0 21.6 27.0 0.832 0.991
26.7 249 0 0.752 0.925
A Dvas 24.2 21.8 22.7 0.818 0.833
277 24.6 0 0.739 0.800
'68Eri00 25.5 22.1 27.6 0.949 0.887
29.4 26.1 0 0.832 0.839
gL 1| 4 23.2 19.9 19.1 0.755 0.5843
27.8 22.3 0 0.737 0.840
LW s 26.8 19.8 222 0.908 0.803
31.3 23.0 0 0.878 0.786
2056k 24.1 25.2 22.1 0.688 1.175
31.6 26.3 0 0.670 1.080
2P0 340 21.5 15.2 0.900 0.685
L7 T ol 2 31.7 19.9 14.5 0.609 0.355

Nucleus P,(MeV)  P,(MeV)  Py(MeV)  Py(MeV) P (MeV)  PyMeV)

i th exp th exp ”‘
152
B e M e B e g
625Maq 0.474 gfg; 0.721 gf'jlgtl) o :gé?;
s a5 g:}; 0.754 g;;i ~0216 :gﬁ;ﬁ
"eaDyox 0.428 g:ﬁ: 0.684 8;233 ~0.582 :g:;;g
B — g:ggi 0.667 gjgg; -0.401 :g:;g;
'J$HI o 0.594 o 0.728 o o T
W o 0.681 g;ggé 0.741 g;ﬁ 0.076 —g%g
O 0430 g:::g 0.910 g:g:g ~0.823 _?23'2’
0Py 0.591 0.603 0.443 0.419 ~0.313 0328

o 0.538 0.542 0.546 0.543 —0.266 —0.253
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5. Superfluid enhancement factor for the a-clusterization probabilities and two-nucleon
transfer reaction probabilities

et us study the processes represented in fig. 3 whose matrix elements may be
written as follows:

Mf'rnr?.:')=<B|Qi mz;lA), (46)
where %)
Q.= ¥ 07 0(5pSp5nS0) a5 0 Guioi e Gy s (47)
.\-ps{‘.en.-;
rlprrérrnrr’:l
Q=3 X ﬂf‘rzl—:r):—(sisz)acilfrla::rr’,— (48)
sist oo
with i =p, n.

Here 7 =1 and 7 =2 corresponds to a-decay and «a-transfer reactions respectively
and 2i corresponds to two-neutron (i =n) and two-proton (i = p) transfer reactions,
respectively.

The |A) and | B) wave functions describe the states of nuclei A and B respectively.

The probabilities are I, = |M,_,|*> for a-decay, o, =|M._,|* for a-transfer reac-
tions, and &, =|M,,|* for two-nucleon transfer reactions.

A B A 8
=17 Z=2

a h a b

— —
120 1 2P

——

A B A B

Fig. 3. Diagrams describing the a-decay, a-transfer and two-nucleon transfer reactions.

The matrix elements for favoured processes can be estimated ') by the following
equations;

|M > = [(0252 _(spspsasi)xixa, (49)

|M,, P =2 (s X7, (50)

where (2) quantities are the averaged shell model without résidual interactions

matrix elements of the corresponding processes presented in fig. 3 and y; are given
in the egs. (7) or (16).

The superfluid enhancement factors )(ixi for favoured a-clusterization processes

and x7 for two-nucleon transfer reactions are given in table 2, calculated with and
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TABLE 2

Superfluid enhancement factors for favoured two- and four-nucleon processes

Nucleus C; X: X2
2INdy, 27.7 377 53.6
0 279 51.5

1508 my, 29.2 224 IR.7
0 19.1 37.5

190Gd,, 27.0 23.4 383
0 20.2 35.2

4 Dyog 22.7 22.0 29.7
_ 0 19.0 28.2
BT 00 27.6 26.9 31.2
0 222 292

L2421 2 19.1 223 44.0
0 21.9 43.8

MW s brie)e 26.6 389
0 25.4 37.7

12205108 221 159 63.1
0 15.2 56.9

e Pt s 152 33.7 47.6

without a-like four-nucleon correlations included. The overall conclusion is that
the superfluid enhancement factors increase with G, up to 20% in the superfluid
region of atomic nuclei. We expect large variations for these superfluid enhancement
factors in the regions of phase transitions. Such conclusion may explain the experi-
mental @-reduced widths of ' '*’Pb isotopes obtained in ref. *) lying probably in
the region of second-order phase transition for the proton system. The proton
superfluidity for these isotopes is probably induced by the neutron superfluidity via
the a-like four-nucleon correlations rather than assuming **) that Z = 82 ceases to
be a magic number. Other experimental factors sustaining this point of view may
be found in ref.*). The difference between the experimental and calculated *°),
within the pairing BCS-theory Te (d, °Li) Sn cross sections for ground state transi-
tions may be removed by including our a-like four-nucleon correlations. The 0"
states identificd in ref. *®) as proton pairing vibrational states in Sn isotopes could
be metastable 0" states in our model in the region of the second-order phase
transition. The calculated **) cross-sections for transitions to these 0" states within
the¢ BCS-pairing superfluid model exceed the values corresponding to a normal
metastable state in our model and the experimental values **).

As a final remark we note that the enhancement superfluid factor for a heavy
cluster decay *), the cluster containing 2n nucleons is estimated to be (x)>", where
x is the average value of the correlation function of the type given by egs. (7) or
(16). For "*C decay, for instance, this superfluid enhancement factor may increase
up to 100% for G,# 0 (see table 2).

2n



M. Apostol et al. /| Four-nucleon correlations 77
6. Summary and conclusions

The a-like (two-proton and two-neutron) four-fermion correlations are included,
in the structure of the ground and low-lying excited states of atomic nuclei in
addition to the usual pairing correlations within a BCS-like approach.

Metastable phases whose lowest states are metastable states of atomic nuclei are
predicted. With respect to the gauge space associated to particle number conservation
these metastable symmetry breaking phases play the same role as rotational symmetry
breaking shape isomers ****°) do with respect to the ordinary geometrical space. On
such metastable states bands of elementary excitations can be constructed in addition
to the ground state band, in analogy to the well-known rotational bands *’). Phase
transitions of first and second order are predicted also.

The region of superfluid nuclei could be enlarged firstly by the fact that the proton
and neutron BCS pairing superfluidity can mutually be induced by one another via
the a-like four-nucleon correlations and secondly by the appearance of the quad-
ruplet (a-like) superfluid phase.

The probabilities for a-clusterization and two-nucleon transfer reactions may
change their values as follows. In the region of the pairing superfluid phase these
probabilities for favoured processes suffer a small increase, while in the region of
the phase transitions they may present large variations.

To improve our approach we should introduce corrections describing quantum
and thermal *'***) fluctuations which may change our phase diagram. Among the
fluctuations we may remember, for instance, those accounted for by models that
treat correlations in nuclei without violating the particle number conservation **°).
To touch this topic was at the moment beyond the scope of our paper. For
comprehensive discussion including references we refer the reader to the monogtraph
by Ring and Schuck ).
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