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a b s t r a c t

Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma and an ideal

plasma slab by using a general, unifying procedure, based on equations of motion, Maxwell’s equations

and suitable boundary conditions. Known results are re-obtained in much a more direct manner and

new ones are derived. The approach consists of representing the charge disturbances by a displacement

field in the positions of the moving particles (electrons). The dielectric response and the electron energy

loss are computed. The surface contribution to the energy loss exhibits an oscillatory behaviour in the

transient regime near the surfaces. The propagation of an electromagnetic wave in these plasmas is

treated by using the retarded electromagnetic potentials. The resulting integral equations are solved and

the reflected and refracted waves are computed, as well as the reflection coefficient. For the slab we

compute also the transmitted wave and the transmission coefficient. Generalized Fresnel’s relations are

thereby obtained for any incidence angle and polarization. Bulk and surface plasmon–polariton modes

are identified. As it is well known, the field inside the plasma is either damped (evanescent) or

propagating (transparency regime), and the reflection coefficient for a semi-infinite plasma exhibits an

abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

Similarly, apart from characteristic oscillations, the reflection and transmission coefficients for a plasma

slab exhibit an appreciable enhancement in the damped regime.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

After the discovery of bulk plasmons in an infinite electron
plasma [1–3], there was a great deal of interest in plasmons
occurring in structures with special geometries, like a half-space
(semi-infinite) plasma, a plasma slab of finite thickness, a two-
plasmas interface (two plasmas bounding each other), a two-
dimensional sheet with an aperture, a slab with a cylindrical hole,
structures with surface gratings or regular holes patterns, layered
films, cylindrical rods and spherical particles, etc. There is a vast
literature on various structures with special geometries exhibiting
plasmon modes. These studies were aimed mainly at identifying
new plasmon modes, like the surface plasmons [4–11], accounting
for the electron energy loss experiments and exploring the
interaction of the electron plasma with electromagnetic radiation
(polariton excitations) [12–24]. More recently, a possible en-
hancement of the electromagnetic radiation scattered on electron
plasmas with special geometries enjoyed a particular interest
[25–27]. In all these studies the plasmon and polariton modes are
of fundamental importance [28–32]. The methods used in
deriving such results are of great diversity, resorting often to

particular assumptions, such that the basic underlying mechan-
ism of plasmons or polaritons’ occurrence is often obscured. The
need is therefore felt of having a general, unifying procedure for
deriving plasmon and polariton modes in structures with special
geometries, as based on the equation of motion of the charge
density, Maxwell’s equations and the corresponding boundary
conditions. Such a procedure is presented in this paper for an ideal
semi-infinite plasma and an ideal plasma slab.

We represent the charge disturbances as dn ¼ �n div u, where
n is the (constant, uniform) charge concentration and u is a
displacement field of the mobile charges (electrons). This
representation is valid for KuðKÞ51, where K is the wavevector
and uðKÞ is the Fourier component of the displacement field.
We assume a rigid neutralizing background of positive charge, as
in the well-known jellium model. In the static limit, i.e. for
Coulomb interaction, the Lagrangian of the electrons can be
written as

L ¼

Z
dr

1

2
mn _u2

�
1

2

Z
dr0Uðjr� r0jÞdnðrÞdnðr0Þ

� �

þ e

Z
drFðrÞdnðrÞ; ð1Þ

where m is the electron mass, UðrÞ ¼ e2=r the Coulomb energy, �e

the electron charge and FðrÞ the external scalar potential. Eq. (1)
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leads to the equation of motion

m €u ¼ n grad

Z
dr0Uðjr� r0jÞdiv uðr0Þ þ e gradF ð2Þ

which is the starting equation of our approach. We leave aside the
dissipation effects (which can easily be included in Eq. (2)).

By using the Fourier transform for an infinite plasma it is easy
to see that the eigenmode of the homogeneous Eq. (2) is the well-
known bulk plasmon mode given by o2

p ¼ 4pne2=m. On the other
side, equation dn ¼ �n div u is equivalent with Maxwell’s equa-
tion div Ei ¼ �4pedn, where Ei ¼ 4pneu is the internal electric
field (equal to �4pP, where P is the polarization). Making use of
the electric displacement D ¼ �gradF ¼ eðDþ EiÞ, we get the
well-known dielectric function e ¼ 1�o2

p=o2 in the long-wave-
length limit from the solution of the inhomogeneous Eq. (2).
Similarly, since the current density is j ¼ �en _u, we get the well-
known electrical conductivity s ¼ io2

p=4po.
We apply this approach to a semi-infinite plasma and a plasma

slab. First, we derive the surface and bulk plasmon modes and
obtain the dielectric response and the electron energy loss for a
semi-infinite plasma. The surface contribution to the energy loss
exhibits an oscillatory behaviour in the transient regime near the
surface. Further on, we consider the interaction of the semi-
infinite plasma with the electromagnetic field, as described by the
usual term ð1=cÞ

R
drjA�

R
drrF in the Lagrangian, where A is the

vector potential, r ¼ en div u is the charge density and F is the
scalar potential. We limit ourselves to the interaction with the
electric field, and compute the reflected and refracted waves, as
well as the reflection coefficient. Generalized Fresnel’s relations
are obtained for any incidence angle and polarization. We find it
more convenient to use the radiation formulae for the retarded
potentials, instead of using directly the Maxwell’s equations, and
the resulting integral equations are solved. Bulk and surface
plasmon–polariton modes are identified. The field inside the
plasma is either damped (evanescent) or propagating (transpar-
ency regime), and the reflection coefficient exhibits an abrupt
enhancement on passing from the propagating to the damping
regime (total reflection). Finally, we give similar results for a
plasma slab, where we compute also the transmitted field and the
transmission coefficient. Apart from characteristic oscillations, the
reflection and transmission coefficients for a plasma slab exhibit
an appreciable enhancement in the damped regime. The present
approach can be extended to various other plasma structures with
special geometries.

2. Plasma eigenmodes

We consider an ideal semi-infinite plasma extending over the
half-space z40 (and bounded by the vacuum for zo0). The
displacement field u is then represented as ðv;u3ÞyðzÞ, where v is
the displacement component in the ðx; yÞ-plane, u3 is the
displacement component along the z-direction and yðzÞ ¼ 1 for
z40 and yðzÞ ¼ 0 for zo0 is the step function. In equation of
motion (2) div u is then replaced by

div u ¼ div vþ
@u3

@z

� �
yðzÞ þ u3ð0ÞdðzÞ; ð3Þ

where u3ð0Þ ¼ u3ðr; z ¼ 0Þ, r being the in-plane ðx; yÞ position
vector. Eq. (2) becomes

m €u ¼ ne2 grad

Z
dr0dz0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ ðz� z0Þ2

q

� div vðr0:z0Þ þ
@u3ðr0; z0Þ

@z0

� �

þne2 grad

Z
dr0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ z2

q u3ðr
0;0Þ þ e gradF ð4Þ

for z40. One can see the (de)-polarizing field occurring at the free
surface z ¼ 0 (the second integral in Eq. (4)).

We use Fourier transforms of the type

uðr; z; tÞ ¼
X

k

Z
douðk; z;oÞeikre�iot ð5Þ

(for in-plane unit area), as well as the Fourier representation

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p ¼

X
k

2p
k

e�kjzjeikr ð6Þ

for the Coulomb potential. Then, it is easy to see that Eq. (4) leads
to the integral equation

o2v ¼
1

2
ko2

p

Z 1
0

dz0ve�kjz�z0 j þ
1

2k
o2

p

Z 1
0

dz0
@v

@z0
@

@z0
e�kjz�z0 j �

iek

m
F

ð7Þ

and iku3 ¼ @v=@z, where we have dropped out for simplicity the
arguments k; z and o. The v-component of the displacement field
is directed along the wavevector k (in-plane longitudinal waves).
This integral equation can easily be solved. Integrating by parts in
its rhs we get

o2v ¼ o2
pv�

1

2
o2

pv0e�kz �
iek

m
F; ð8Þ

hence

v ¼
ieko2

p

m

F0

ðo2 �o2
pÞð2o2 �o2

pÞ
e�kz �

iek

m

F
o2 �o2

p

u3 ¼ �
eko2

p

m

F0

ðo2 �o2
pÞð2o2 �o2

pÞ
e�kz �

e

m

F0

o2 �o2
p

; ð9Þ

where v0 ¼ vðz ¼ 0Þ, F0 ¼ Fðz ¼ 0Þ and F0 ¼ @F=@z. One can see
the surface contributions (terms proportional to F0e�kz) and bulk
contributions (F;F0-terms).

The solutions given by Eqs. (9) exhibit two eigenmodes, the
bulk plasmon ob ¼ op and the surface plasmon os ¼ op=

ffiffiffi
2
p

, as it
is well known. Indeed, the homogeneous Eq. (8) (F ¼ 0) has two
solutions: the surface plasmon v ¼ v0e�kz for o2 ¼ o2

p=2 and the
bulk plasmon v0 ¼ 0 for o2 ¼ o2

p. Making use of this observation
we can represent the general solution as an eigenmodes series

vðk; zÞ ¼
ffiffiffiffiffiffi
2k
p

v0ðkÞe
�kz þ

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

k2 þ k2

s
vðk;kÞsinkz ð10Þ

for z40, where vðk;�kÞ ¼ �vðk;kÞ and iku3ðk; zÞ ¼ @vðk; zÞ=@z.
Then, it is easy to see that the hamiltonian H ¼ T þ U correspond-
ing to the Lagrangian L ¼ T � U given by Eq. (1) becomes

T ¼ nm
X

k

_v�0ðkÞ _v0ðkÞ þ nm
X
kk

_v�ðk;kÞ _vðk;kÞ

U ¼ 2pn2e2
X

k

v�0ðkÞv0ðkÞ þ 4pn2e2
X
kk

v�ðk;kÞvðk;kÞ; ð11Þ

where T is the kinetic energy and U is the potential energy. We
can see that this hamiltonian corresponds to harmonic oscillators
with frequencies os ¼ op=

ffiffiffi
2
p

and ob ¼ op.
Making use of Ei ¼ 4pneu and Eqs. (9) we can write down the

internal field (polarization) as

E?ðk; z;oÞ ¼
iko4

pFðk;0;oÞ
ðo2 �o2

pÞð2o2 �o2
pÞ

e�kz �
iko2

pFðk; z;oÞ
o2 �o2

p

EJðk; z;oÞ ¼ �
ko4

pFðk;0;oÞ
ðo2 �o2

pÞð2o2 �o2
pÞ

e�kz �
o2

pF
0ðk; z;oÞ

o2 �o2
p

; ð12Þ
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where E? is directed along the in-plane wavevector k and EJ is
parallel with the z-axis (perpendicular to the surface z ¼ 0). This is
the dielectric response of the semi-infinite plasma to an external
potential.

We take an external potential of the form Fðk; zÞ ¼ F0
ðkÞeikz

(leaving aside the frequency argument o) and get the electric
displacement D?ðk; zÞ ¼ �ikF0

ðkÞeikz and DJðk; zÞ ¼ �ikF0
ðkÞeikz

from D ¼ �gradF. We can see that the surface terms do not
contribute to this response, as expected, since these terms are
localized. Making use of Ei ¼ ð1=e� 1ÞD, we get the well-known
dielectric function eðk;oÞ ¼ 1�o2

p=o2 in the long-wavelength
limit.

3. Electron energy loss

It is well known that the energy loss per unit time (stopping
power) is given by

P ¼
d

dt

mv2

2

� �
¼ �evEi ð13Þ

for an electron moving with velocity v ¼ ðv?; vJÞ, where the field Ei

is taken at r ¼ v?t and z ¼ vJt for t40 ðz40Þ. It is assumed that
the electron energy is sufficiently large and the energy loss is
small enough to use a constant v in estimating the rhs of Eq. (13).
The potential created by the electron is given by the Poisson
equation DF ¼ 4pedðr� v?tÞdðz� vJtÞ, whence, by making use of
the Fourier representation (6), we get

Fðk; z;oÞ ¼ � 2evJ

ðo� kv?Þ
2
þ k2v2

J

e�iðkv?�oÞz=vJ : ð14Þ

We introduce this potential in Eqs. (12) and compute the energy
loss given by Eq. (13). It contains two contributions, one
associated with the bulk plasmons,

Pb ¼ e2o2
p

X
k

Z
do io

o2
p �o2

�
2vJ

ðo� kv?Þ
2
þ k2v2

J

ð15Þ

and another arising from surface effects,

Ps ¼ e2o4
p

X
k

Z
do 1

ðo2 �o2
p=2Þðo2 �o2

pÞ
�

vJðikv? � kvJÞ

ðo� kv?Þ
2
þ k2v2

J

�e�kvJteiðkv?�oÞt : ð16Þ

In performing the o-integrations in Eqs. (15) and (16) we retain
only the plasmon contributions arising from the poles o ¼ op and
o ¼ op=

ffiffiffi
2
p

. For normal incidence (v? ¼ 0, vJ ¼ v) we get easily
the well-known bulk contribution Pb ¼ ð�e2o2

p=vÞlnðvk0=opÞ,
where k0 is an upper cut-off (associated, as usually, with the
ionization energy, or with the inverse of the mean inter-particle
spacing, etc), and the surface contribution

Ps ¼ �
e2op

vt
ð
ffiffiffi
2
p

sinopt=
ffiffiffi
2
p
� sinopÞ: ð17Þ

We can see in Eq. (17) the oscillatory behaviour of the stopping
power arising from the surface effects in the transient regime near
the surface.

4. Interaction with the electromagnetic field. Polaritons

We assume a plane wave incident on the plasma surface under
angle a. Its frequency is given by o ¼ cK, where c is the velocity of
light and the wavevector K ¼ ðk;kÞ has the in-plane component k
and the perpendicular-to-plane component k, such as k ¼ Ksina
and k ¼ Kcosa. In addition, k ¼ kðcosj; sinjÞ. The electric field is
taken as E0 ¼ E0ðcosb;0;�sinbÞ � eikreikze�iot , and we impose the

condition cosbsinacosj� sinbcosa ¼ 0 (transversality condition
KE0 ¼ 0). The angle b defines the direction of the polarization of
the incident field. The geometry of the incident wave is shown in
Fig. 1.

In the presence of an electromagnetic wave we use the
equation of motion

o2u ¼
e

m
Eþ

e

m
E0eikz ð18Þ

for z40, where E is the polarizing field; in Eq. (18) we have
preserved explicitly only the z-dependence (i.e. we leave aside the
factors eikre�iot). We find it convenient to employ the vector
potential

Aðr; z; tÞ ¼
1

c

Z
dr0
Z

dz0
jðr0; z0; t � R=cÞ

R
ð19Þ

and the scalar potential

Fðr; z; tÞ ¼
Z

dr0
Z

dz0
rðr0; z0; t � R=cÞ

R
; ð20Þ

where j ¼ �ne _uyðzÞeikre�iot is the current density, r ¼ ne div u ¼

neðikvþ ð@u3=@zÞÞyðzÞeikre�iot þ neu3ð0ÞdðzÞeikre�iot is the charge

density and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ ðz� z0Þ2

q
. The integrals in Eqs. (19)

and (20) implies the known integral [33]Z 1
jzj

dxJ0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � z2

p
Þeiox=c ¼

i

k eikjzj; ð21Þ

where J0 is the zeroth-order Bessel function of the first kind (and

o2=c2 ¼ k2 þ k2). It is convenient to use the projections of the in-

plane displacement field v on the vectors k and

k? ¼ kð�sinj; cosjÞ, k?k ¼ 0. We denote these components by

v1 ¼ kv=k and v2 ¼ k?v=k, and use also the components

E1 ¼ kE=k, E2 ¼ k?E=k and similar ones for the external field E0.
We give here the components of the external field

E01 ¼ E0cosbcosj; E02 ¼ �E0cosbsinj; E03 ¼ �E0sinb: ð22Þ

One can check immediately the transversality condition

E01kþ E03k ¼ 0. Making use of E ¼ �ð1=cÞð@A=@tÞ � gradF, Eqs.
(19) and (20) give the electric field

E1 ¼ �2pinek
Z

0
dz0v1ðz

0Þeikjz�z0 j � 2pne
k

k

Z
0

dz0u3ðz
0Þ
@

@z0
eikjz�z0 j;

x

→
K

�

→
k

E0x

O
E0z

y

z→κ

�

Fig. 1. Electromagnetic plane wave E0, with wavevector K, incident on the surface

z ¼ 0.
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E2 ¼ �2pine
o2

c2k

Z
0

dz0v2ðz
0Þeikjz�z0 j;

E3 ¼ 2pne
k

k

Z
0

dz0v1ðz
0Þ
@

@z
eikjz�z0 j � 2pine

k2

k

Z
0

dz0u3ðz
0Þeikjz�z0 j

þ4pneu3 ð23Þ

for z40. It is worth observing in deriving these equations the non-
intervertibility of the derivatives and the integrals, according to
the identity

@

@z

Z
0

dz0f ðz0Þ
@

@z0
eikjz�z0 j ¼ k2

Z
0

dz0f ðz0Þeikjz�z0 j � 2ikf ðzÞ ð24Þ

for any function f ðzÞ, z40; it is due to the discontinuity in the

derivative of the function eikjz�z0 j for z ¼ z0. Now, we employ
equation of motion (18) in Eqs. (23) and get the integral equations

o2v1 ¼ �
io2

pk
2

Z
0

dz0v1ðz
0Þeikjz�z0 j �

o2
pk

2k

Z
0

dz0u3ðz
0Þ
@

@z0
eikjz�z0 j

þ
e

m
E01eikz;

o2v2 ¼ �
io2

po2

2c2k

Z
0

dz0v2ðz
0Þeikjz�z0 j þ

e

m
E02eikz;

o2u3 ¼
o2

pk

2k

Z
0

dz0v1ðz
0Þ
@

@z
eikjz�z0 j �

io2
pk2

2k

Z
0

dz0u3ðz
0Þeikjz�z0 j

þo2
pu3 þ

e

m
E03eikz ð25Þ

for the coordinates v1;2 and u3 in the region z40.

The second Eq. (25) can be solved straightforwardly by noticing
that

@2

@z2

Z
0

dz0v2ðz
0Þeikjz�z0 j ¼ �k2

Z
0

dz0v2ðz
0Þeikjz�z0 j þ 2ikv2: ð26Þ

We get

@2v2

@z2
þ ðk2 �o2

p=c2Þv2 ¼ 0: ð27Þ

The solution of this equation is

v2 ¼
2eE02

mo2
p

�
kðk� k0Þ

K2
eik0z; ð28Þ

where

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �o2

p=c2
q

¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 cos2 a�o2

p

q
: ð29Þ

The wavevector k0 can also be written in a more familiar form
k0 ¼ ðo=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� sin2 a

p
, where e ¼ 1�o2

p=o2 is the dielectric
function. The corresponding component of the (total) electric
field (the refracted field), can be obtained from Eq. (18); it is given
by ðmo2=eÞv2. For k2oo2

p=c2 ðocosaoopÞ this field does not
propagate. For k24o2

p=c2 (o greater than the transparency edge
op=cosa) it represents a refracted wave (transparency regime)
with the refraction angle a0 given by Snell’s law

sina0

sina ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�o2
p=o2

q ¼ 1=
ffiffiffi
e
p
: ð30Þ

The polariton frequency is given by

o2 ¼ c2K2 ¼ o2
p þ c2K 02 ð31Þ

as it is well known, where K 02 ¼ k02 þ k2.
The first and the third Eqs. (25) can be solved by using an

equation similar with Eq. (26) and by noticing that they imply

k02u3 ¼ ik
@v1

@z
: ð32Þ

We get

v1 ¼
2eE01

mo2
p

�
k0ðk� k0Þ
kk0 þ k2

eik0z ð33Þ

and

u3 ¼
2eE03

mo2
p

�
kðk� k0Þ
kk0 þ k2

eik0z: ð34Þ

Similarly, the corresponding components of the refracted field are
given by Eq. (18). It is easy to check the transversality condition
v1kþ u3k0 ¼ 0 (and the vanishing of the bulk charge
neðikvþ @u3=@zÞ ¼ 0).

We can see that the polarization field E in Eq. (18) cancels out
the original incident field E0 and gives the total, refracted field
mo2u=e inside the plasma. This is an illustration of the so-called
Ewald–Oseen extinction theorem [17,34].

It is worth investigating the eigenvalues of the homogeneous
system of integral Eqs. (25), for parameter k given by
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=c2 � k2

p
. Such eigenvalues are given by the roots of the

vanishing denominator in Eqs. (33) and (34), i.e. by equation
kk0 þ k2 ¼ 0. This equation has real roots for o only for the
damped regime, i.e. for k ¼ ijkj and k0 ¼ ijk0j. Providing these
conditions are satisfied, there is only one acceptable branch of
excitations, given by

o2 ¼
2o2

pc2k2

o2
p þ 2c2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

p þ 4c4k4
q : ð35Þ

We can see that o�ck in the long wavelength limit and it
approaches the surface-plasmon frequency o�op=

ffiffiffi
2
p

in the non-
retarded limit (ck-1). These excitations are surface plasmon–-
polariton modes. We note that they imply v2 ¼ 0 and v1;u3�e�jk

0 jz.
In addition, a careful analysis of the homogeneous system of Eqs.
(25) reveals another branch of excitations, given by o ¼ op,
which, occurring in this context, may be termed the bulk
plasmon–polariton modes. They are characterized by v2 ¼ 0
and v1ðk;0Þ ¼ 0. For all these modes we have
u3 ¼ ½ic

2k=ðo2 � c2k2 �o2
pÞ�@v1=@z.

In order to get the reflected wave (the region zo0) we turn to
Eqs. (23) and use therein the solutions given above for v1;2 and u3.
It is worth noting here that the discontinuity term o2

pu3 does not
appear anymore in these equations (because z040 and zo0 and
we cannot have z ¼ z0). The integrations in Eqs. (23) are
straightforward and we get the field

E1 ¼ E01
k� k0

kþ k0 �
kk0 � k2

kk0 þ k2
e�ikz; ð36Þ

E2 ¼ E02
k� k0

kþ k0 e
�ikz ð37Þ

and

E3 ¼ �E03
k� k0

kþ k0 �
kk0 � k2

kk0 þ k2
e�ikz: ð38Þ

We can see that this field represents the reflected wave ðk-� kÞ
and we can check its transversality to the propagation wavevector.
Making use of the reflected field Erefl given by Eqs. (36)–(38) and
the refracted field Erefr obtained from Eqs. (18) and (23) ðErefr ¼

Eþ E0 ¼ mo2u=eÞ one can check the continuity of the electric
field and electric displacement at the surface ðz ¼ 0Þ in the form
E1;2refl þ E01;2 ¼ E1;2refr , E3refl þ E03 ¼ eE3refr , where e ¼ 1�o2

p=o2.
The angle of total polarization (Brewster’s angle) is given by
kk0 � k2 ¼ 0, or tan2a ¼ 1�o2

p=o2 ¼ e (for aop=4). The above
equations provide generalized Fresnel’s relations between the
amplitudes of the reflected, refracted and incident waves at the
surface for any incidence angle and polarization. They can also be
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written by using o2 ¼ o2
p=ð1� eÞ, where e is the dielectric

function.
The reflection coefficient R ¼ jEreflj

2=jE0j
2 can be obtained

straightforwardly from the reflected fields given by Eqs.
(36)–(38). It can be written as

R ¼ R1½cos2b sin2jþ R2ðcos2 b cos2jþ sin2 bÞ�; ð39Þ

where

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 cos2 a�o2

p

q
�o cosaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 cos2a�o2
p

q
þo cosa

�������
�������
2

ð40Þ

and

R2 ¼
cosa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 cos2 a�o2

p

q
�o sin2 a

cosa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 cos2 a�o2

p

q
þo sin2 a

�������
�������
2

: ð41Þ

The first term in the rhs of Eq. (39) corresponds to
b ¼ 0 ðj ¼ p=2; s-wave, electric field perpendicular to the plane
of incidence), while the second term corresponds to b ¼ a (j ¼ 0;
p-wave, electric field in the plane of incidence). It is easy to see
that there exists a cusp (shoulder) in the behaviour of the function
RðoÞ, occurring at the transparency edge o ¼ op=cosa, where the
reflection coefficient exhibits a sudden enhancement on passing
from the propagating regime to the damped one, as expected
(total reflection). The condition for total reflection can also be
written as sina ¼

ffiffiffi
e
p

, where R ¼ 1 (R1;2 ¼ 1), as it is well known.
For illustration, the reflection coefficient is shown in Fig. 2 for
b ¼ p=6 and various incidence angles. The reflection coefficient is
vanishing at o2 ¼ o2

p=ð1� tan2aÞ for a ¼ bop=4 ðR2 ¼ 0;j ¼ 0Þ.

5. Plasma slab

We consider an ideal plasma slab of thickness d, extending over
the region 0ozod and bounded by the vacuum. The displacement
field u can be represented as ðv;u3Þ½yðzÞ � yðz� dÞ�, where v is the
displacement component in the ðx; yÞ-plane and u3 is the
displacement component along the z-direction. The approach
presented above for a semi-infinite plasma can easily be extended
to this case. The analogous of the equation of motion (4) exhibits

now two polarization contributions, arising from the two surfaces.
The dielectric response similar to Eq. (9) is given by

v ¼
ieko2

p

m

�
ð2o2 �o2

pÞF0 �o2
pFde�kd

ðo2 �o2
pÞ½2o2 �o2

pð1� e�kdÞ�½2o2 �o2
pð1þ e�kdÞ�

e�kz

þ
ieko2

p

m
�

ð2o2 �o2
pÞFd �o2

pF0e�kd

ðo2 �o2
pÞ½2o2 �o2

pð1� e�kdÞ�½2o2 �o2
pð1þ e�kdÞ�

�ekz�kd �
iek

m

F
o2 �o2

p

ð42Þ

and iku3 ¼ @v=@z, where F0 ¼ Fðz ¼ 0Þ, Fd ¼ Fðz ¼ dÞ, 0ozod.
The electric field is given by E? ¼ 4pnev and EJ ¼ 4pneu3. One can
see that, beside the bulk plasmon mode o2

p , there appears two
surface modes given by o2

pð17e�kdÞ=2, as it is well known. For
d-1 Eq. (42) becomes the first Eq. (9) for the semi-infinite
plasma. For d-0 we get the well-known plasma frequencyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pnse2=mÞk

p
for a sheet with surface electron density ns ¼ nd.

The bulk contribution to the energy loss is the same as for the
semi-infinite plasma. We compute the surface contribution to the
electron energy loss for kdbopd=vb1, i.e. for a fast electron
moving with velocity v, which, however, spends enough time in
the sample to excite plasmons. For normal incidence the surface
contribution consists of two oscillatory terms

Ps ¼ �
e2op

vt
ð
ffiffiffi
2
p

sinopt=
ffiffiffi
2
p
� sinoptÞ

�
e2op

d� vt
½
ffiffiffi
2
p

sinopðd=v� tÞ=
ffiffiffi
2
p
� sinopðd=v� tÞ� ð43Þ

corresponding to the two surfaces, for 0otod=v. The total energy
loss during the passage through the slab is given byZ d=v

0
dtPsC

Z 1
0

dtPs ¼ �pð
ffiffiffi
2
p
� 1Þ

e2op

v
: ð44Þ

We use again the equation of motion (18) and the retarded
potentials given by Eqs. (19) and (20) in order to get the refracted
field (field inside the slab), reflected ðzo0Þ and transmitted ðz4dÞ

fields. The polarization field is given by the same equations (23),
where the z-integration is limited to the region 0ozod. The same
holds for the equations of motion (25). We solve these equations
by the same method used above. Within the slab we have two
waves of the form e7ik0z, one being the refracted wave through the
first surface ðz ¼ 0Þ, the other being the reflected wave on the
second surface ðz ¼ dÞ. The wavevector k0 is given by the same Eq.
(29) and the transparency edge is given by the same condition
ocosa ¼ op as for a semi-infinite plasma. We get

v2 ¼ A2 eik0z �
k� k0

kþ k0e
2ik0d � e�ik0z

� �
; ð45Þ

where

A2 ¼
2eE02

mo2
p

�
kðk� k0Þðkþ k0Þ2

K2½ðkþ k0Þ2 � ðk� k0Þ2e2ik0d�
ð46Þ

and

v1 ¼ A1 eik0z �
k� k0

kþ k0 �
kk0 � k2

kk0 þ k2
e2ik0d � e�ik0z

� �
; ð47Þ

where

A1 ¼
2eE01

mo2
p

�
k0ðk� k0Þðkþ k0Þ2ðkk0 þ k2Þ

ðkþ k0Þ2ðkk0 þ k2Þ
2
� ðk� k0Þ2ðkk0 � k2Þ

2e2ik0d
; ð48Þ

the third component can be obtained from k02u3 ¼ ikð@v1=@zÞ. One
can check the transversality of these waves and can compute the
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Fig. 2. Reflection coefficient for a semi-infinite plasma for b ¼ p=6 and various

incidence angles a. One can see the shoulder occurring at the transparency edge

op=cosa and the zero occurring at o2 ¼ o2
p=ð1� tan2aÞ for

a ¼ b ¼ p=6 ðR2 ¼ 0;j ¼ 0Þ.
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dispersion relations for the eigenvalues (bulk and surface
plasmon-polaritons) in the like manner as for the semi-infinite
plasma.

The reflected field is given by

E1 ¼ E01ð1� e2ik0dÞ

�
ðk2 � k02Þðk2k02 � k4Þ

ðkþ k0Þ2ðkk0 þ k2Þ
2
� ðk� k0Þ2ðkk0 � k2Þ

2e2ik0d
e�ikz;

E2 ¼ E02ð1� e2ik0dÞ
k2 � k02

ðkþ k0Þ2 � ðk� k0Þ2e2ik0d
e�ikz ð49Þ

and E3 ¼ �E03ðE1=E01Þ.
From the above results one can check the continuity of the

electric field and electric displacement as well as the angle of total
polarization given by tan2a ¼ 1�o2

p=o2 ¼ e. If we take formally
e2ik0d-0 we recover all the fields for the semi-infinite plasma.
Indeed, for the semi-infinite plasma all the integrations to z-1

are taken by assuming a vanishing factor e�mz, m40, and letting m
go to zero. If we preserve this factor for the slab, it gives rise to
factors of the form e2ik0de�md, which are vanishing for d-1. The
limit d-0 (plasma sheet) cannot be taken directly on the above
results (op�1=

ffiffiffi
d
p

, k0�iop=c), because of the discontinuities
arising from the y-function. The calculations for a plasma sheet
with a finite (superficial) charge density ns must be done
separately. They are left, together with other related results, for
a forthcoming publication. The limit k0d51 (kd51) can be taken
directly on the formulae given here. It corresponds to wavelengths
much longer than the thickness of the slab.

The reflection coefficient for the plasma slab R ¼ jEreflj
2=jE0j

2,
where the reflected field is given by Eqs. (49), has a different
structure than the reflection coefficient for the semi-infinite
plasma. It can be written as

R ¼
o4

p

c4
j1� e2ik0dj2½R1cos2b sin2 j

þR2ðcos2b cos2 jþ sin2 bÞ�; ð50Þ

where

R1 ¼
1

jðkþ k0Þ2 � ðk� k0Þ2e2ik0dj2
ð51Þ

and

R2 ¼
jk2k02 � k4j2

jðkþ k0Þ2ðkk0 þ k2Þ
2
� ðk� k0Þ2ðkk0 � k2Þ

2e2ik0dj2
: ð52Þ

The reflection coefficient given by Eq. (50) is shown in Figs. 3 and
4 for b ¼ 0, j ¼ p=2 (s-wave) and, respectively, a ¼ b, j ¼ 0 (p-
wave) and dop=c ¼ 1. The reflection coefficient exhibits
characteristic oscillations arising from the exponential factor in
Eqs. (50)–(52) and has an abrupt enhancement in the damping
regime. In addition, R2 is vanishing for o2 ¼ o2

p=ð1� tan2 aÞ
ðaop=4Þ and R2 ¼ 1 for o ¼ op.

The transmitted field (region z4d) is given by

E1 ¼ E01
4K2kk0ðk02 þ k2Þeiðk0�kÞd

ðkþ k0Þ2ðkk0 þ k2Þ
2
� ðk� k0Þ2ðkk0 � k2Þ

2e2ik0d
eikz;

E2 ¼ E02
4k0keiðk0�kÞd

ðkþ k0Þ2 � ðk� k0Þ2e2ik0d
eikz ð53Þ
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Fig. 3. Reflection coefficient for a slab of thickness d ðdop=c ¼ 1Þ for b ¼ 0, j ¼
p=2 (s-wave) and a few incidence angles a. Its slope is continuous at the

transparency edge ðocosa ¼ opÞ. The oscillations occurring in the transparency

regime are too small to be visible in figure.
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and E3 ¼ E03ðE1=E01Þ. One can check the continuity of the electric
field and electric displacement at the surface z ¼ d. In the limit
d-1 the transmitted field is vanishing. The transmission
coefficient given by T ¼ jEtr j

2=jE0j
2, where Etr is given by Eqs.

(53), can be written as

T ¼ 16k2jk0j2 R1 cos2 b sin2 j
h

þ
K4jk02 þ k2j2

jk2k02 � k4j2
R2ðcos2 b cos2 jþ sin2 bÞ

�
; ð54Þ

where R1;2 are given by Eqs. (51) and (52). This transmission
coefficient is shown in Figs. 5 and 6 for b ¼ 0, j ¼ p=2 (s-wave)
and, respectively, a ¼ b, j ¼ 0 (p-wave) and dop=c ¼ 1. Beside the
characteristic cusp occurring at the transparency edge
ðocosa ¼ opÞ, the transmission coefficient exhibits an
appreciable enhancement below this edge. For a ¼ b, j ¼ 0 (p-
wave) and o ¼ op; the reflection coefficient attains the value
unity and the transmission coefficient vanishes. The fields derived
above can be viewed as generalized Fresnel’s relations for a
plasma slab.

6. Conclusions

The approach presented here is a quasi-classical one, valid for
wavelengths much longer than the amplitude of the Fourier
components of the displacement field u. This is not a particularly
restrictive condition for the classical dynamics of the electro-
magnetic field interacting with matter. When this condition is
violated, as, for instance, for wavelengths much shorter than the
mean separation distance between electrons, there appear both
higher-order terms in the equations of motion and the coupling to
the individual motion of the electrons. These couplings affect in
general the dispersion relations and introduce a finite lifetime
(damping) for the plasmon and polariton modes.

Making use of the equations of motion for the displacement
field u and the radiation formulae for the electromagnetic
potentials, we have computed herein the plasmon and polariton
modes for an ideal semi-infinite electron plasma and an ideal
plasma slab of finite thickness, as well as the dielectric response,
the electron energy loss, the reflected and refracted waves and the
reflection coefficient. For the semi-infinite plasma we have

identified the bulk and surface plasmon–polariton modes and
for the plasma slab we have computed also the transmitted wave
and the transmission coefficient. It was shown that the stopping
power due to the surface effects has a characteristic oscillatory
behaviour in the transient regime near the surfaces. The field
inside the plasma is either damped (evanescent) or propagating,
as it is well known, and the reflection coefficient for the semi-
infinite plasma exhibits a sudden enhancement on passing from
the propagating to the damped regime, as expected. The
transparency edge is given by ocosa ¼ op, where a is the
incidence angle, o is the frequency of the incident wave and op

is the plasma frequency. Apart from characteristic oscillations, the
reflection and transmission coefficients for the plasma slab
exhibit an appreciable enhancement below the transparency edge.

Other effects related to the dynamics of a semi-infinite
electron plasma, or, in general, various plasmas with rectangular
geometries, can be computed similarly by using the method
presented here. The method can also be applied to plasmas with
other, more particular, geometries. The dissipation can be
introduced (as for metals) and a model can be formulated for
dielectrics, amenable to the method presented here. This will
allow the treatment of more realistic cases as well as various
interfaces, in particular plasmas (or metals) bounded by di-
electrics. These investigations are left for forthcoming publica-
tions.
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