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a b s t r a c t

We compute the reflected and refracted electromagnetic fields for an ideal semi-infinite body (either a
plasma or a dielectric), as well as the reflection coefficient, by using a general approach based on the
polarization equation of motion and electromagnetic potentials. The method consists of representing the
charge disturbances by a displacement field in the positions of the moving charges. The propagation of
an electromagnetic wave in matter is treated by means of the retarded electromagnetic potentials, and
the resulting integral equations are solved. Generalized Fresnel’s relations are thereby obtained for any
incidence angle and polarization and the angles of total polarization and total reflection are derived (the
latter for the plasma). Bulk and surface plasmon–polariton modes are also identified for the plasma. As
it is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency
regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating
regime to the damped one (total reflection).

© 2009 Elsevier Ltd. All rights reserved.

As is well known, the propagation of the eletromagnetic waves
in matter is described usually by Fresnel’s theory, which proved
to be very successful for describing reflection and refraction [1,
2]. On the other hand, the matter polarization and response
is usually represented by the dielectric function (and, in a
more general form, by the magnetic permeability and electrical
conductivity). This latter point raises some queries in applying
the theory to particular cases, especially to structures with
restricted geometries. In addition, the dielectric functions are
either introduced by various ansatze or are model dependent.
It would be desirable, therefore, of describing the reflection
and refraction of the electromagnetic field without resorting to
particular assumptions on the dielectric function, at least for
reasonably realistic models [3–18]. This is particularly relevant for
recent investigations of the electromagnetic waves in structures
with special geometries, where a possible enhancement of the
electromagnetic radiation has been reported [19–21].
We compute herein the reflected and refracted electromagnetic

fields for a semi-infinite (half-space) body, first for a plasma and
thereafter we describe briefly the extension of the calculations
to a dielectric (insulator). The method we use is based on
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the electromagnetic potentials and the equation of motion for
polarization. We represent the charge disturbances as δn =
−ndivu, where n is the (constant, uniform) charge concentration
and u is a displacement field of themobile charges (electrons). This
representation is valid for Ku(K) � 1, where K is the wavevector
and u(K) is the Fourier component of the displacement field. We
assume a rigid neutralizing background of positive charge, as in the
well-known jellium model.
We assume a plane wave incident on the body surface under

angle α. Its frequency is given byω = cK , where c is the velocity of
light and the wavevector K = (k, κ) has the in-plane component
k and the perpendicular-to-plane component κ , such as k =
K sinα and κ = K cosα. In addition, k = k(cosϕ, sinϕ). The
electric field is taken as E0 = E0(cosβ, 0,− sinβ) × eikreiκze−iωt ,
and we impose the condition cosβ sinα cosϕ − sinβ cosα =
0 (transversality condition KE0 = 0). The angle β defines the
direction of the polarization of the incident field.
For a plasma, in the presence of an electromagnetic field E0 we

use the equation of motion

ü = −
e
m

E−
e
m

E0, (1)

for the displacement field u, where −e is the electron charge, m
is the electron mass and E is the polarizing field. We leave aside
the dissipation effects (which can easily be included in Eq. (1)).
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We consider an ideal semi-infinite body extending over the half-
space z > 0 (and bounded by the vacuum for z < 0). The
displacement field u is then represented as (v, u3)θ(z), where
v is the displacement component in the (x, y)-plane, u3 is the
displacement component along the z-direction and θ(z) = 1 for
z > 0 and θ(z) = 0 for z < 0 is the step function. We denote by u
the couple (v, u3) and use Fourier transforms of the type

u(r, z; t) =
∑
k

∫
dωu(k, z;ω)eikre−iωt (2)

where r is the (x, y)-in-plane position vector. Eq. (1) becomes

ω2u =
e
m

E+
e
m

E0eiκz, (3)

for z > 0. In Eq. (3) we have preserved explicitly only the z-
dependence (i.e. we leave aside the factors eikre−iωt ). We find it
convenient to employ the vector potential

A(r, z; t) =
1
c

∫
dr′
∫
dz ′

j(r′, z ′; t − R/c)
R

(4)

and the scalar potential

Φ(r, z; t) =
∫
dr′
∫
dz ′
ρ(r′, z ′; t − R/c)

R
, (5)

where j = −neu̇θ(z)eikre−iωt is the current density, ρ = nedivu =
ne
(
ikv+ ∂u3

∂z

)
θ(z)eikre−iωt + neu3(0)δ(z)eikre−iωt is the charge

density and R =
√
(r− r′)2 + (z − z ′)2. The integrals in Eqs. (4)

and (5) implies the known integral [22]∫
∞

|z|
dxJ0

(
k
√
x2 − z2

)
eiωx/c =

i
κ
eiκ|z|, (6)

where J0 is the zeroth-order Bessel function of the first kind (and
κ2 = ω2/c2 − k2). It is convenient to use the projections of the
in-plane displacement field v on the vector k and on the vector
k⊥ = k(− sinϕ, cosϕ), k⊥k = 0. We denote these components
by v1 = kv/k and v2 = k⊥v/k, and use also the components
E1 = kE/k, E2 = k⊥E/k and similar ones for the external field
E0. We give here the components of the external field

E01 = E0 cosβ cosϕ, E02 = −E0 cosβ sinϕ,
E03 = −E0 sinβ.

(7)

One can check immediately the transversality condition E01k +
E03κ = 0. Making use of E = − 1c

∂A
∂t − gradΦ , Eqs. (4) and (5)

give the electric field

E1 = −2π ineκ
∫
0
dz ′v1(z ′)eiκ|z−z

′|

− 2πne
k
κ

∫
0
dz ′u3(z ′)

∂

∂z ′
eiκ|z−z

′|,

E2 = −2π ine
ω2

c2κ

∫
0
dz ′v2(z ′)eiκ|z−z

′|,

E3 = 2πne
k
κ

∫
0
dz ′v1(z ′)

∂

∂z
eiκ|z−z

′|

− 2π ine
k2

κ

∫
0
dz ′u3(z ′)eiκ|z−z

′| + 4πneu3

(8)

for z > 0. It is worth observing in deriving these equations the
non-invertibility of the derivatives and the integrals, according to
the identity

∂

∂z

∫
0
dz ′f (z ′)

∂

∂z ′
eiκ|z−z

′| = κ2
∫
0
dz ′f (z ′)eiκ|z−z

′| − 2iκ f (z) (9)

for any function f (z), z > 0; it is due to the discontinuity in the
derivative of the function eiκ|z−z

′| for z = z ′. Now, we employ
equation of motion (3) in Eqs. (8) and get the integral equations

ω2v1 = −
iω2pκ

2

∫
0
dz ′v1(z ′)eiκ|z−z

′|

−
ω2pk

2κ

∫
0
dz ′u3(z ′)

∂

∂z ′
eiκ|z−z

′| +
e
m
E01eiκz,

ω2v2 = −
iω2pω

2

2c2κ

∫
0
dz ′v2(z ′)eiκ|z−z

′| +
e
m
E02eiκz,

ω2u3 =
ω2pk

2κ

∫
0
dz ′v1(z ′)

∂

∂z
eiκ|z−z

′| −
iω2pk

2

2κ

×

∫
0
dz ′u3(z ′)eiκ|z−z

′| + ω2pu3 +
e
m
E03eiκz

(10)

for the coordinates v1,2 and u3 in the region z > 0, where ωp =√
4πne2/m is the plasma frequency.
The second equation (10) can be solved straightforwardly by

noticing that

∂2

∂z2

∫
0
dz ′v2(z ′)eiκ|z−z

′| = −κ2
∫
0
dz ′v2(z ′)eiκ|z−z

′| + 2iκv2. (11)

We get

∂2v2

∂z2
+ (κ2 − ω2p/c

2)v2 = 0. (12)

The solution of this equation is

v2 =
2eE02
mω2p

·
κ
(
κ − κ ′

)
K 2

eiκ
′z, (13)

where

κ ′ =

√
κ2 − ω2p/c2 =

1
c

√
ω2 cos2 α − ω2p . (14)

The wavevector κ ′ can also be written in a more familiar form
κ ′ = (ω/c)

√
ε − sin2 α, where ε = 1 − ω2p/ω

2 is the dielectric
function. The corresponding component of the (total) electric field
(the refracted field) can be obtained from Eq. (3); it is given by(
mω2/e

)
v2. For κ2 < ω2p/c

2 (ω cosα < ωp) this field does not
propagate. For κ2 > ω2p/c

2 (ω greater than the transparency edge
ωp/ cosα) it represents a refracted wave (transparency regime)
with the refraction angle α′ given by Snell’s law

sinα′

sinα
=

1√
1− ω2p/ω2

= 1/
√
ε. (15)

The polariton frequency is given by ω2 = c2K 2 = ω2p + c
2K
′2, as it

is well known, where K
′2
= κ

′2
+ k2.

The first and the third equations (10) can be solved by using an
equation similar with Eq. (11) and by noticing that they imply

κ
′2u3 = ik

∂v1

∂z
. (16)

We get

v1 =
2eE01
mω2p

·
κ ′
(
κ − κ ′

)
κκ ′ + k2

eiκ
′z (17)

and

u3 =
2eE03
mω2p

·
κ
(
κ − κ ′

)
κκ ′ + k2

eiκ
′z . (18)

Similarly, the corresponding components of the refracted field are
given by Eq. (3). It is easy to check the transversality condition
v1k+ u3κ ′ = 0 of the refracted wave.
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Fig. 1. Reflection coefficient for a semi-infinite plasma for β = π/6 and various
incidence angles α. One can see the shoulder occurring at the transparency edge
ωp/ cosα and the zero occurring at ω2 = ω2p/

(
1− tan2 α

)
for α = β = π/6

(R2 = 0, ϕ = 0).

We can see that the polarization field E in Eq. (1) cancels out
the original, incident field E0 and gives the total, refracted field
mω2u/e inside the plasma. This is an illustration of the so-called
Ewald–Oseen extinction theorem [8,23]. We note that a possible
treatment of the propagation of the electromagnetic waves inmat-
ter by means of integral equations was suggested previously [23].
In order to get the reflected wave (region z < 0) we turn to

Eqs. (8) and use therein the solutions given above for v1,2 and u3.
It is worth noting here that the discontinuity term ω2pu3 does not
appear anymore in these equations (because z ′ > 0 and z < 0
and we cannot have z = z ′). The integrations in Eqs. (8) are
straightforward and we get the field

E1 = E01
κ − κ ′

κ + κ ′
·
κκ ′ − k2

κκ ′ + k2
e−iκz, (19)

E2 = E02
κ − κ ′

κ + κ ′
e−iκz (20)

and

E3 = −E03
κ − κ ′

κ + κ ′
·
κκ ′ − k2

κκ ′ + k2
e−iκz . (21)

We can see that this field represents the reflectedwave (κ →−κ),
andwe can check its transversality to the propagation wavevector.
Making use of the reflected field Erefl given by Eqs. (19)–(21) and
the refracted field Erefr obtained from Eqs. (3) and (8) (Erefr =
E + E0 = mω2u/e) one can check the continuity of the electric
field and electric displacement at the surface (z = 0) in the form
E1,2refl + E01,2 = E1,2refr , E3refl + E03 = εE3refr , where ε = 1 −
ω2p/ω

2. The angle of total polarization (Brewster’s angle) is given
by κκ ′ − k2 = 0, or tan2 α = 1 − ω2p/ω

2
= ε (for α < π/4). The

above equations provide generalized Fresnel’s relations between
the amplitudes of the reflected, refracted and incident waves at
the surface for any incidence angle and polarization. They can also
be written by using ω2 = ω2p/ (1− ε), where ε is the dielectric
function.
The reflection coefficient R =

∣∣Erefl∣∣2 / |E0|2 can be obtained
straightforwardly from the reflected fields given by Eqs. (19)–(21).
It can be written as

R = R1
[
cos2 β sin2 ϕ + R2

(
cos2 β cos2 ϕ + sin2 β

)]
, (22)

where

R1 =

∣∣∣∣∣∣
√
ω2 cos2 α − ω2p − ω cosα√
ω2 cos2 α − ω2p + ω cosα

∣∣∣∣∣∣
2

(23)

and

R2 =

∣∣∣∣∣∣
cosα

√
ω2 cos2 α − ω2p − ω sin

2 α

cosα
√
ω2 cos2 α − ω2p + ω sin

2 α

∣∣∣∣∣∣
2

. (24)

The first term in the rhs of Eq. (22) corresponds to β = 0
(ϕ = π/2; s-wave, electric field perpendicular to the plane of
incidence), while the second term corresponds to β = α (ϕ = 0;
p-wave, electric field in the plane of incidence). It is easy to see
that there exists a cusp (shoulder) in the behaviour of the function
R(ω), occurring at the transparency edgeω = ωp/ cosα, where the
reflection coefficient exhibits a sudden enhancement on passing
from the propagating regime to the damped one, as expected (total
reflection). The condition for total reflection can also be written as
sinα =

√
ε, where R = 1 (R1,2 = 1), as it is well known. For

illustration, the reflection coefficient is shown in Fig. 1 forβ = π/6
and various incidence angles. The reflection coefficient is vanishing
for ω2 = ω2p/

(
1− tan2 α

)
for α = β < π/4 (R2 = 0, ϕ = 0).

Making use of the reflected field given by Eqs. (19)–(21) and the
refracted field (Erefr = mω2u/e) given by Eqs. (13), (17) and (18)
we can check the continuity of the energy flow across the surface.
Indeed, we can compute the Poynting vector S = (c/4π)E ×
H = (c2/4πω)K |E|2, where H = (c/ω)K × E is the magnetic
field, for the reflected and refracted plane waves. The component
normal to the surface is continuous, i.e. S3refl + S03 = S3refr , while
the in-plane components are discontinuous, they being related by
S1,2refl + (κ ′/κ)S1,2refr = S1,20. One can see that, along the surface,
the energy flows at different rates in the vacuum and in matter.
The present approach can be extended to a plasma slab of finite

thickness d, 0 < z < d, where the displacement field u can be
represented as (v, u3) [θ(z)− θ(z − d)]. We have computed the
electromagnetic field inside the slab, the reflected and transmitted
fields and the reflection and transmission coefficients. The field
inside the slab consists of a superposition of twoplanewaves e±iκ

′z ,
where κ ′ is given by the same equation (14). The transparency
edge is given by the same equation ω cosα = ωp as for a semi-
infinite plasma. Generalized Fresnel’s relations have thereby been
obtained, for both surfaces of the slab, any incidence angle and
polarization. Apart from characteristic oscillations, the reflection
and transmission coefficients exhibit an appreciable enhancement
on passing from the propagating regime to the damped regime.
The method can also be applied to other structures with more
particular geometries.
The same method can be used for treating the plasmons in

structures with special geometries. Indeed, the electric force in
equation of motion (1) must then be replaced by the Coulomb
(non-retarded) force. By using this procedure we have obtained
for a semi-infinite plasma the well-known bulk plasmons with
frequency ωp and surface plasmons with frequency ωp/

√
2.

Similarly, for a plasma slab we have derived the plasmon
frequencies given by ω2p

(
1± e−kd

)
/2 [24–31]. We have also

computed the energy loss for these plasmas and the dielectric
response. It is shown that the surface terms do not change the bulk
dielectric function as usually defined (i.e. for a plane wave), since
the surface contributions to the dielectric response are localized.
The surface contribution to the energy loss exhibits characteristic
oscillations in the transient regime near the surfaces.
It is worth investigating the eigenvalues of the homogeneous

system of integral equations (10), for parameter κ given by κ =√
ω2/c2 − k2. Such eigenvalues are given by the roots of the
vanishing denominator in Eqs. (17) and (18), i.e. by equation κκ ′+
k2 = 0. This equation has real roots for ω only for the damped
regime, i.e. for κ = i |κ| and κ ′ = i

∣∣κ ′∣∣. Providing these conditions
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are satisfied, there is only one acceptable branch of excitations,
given by

ω2 =
2ω2pc

2k2

ω2p + 2c2k2 +
√
ω4p + 4c4k4

. (25)

We can see that ω ∼ ck in the long wavelength limit and it
approaches the surface plasmon frequency ω ∼ ωp/

√
2 in the

non-retarded limit (ck → ∞). These excitations are surface plas-
mon–polariton modes. They imply v2 = 0 and v1, u3 ∼ e−|κ

′|z . In
addition, a careful analysis of the homogeneous system of Eqs. (10)
reveals another branch of excitations, given by ω = ωp, which, oc-
curring in this context, may be termed the bulk plasmon–polariton
modes. They are characterized by v2 = 0 and v1(k, z = 0) = 0. For
all these modes we have u3 =

[
ic2k/

(
ω2 − c2k2 − ω2p

)]
(∂v1/∂z).

For dielectrics, instead of Eq. (1), we use the equation of motion

ü = −
e
m

E−
e
m

E0 − ω20u, (26)

where the frequency ω0 is a parameter, usually much greater
than any characteristic electromagnetic frequency of the body.
This equation is well known in the elementary theory of classical
dispersion. In particular, it leads to the well-known (bulk)
dielectric function

ε = 1−
ω2p

ω2 − ω20
' 1+

ω2p

ω20
, (27)

where both ωp and ω0 are adjustable parameters. Making use of
the Eq. (26) all the results presented above for a semi-infinite
plasma are formally preserved, except for thewavevector κ ′ which
becomes

κ ′ '

√
κ2 +

ω2p

ω20
·
ω2

c2
=
ω

c

√
ε − 1. (28)

One can see that within this model of dielectrics there is no
damping regime, as expected. The reflection coefficient R given by
Eq. (22) does not depend on ω; it preserves its form given by Eq.
(22) with

R1 =
(ε − 1)2(

cosα +
√
ε − sin2 α

)4 (29)

and

R2 =

(
cosα

√
ε − sin2 α − sin2 α

cosα
√
ε − sin2 α + sin2 α

)2
. (30)

Finally, we comment here upon two points. First, we can see that
Eqs. (13), (17) and (18) connect the total field mω2u/e to the
amplitude of the external field E0. However, while the former goes
like eiκ

′z , the latter goes like eiκz , so we cannot define a dielectric
function in usual terms (plane waves) for this semi-infinite plasma
(the dielectric function ε = 1 − ω2p/ω

2 corresponds to the bulk
plasma). The same is true for the non-retarded dielectric response,
which contains a surface term ∼ e−kz . This particular feature is

related to the non-locality of the dielectric response and it holds
for any structure with restricted geometry.
Second, it is worth noting that we do not use in our

approach boundary conditions at the surface; instead, the usual
continuity conditions follow from our approach, for the transverse
components of the electric field and the normal component of
the electric induction. There is no need for additional boundary
conditions because the problem is completely determined by our
equations and the external field.
Other effects related to the dynamics of plasmons and

polaritons for a semi-infinite electron plasma, or, in general,
various bodies with rectangular geometries, as well as structures
with more particular geometries, can be computed similarly by
using the method presented here. The dissipation can be included
in this treatment (as for metals, or dielectrics with loss). This will
allow the treatment of more realistic cases as well as various
interfaces, in particular plasmas (ormetals) bounded by dielectrics.
These investigations are left for forthcoming publications.
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