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Abstract. The plasma frequency of a complete degenerate electron gas in the layered model
of Visscher and Falicov is calculated by means of both the Bohm-Pines canonical trans-
formation method and the equation-of-motion method in the RPA, The dispersion cgqua-
tion for plasmons is obtained in 4 linite system of n planes with both the cyclic condition
and free ends. It is shown that the thermodynamic limit (m— o ) of the plasma requency is
independent of the boundary conditions. The previous results obtained by various authors
in different ways are shown to be certain limits of our result.

1. Introduction

Recently, there has been much interest in the rather
unusual properties of layered structurcs. The static
dielectric response of a layered electron gas has been
caleulated by Visscher and Falicov [1]. The model
consists of a succession of parallel egually spaced
planes of electrons, The clectrons are allowed (o move
freely in each plane in a neutralizing rigid background
of positive charge but tunneling between planes is
completely forbidden, This very anisotropic model
could be made more realistic by including the momen-
tum component of the electron normal to the planes
and also the potential function that localizes the elec-
trons to the planes. An attempt was done in this
direction by Grecu [2], who generalized the model
to include the electron tunneling belween adjacent
planes.

This paper is intended to apply many hody technigues
to the anisotropic lavered model of Visscher and
Falicov in order to calculate the plasma [requency
al zero temperature. The more realistic model in-
cluding the electron tunneling will be treated in the
same manner in a forthcoming paper,

Fetter [3] approximated the electrons in this system
by a macroscopic charged fluid and wrote down the
electro-hydrodynamic equations for the ideal case of

an infinite suceession of planes, The plasma frequeney
given by him is
,ak sinh a k
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where x and k are the perpendicular to the plane
and in-plane components of the wave vector, respec-
tively, @i=4n Ne*/Ma i1s the usual bulk plasma
frequency (e=electron charge, M =electron mass, a=
distance between two neighbouring planes, N =the
number of electrons per unil area in each plane) and
% is the adiabatic speed of sound in the two-dimensional
Fermi gas of electrons, The same plasma frequency
was obtained by Fetier imposing periodic conditions
on the boundaries of a sample of n planes, the length
of periodicity heing taken equal to na (cyclic con-
ditiom). The component x of the wave vector is given
by w={2w/ma)p, p any integer, and restricted to the
lirst Brillouin zone, —n/a=xk<w/u In the thermo-
dynamic limit & becomes a continuons variable which
runs over this range.

The work of Fetter rises two problems. First, it is
necessary Lo give a dispersion relation like (1) by means
ol the many body techmiques, treating the electrons
as 4 set of quantum mechanical particles which interact
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through the Coulomb potential *. Secondly, it is known
that the actual physical systems which are experi-
mentally investipated consist of a finite number of
planes and their boundaries are free planes, that is
no special condition is imposed on the houndary
planes, Therefore, we must consider a finitc system
of n planes with free ends. It will be verified that the
mathematical cyclic condition leads to a plasma
frequency which corresponds to the physical free-ends
condition in the thermodynamic limit, as it might be
expected from the translational invaniance of these
syslems,

In order to apply many body techniques for calculating
the plasma frequency at non-zero values of the wave
vector it must be pointed out that al [inite values of «
the plasmons which propagate in different planes are
appreciably coupled together through the electric field
of the in-plane charge and at finite values of k the
coupling between electrons and plasmons in each plane
becomes unnegligible. Therefore, il is essential for our
purpose to regard this quantum system as electrons +
field and to take into account both the plasmon-
plasmon and clectron-plasmon coupling. These two
requirements are fulfilled by the canonical transforma-
tion method developed many vears ago by Bohm and
Pines [4] for the isotropic three-dimensional electron
was. This approach starts with a quantized Hamiltonian
of electrons and ficld and succeeds in decoupling the
electron-plasmon interaction in first order of a per-
turhative scheme. Besides, this approach provides us
with the oscillatory part (collective component) of the
electron density operator, We are able to apply the
equation-of-motion method with this operator. More-
aver, in the framework of the Bohm-Pines theoty, the
effects of both cyclic and free-ends condition can he
casily emphasized. For these reasons the Bohm-Pines
method is applied in the next sections to the layered
electron gas**.

The plasmen dispersion relation (1) will be obtained
in which the macroscopic parameter s is piven explicitly
in terms of the microscopic theory and an additional
guantum-mechanical k*-term will appear. [t will be
shown that this plasma frequency corresponds to hoth
the free-ends system in the thermodynamic limit and
the system with cyclic condition,

2. The Bohm-Pines Cunonical Transformation Method
As we have already mentioned, the system consisls
of n parallel equally spaced electron planes, the dis-

*# The equation-of-motion method has heen applied by Grecu [2].
The plasmma [requency obtained by him is the long-wavelength Timit
{r—0, &k »0) of Eg. (1L

** As repards the thearetical Toundations of the Rohme-Pines theory
we refer to the recent work of M. Shevehik [£].

7. Physik B 22(1975)

lance between two neighbouting planes being a. Elec-
trons move freely in each plane but tunneling between
planes is forbidden. The number of eleclrons per unit
arca in each plane is N. A uniform rigid background
of positive charge exists in each plane, whose density
is equal to the average electron density, in order to
ensure the stability of the system. The sample of n planes
is confined to a prismatic box with the base of unit
area in the (v, z) plane and the height equal to L along
the ¥ direction, so that L+na. Periodic conditions
are to be imposed on the boundaries of this prism.
Then we shall take the boundaries of the prism to
infinity, as it is usually done in the quantization of
the electromagnetic field with sources. The plasma
frequencies will be given as the characteristic rools
of an eigenvalue equation, which 15 easy to solve in
the thermodynamic limit (n-» o).

The electron density is

pleri=—eY dix—ma)dir—r, ), 2)
where r=(y,z), nt labels the planes, m=—(n—1)/2,
vy (n—=142 (1 odd) and i labels the electrons in each
plane. The summation is extended over all electrons
of the system. The Fourier expansion of Lhe clectron
density (2) is

plx,ri=—eL ' ¥ [¥ expl—ixma)exp(—ikr,]
K mi

cexplix x)explikr), ; (3}

where the values of the wave vector K=(x k) lie
inside the infinite Fermi cylinder 0 <k =k, =(2= NJ'?,
— ek 4o, k=(2m/L) p, pruns over all integers,
The Hamiltonian of the system may be written as

Y K- Zexplix(m—n')a]

mi,m'y
K

H=Y p2,2M+2rne* L™’

cexplikir,,—r . J]-2ne’n NL''Y K3, (4
m. m | i

where p,; is the momentum of the mi-th electron.
It is convenient to introduce the longitudinal vector
potential of the electromagnetic field

Alx.)=(n /L) Y g eg explin x)explikr),  (3)
K
with g, =K/K a unit vector in the K direction and
¢ —the light velocity. The electric field is
E(x,r)=@r/LM Y p_ygecexplinxjexplikr), - (6)
K

where p_p= —dg, and gg=—¢7x. pg=—plg. The
[ield is quantized by the eommutation relation

[ag, pg]=1hdgg- (N
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The field variables g, and p; will be proved 10 be a
convenienl means of describing the collective modes
(plasmons). As is well known, the k component of
the wave vector of these plasmons is restricted to
‘k<k,, where the cut-off momentum k, can be deter-
mined by minimizing the ground state energy [4].
The k indices which are beyond k, correspond to the
individual electron degrees of freedom. In order to
carry out this splitting the first Bohm-Pines canonical
iransformation is applied in the in-plane RPA. The
Hamiltonian (4) becomes equivalent to the Hamil-
tonian

H=H_ +H +H,+H,, (8}

parl

which is used in conjunction with a set of subsidiary
conditions acting on the wave function of the system

Q=0 for k<k,, )
=0 forkzk, 9]
where

Que=p_g—ildr /LK
Y expl—ikma)exp(—ikr,,). {10

The subsidiary conditions (9), (%) originate in the
Maxwell equation div E(x, 1)—dx p(x. r)=0. It is easy
to verify that the Bohm-Pines theorem, the exact
lowest state wave function aulomatically satisfies the
subsidiary conditions (9), is valid also in our case
of the layered struclure. The conditions (9] are satisfied
provided the wave function does not depend omn the
variables gy for k=k,.

In the Hamiltonian (8) I __ contains the kinetic energy
of all electrons from which the Coulomb sell-energy
corresponding to the plasma degrees of [freedom is
subtracted,

Ho=Y Pai2M-2nn NL 'Y K% {11
i ]
ko ke

These electrons interact through the short range
Coulomb potential

H =2zt ! ¥ K- 'explin(m—m)al

~explikin;—r,..0]. (12)

The long range Coulomb inleraction is responsible
for the plasma oscillations which arc described by

Hyi=~—1 Zk PP gy +2nl! Zm{x, k)i, k)
Ko ke "

B K= K)ok G gean)s (13}
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where wix, k) is given by

ik k)=, (14)

K
and

m—1)02
g lk—K)=al2m) ' ¥

M= —in—17/2

explilk=x)mal. (15)

Hioq represents the Hamiltonian appropriale to a
sct of oscillators which are coupled together through
the matrix ik, kol k) g,(c—»). This plasmon-
plasmon coupling comes from the lact that the plas-
mons propagate in a [mile system of » planes and
they are not allowed to leave the planes while the
clectromagnetic waves which generate them take any
spatial direction. This plasmon Hamiltonian can he
easily diaponalized, as it will be shown in the next
section. In so doing, only the interaction between
plasmons in different planes is taken into account.
But, there is, in addition, another coupling between
electrons and plasmons in each plane. It is given hy

e k hk
H=W@nL}?em ! ¥ - (pm.—T) i

mi, xk
ke

-explixmalexplikr,;). (16)

In order to eliminate both the eleciron-plasmon
coupling and the plasmon-plasmon coupling to a
good degree of accuracy, not only in the Hamiltonian
but also in the subsidiary conditions, the second Bohm-
Pines canonical transformation 1s applied in the in-
plane RPA. The extent to which we are sucecessful in
carrying out this decoupling is measured by the expan-
slon parameter

#={kppiMw)?, (1T

where p, is the Fermi momentum and o is the plasma
frequency. The condition x = | is fulfilled for sufficiently
small values of & (as we shull see in the next section).
Thus, the leading contributions are given by the first
terms in the expansion of both the Hamiltonian and
the subsidiary conditions performed by the second
canonical transformation. It can be shown [4] that
the cffect of this transformation on H,, (which act
to damp the plasma oscillations) is small enough to
be neglected here. Under these conditions the decou-
pling is accomplished up to the first power of =

As it is usually, the plasmon creation and destruction
operators of frequency ware introduced by the relations

g = {fi? ICLI]“Z (ﬂg ﬂlu) B

Pe=ilh /)" (ag +a_g). (18)
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The plasma frequency o has to be delermined accord-
ing to the condition that, up to the first power of
there should be no electron-plasmon coupling either
in the Hamiltonian or in the subsidiary conditions,
in the new representation performed by the second
canonical transformation. The dispersion equation
which results from here climinates also the plasmon-
plasmon coupling to the same degree of accuracy.
The second Bohm-Pines canonical transformation 1s
performed from the old set ol aperatorsie, , p,;. 2. 4 )
to the new sel of operators (R, P, 4. A4 ) accord-
ing to the relations

v =cxp{—i SR, expli S/ (1%
and so on, the generator § being given by

k hk
% (B3 A

S=—ile/¥ P Y i S— —
itefM) 3, Arbio)® o kM

ek
cexplinmalexplik R, )+hc (20}
The new Lllamiltonian H__ cun be caleulated from
. ) o x:‘ [_ [Iﬁ.}f
H,..=exp{—i5/h) # exp(i 5/h)= Y T (5. # ]
1= (21}

where % is the same function of the new variubles
as H is of the old varables. This new Hamiltonian
will be calculated up to the first power of o This is
achieved by keeping only the terms up to the first
order commutators, at most. With this degree of
accuracy and applying the in-plane RPA. the electron-
plasmon coupling in the new operator of the sub-
sidiary conditions, (£2,], .. i climinated providing Lhe
following dispersion cquation be satisfied :

ok, K 2r Y Y wl k) gk — k1A,
— B Yo k) A, 22)
where k <k, and

Bl K)=N""Y [{o-kP, /MP—(h k*2MyP] "L (23)

Assuming an 1sotropic Fermi distribution of electrons
in each plane this quantity does not depend on m
and may be expanded as

Ao kK=o [1+503+5% ], (24)
with ff =k/k,. The operator (£],,., 15
(2= 0 [0 —(k P M —hk*2M)?*] !

mi

cexplis majexplik R, {25)
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and contains only the individual clectron coordinutes.
The new subsidiary conditions inhibit the long range
fluctuations of electron density and favour the cor-
related plasma oscillations, The above aperator pro-
vides us with the collective component of the electron
density operator which oscillates harmonically with
the frequency . It will be used in Section4 in the
equation-ol-motion method.

There is a convenien! grouping of terms in #" which
considerahly simplifies the caleulation of H in
Eq.(21). Let us consider

e

=T PLAM+ Y ﬁf (A At AL AL, (26)
mi

wk
ke ke

the last term arising from

i S | B A
'-'#I'n.‘l.d = l =) ‘Axt A _LAKL A::k‘-l +‘;fp
ol
k< hip

27)

L-pl*

where

H, g

Eck,

2
[ewd, .
e i

—2m LY eir, k) e k) g v —x7)]

A A ey T A T AS ) A A Al 4]

(%)
It 1 easy to verify that
Ti [S, H]=H,. (29
s0 that in Eg. (21) only the commurtators
o 5.0~ (5] (30)

remain to be caleulated. I the eigenvalue dispersion
equalion (22) is satisfied, 2, , (which arises in Eq. {21}
[rom [8, #];5,= #) cancels that part of the commuta-
tor —(i/2#) [§, #;,,] which contains only the plasmon
vatiables. With the same dispersion equation the
plasmon-plasmon term (28) of the Hamiltonian is
proved to be proportional (o o, so thal ils commutator
with & in Eq. (30) will give contributions of order
areater than x and, therefore, they will be neglected.
In this way both the electron-plasmon and plasmon-
plasmon decoupling is accomplished to the desired
degree of approximation (first power of ).

The new Hamillonian is

H,.=H +H +H (31)

new ~ CCeleeloon plasmaon rEs paT?
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where
H =2 P22M—2n M72 L7 Y, kP, /K)?
mi mi, kk
[y
[ler—h k2 2M)? —(k P, /M)P] L
2ne*nNL' Y K3+ 4,
ok,
he
H, con= Eu 2 (An Agc+ A AL
<k,
Hpan= —met M2

o -2 [ )

el —kP, . M —hi? 2 M)

z

mim'i' xk
m=m e ke ke

cexplir(m—m’a]exp[ikiR,,— R, .}]+hc (32)

The second term in H,,,_,. . acts to increase the electron
mass a5 a consequence of the mertial effect of the
associated cloud of collective oscillations. The residual
part H ... describes an extremely weak attractive
velocily dependent electron-electron inleraction which
may be neglected in a first approximation, if a calcu-
lation of the ground state energy is in mind. H,,,..
represents a sei of independent harmonic oscillators
whose frequency o will be determined in the next
section,

3. Plasma Frequency

Letting L— oo the eigenvalue dispersion equation (22)
is converted into an integral equation

dic' (8, k) g (k— k')A, =3 e, k) A,
; {33)

+
e, k) |

L

which is easy to solve in the thermodynamic limit. As
is well known, g,(k—x") tends to dk—x'+G) for
n— o, where G=(2nfa)lp, p running over all integers,
are vectors in the reciprocal lattice of our layered
structure, Therefore, the equation

(K, k)Y wlk+G, kA, oo=F Yo k4, (34)
G

is obtained, whose solution is

# o k=Y otk +G, k). (35)
i

The summation in Eq.(35] is easy to perform. By
taking into account Eq. (14) we get [6]

3 a_k sinh a k

o k)= ———— —
(K=l 2 cosh ak —cos ax’

(36)
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or, with the expansion (24),
a Lk sinh uk 1 . ]
S e = [ .
“ s cushak—cosarc-i-d{' FER (37)

This frequency 1s periodic in k, with period 2a/a, so
that ¥ may be restricted 1o the first Brillouin zone,
—m/a=Z k< mja The expansion parameter o is given by

cosh ak—cos an

- 38
sinh ak (38)

and the cut-off momentum k_ must be restricted to
those values of & for which &< 1. This condition is
satisfied for sufficiently small values of (k, k) (x re-
stricted to the first Brillowin zone), but finite; these
values represent Lhe wave vectors of the plasmons.
The plasma frequency (37) corresponds to the free-
ends system. If the cyelic condition f.=na is imposad,
the summation in (15) yiclds

gl

Kl=na(2m)™'4 (39)

KK’

and the solution of Eq. (22) has the [orm (37). In the
thermodynamic imit L =na— o0, x becomes a contin-
uous variable and the two bands of plasma lrequency
{[ree-ends and cyclic condition) coincide.

I the electron-plasmon coupling M, in Eq.{8) i
neglected, the remaining plasmon-plasmon interaction
in Hy4 (13) can be casily diagonalized by requiring
(L)

t o

i k) | ol k) gk —K)q_ =0 q_ . [40)

This dispersion equation may be derived from Eq. (33)
by taking =0 in the expansion (24) of the factor
#{m, k). The frequency obtained in this way reduces
ta the first term in Eq. (37) (which contains x-depend-
ence). Thus, terms which contain ¢ven powers of k
arise [rom the electron-plasmon coupling H,,. while
the x-band of [requencies 1s due to the interaclion
between plasmons in dillerent lavers. If one considers

only a layer by taking a— 2o, Eg. (37) becomes
=2 e N/MYK[14+4(34 7k ], (41)

a dispersion relation which depends only on the wave
vector k.

The band of frequencies (37} is essentially the same as
that given by Fetter in Eq. (1) There is only a difference
in replacing s* from (1) by 3¢ and. in addition, a new
k*-term s contained in (37). The value of the adiabatic
speed of sound at zero temperature. s, is also given by
Fetter in terms of the thermodynamics of the two-
dimensional Fermi gas being s*=1p2, This value
differs from that obtained here in the framework of a
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consistent microscopic theory (3rf). The additional
k*-term is of the form (A&*/2M)°. It doss not appear
in the classical limit A—0, and, therefore, is a quantum
mechamcal effect of the electron-plasmon interaction.
In consequence of the above discussion, It may be said
that the plasma dispersion relation () represents the
classical limit of that given in Eq.{37) by means of a
quantum mechanical method, The asymplotic be-
haviour of (37) in the limit of long-wavelengths,
—l), k—1, 15 the same as i Eq, (14) given in [2].

4. The Equation-of-Motion Method

The physical content of the subsidiary conditions (9)
wrillen in the new variables ((£2;),... being given by (25))
results from the following identity which holds when
the subsidiary conditions are satisfied:

Y explinma)l exp(ikR,, ;) i
5 (kP /M —hk2/2M )
S’ — (kP M —hiE2MP

Ml

cexplinmalexplikR,, ). i42)

Hence it can he seen that the density fluctuations of
long wavelength ((kP, /M) <2< 1) are reduced due
to the fact that these density fluctuations are taken in
the collective oscillations. The operator associated
wilh these collective oscillations s furnished by the
operator (82, . as being

new

l'-?m :_Ir.'k? = E rm? = fk p!ll.l-.'ll.M o M" 2.-':2 MJI_.I -
el

-explircma)expiikr, ). {43

This operator oscillates harmonically i the old rep-
resentation (r,;, p,) and its effect on the wave func-
tion is zero in the new representation (R, . P, ) (as it
is shown by the subsidiary conditions) because these
new variables describe electron motion in the absence
of any collective oscillation (there is no electron-
plasmon coupling in H,_ ). The equation-of-motion
method will be applied with this vperatlor in the second
guantization formalism.,

The single-particle wave [unctions of the unperturbed
cigenstates of electrons are given by

Pl rl=y{x—ma)expiikr]. (44)

The spin is disregarded for simplicity, The Tunction
yix—ma) is arbitrarily highly localized on the m-th
planc and it is effectively the square root of a §(x—ma)
function [1]. The [unctions (44} are normalized to
WY (@0 @) =0, 084 The Hamillonian of the
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system may be written as

H= Eﬁn'”n'rh dpy+ Ma(2ILN) !
il

=Y ke (k, Kyexp[ikim, —my)a]

kkhk kz
e+ Pk k Py Ty by (45)

where g, =#*k*/2M, o (x, k) is given by Eq.(14) and
A, lasy) 15 the annihilation (creation) operator of an
electron localized on the plane m with the wave vector k
(k=0 is excluded) The electron density operator
Y i explixma)expiikr,,) is given in this representa-
tion by

fospa sy explixmalal, Gy - {46)

LL¥]

and the collective oscillation operator p*}, || becomes

peoll o= [0? — (hkk, /M + R k22 M)~

mk;
cexplimma)ag, oy By, - (47}
It is convenient to introduce (as in [4])
i)=Y [ow - (hkk /M +hEE 20
mky

explikmaldy, |y, (48)
which is related to p*! | by

ecall l - ¥
P txlu:E['%—rxk.[(”}—\,-..;ru(_w)]- (49)
I the £ _ () satisly
::i_r,.n]{r-':'} _j[-'3i [.c];]'[ﬂ-'-’} =0, I:S’U'F
then

e+ o g% =0, (51)

By using the Heisenberg cquation
§ b} ={i) & ool IT],
it immediately follows

i¢ @)+l gulo)=p_.,

+Ma(ZREN)T" Y K~ et (W, k) explif —)ma]

ek kg
Alew—hkk /M +RE22M) !
— [ —hkk, + k)M +hkE2M] 1
[y s~k # ey TP k1 B, Bk —kwie ] (32)
I;lhﬂ: RPA k' =k is applied and the usual approxima-
tion

+ + — :
oy, G,y Ao 3=1 for k =k,
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and

(A, ok, > =0

{Fermi distribution at zero temperature) is performed
then Eq. (30) is satisfied by taking

=Kk} 1 =27l 'Y o (s, k) #lw, k)

for k =k,

'ﬁm“\:_i‘:.].ﬂ Ix'kJ=U! ‘SSF

a4 dispersion equation which formally dilfers from
Eq. (22) but which has the same solution (37).

It is possible to apply the equation-ol-motion method
with the clectron density operator p_ .. The disper-
sion equalion is, in this case,

p—(ck) 1 =2nE7' Y k=2 (1 k) 0{en, K)
-

Bk =K Py =0, (54
where
H, —H
Pl k)=MN-TY 07 itk ; i
i, k) Eﬁm_”k—l_shﬂ (53)

m, being the Fermi distribution al zero temperature,
By a straightforward manipulation we get % (w, k)=
k* # (e, k), so that Eqs. (53) and (34) coincide.

For small values of k the leading term in {55} is k% /e?,
so that the plasma frequency is the first term (k-
dependent) in (37). Even powers of § could be added
to this first term by expanding Eqy. (55) further and so
that the electron-plasmon interaction can be con-
sidered. In so doing, no estimate exists of the extent
to which this interaction is taken into account, By
using the operalor p™ll . the clectron-plasmon cou-
pling can be handled under control {up to the fist
power of ).

5. Conclusions

The Bohm-Pines theory was proved to be useful in
calculating the plasma frequency in the layered clec-
tron gas of Visscher and Falicov in many respects. In

]

the framework of this many body theory it is possible
to take mwo aecount in a definite manner {up to the
first power of ) hoth the electron-plasmon and the
plasmon-plasmon coupling. 'I'he theory permits the
dispersion equation (22) of the plasma frequency for a
finite sample of n planes to be found and, thus, permits
the part played by the boundary conditions to be in-
vestigated. The oscillatory component of the electron
density operator is furnished by this theory; the
equation-ol-motion methad can be applied with this
operator,

The band of plasma frequency given hy Eq.(37) rep-
fesenls a quantum  mechanical extension of the
classical result (1) obtained by Fetter [3]. The asymp-
totic behaviour of (37) for k—0, k—0 is the same as
thai given by Grecu [2].

It was shown that the mathematical device of the
cyelic condition leads, in the thermodynamic limit, to
the plasma [requency of the physical free-ends system.
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