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The deformation suffcred by a hollow, spherical molecule as an effect of
rotations is studied within a continuum model which might be relevant for :
the fullerene molecule. The spherical elasticity is established to the lowest i
order in deformations and the natural perturbation parameter required by
the stability of the object is identified as the square ratio of the rotation
to the radial vibration pulsations. It is also shown that the main effect of
the centrifugal coupling betwcen rotations and radial vibrations is a static
deformation whose energy is beyond the harmonic approximation.

. .
PACS numbers: 46.30.—1, 33.20.—t, 61.46.+w ol
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The advent of the Cgg fullerene [1, 2] drew the attention to a new microscopic g
object: a hollow, spherical molecule composcd of a large number of atoms. Electron gt
structure [3-5], molecular polarizability [6, 7] and ion dynamics 8, 9] Of_S‘""h an i
object have extensively been studicd, many of the molecular vibrations having been !
identified by various spectroscopic techniques [10-12], most notably in Komos
and infrared spectra []3] Conjparativcl}’ little attention was gi\'(’."[l to a certain
class of low-energy molecular states, which may show thcms:*lvcsl 1
propertics [14], consisting of rotations and long-wavelength vibrations
volve an electric moment. These low-cnergy molecular states are a
the present paper.

As a consequence of the hollow spherical shape and th . ‘1 vibrate
this molecule might easily be distorted by rotation and it might also easily \; icai
especially along the radius. Within a continuum model of a homogeneous, s-ﬂ lcrdcr

shell of atoms of zero thickness the elastic energy is erived to the l?wegt:a{ij:icd
“in deformations and the rotation spectrum of the deformed molecu'lc is 0 amcw;
' bility of the rotating molccule requires a natural pcrtyrbat'c’“ pars The
the square ratio of the rotation to the radial vibrauoﬂ_p“:sabgl <;f the
ri li;ﬁml:l_lﬂins between rotations and vibrations is absent in the G

1. Introduction l
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coupling contains both linear and quadratic
ts. By mcans of {he above-mentioned perturbation parameter
casily classified, leading to the conclusion that the main
s a static deformation of the molecule which contributes a S

armonic-approximation energy.

radial vibrations, but the centrifugal

terms in displacemen
their contributions are

offecl. of this coupli:rg i
higher-order correclion to the h

2. Spherical elasticity

We consider a spherical, homogencous shell of atoms of radius R and zero

Lhickness whose points are located at
R = R(sin0 cos g, sin @ sin g, cosf), a)
where 0 € 0 < mand 0 S ¢ < 9. The natural representation of a displacement

ficld on the sphere is given in spherical coordinates by

0=0-+u(0,9),
¢ = ¢+ ua(0, ),
it = R[L+ us(0, %)),
where Jus| € 1, i=1, 2, 3. Generally, a displacement field includes translations,
: rotations and deformations. In order to establish the elastic (deformation) energy
t of a continuum [15] one needs the infinitesimal absolute length, i.e. the length
which is invariant under translations and rotations: the changes underwent by
this length during a displacement provide a measure for the elastic energy. The
Cartesian length on the sphere R2(d0?+sin? 0dp?) is not adequate for this purpose
since it is not invariant under 0-rotations (translations)*. Instead, the absolute
length on the sphere is provided by

dA? = R¥(d0® + dp?) = d&idS, (3)
with the obvious notations dé; = Rd0, d¢» = Rde and the dummy summation

over l-he repeating subscript # = 1, 2. Under the action of the displacement field
(1) this length changes as

dA? = R? {[(1 + uyy)d0 + U1gd¢]2 + [ugd0 + (1 + Tl?ﬂ)dﬁo]z}

(2)

where

R (0u;  Ou;
Ujs = = | —— J
A (353' £ 6&)

1:_ l:lic deformation (strain) tensor (with respect to the rotations about o
t;.ln s::ﬂ({ .tl'lc.firs.t_-‘urder contribulions in u;; have been retained.

e n-:) is invariant under ¢- and g-rotations (translations), con
! mnthepnmon? -_(u_ll . Uzz) as well as -Ehea! o
Bl e (ol -rotations (described by its anti

= i




! Eﬂfﬁ im:luded, the inﬁﬁi’t'edimal'[eﬁgth: 35 mn
JAA? + Rdud x dA2 + 2uzd A7

5 ‘one can sce that the elastic energy depends on uy and ui; to the lowest
= of approximation. The local isotropy of the shell requires the elastic energy be
- ‘diﬂ\‘iﬁant under the rotations about the R-axis. There are only four such quadratic

T § . g - . .
~ invariants (harmonic approximation),
B 3 =3
"g_: Uz, U, UG, (7)

whence one can write down the elastic energy of the homogencous shell as

: Juy | Ouag Ouy  Buy\?
B, = dS’Ade»((—.-——) / My o ouy
| EFa crj uy + usg 50 + 90 +p | dS T <z 5
- duy \* dus\% 1 (0w Ouy
| dS | | — —_ S e S
| +Tf [(39) +(3so) +?(<999+30) ’ ®)
| where dS is the infinitesimal area on the sphere.
Introducing the notation 7" = u;; one can easily find that

2
1 g 1., | . Y.
tl?,— = (u,-_; — -_2-5,'}'7) -+ § = = 2(!111 — n!f_)g)? + 2!{?2 -+ gfg, [U)
whence the density of elastic energy becomes
y \N* /o A
o m o 2 LA & . £ m2
Py = ous -+ AugT + puT~ TU;; =0 (II;:_ + %1) + (U + 3 a 4—;) 1
1 g N S
+7 [ﬁ(n“ - 1!3'_3)' + ‘2”'1'3} . ([D)
Requiring the quadratic form (10) be positive definite onc gets the stabilily con-
ditions
o, 2u+1>0, (11)
A < 20(2u + 7).

The various contributions to the clastic energy (8) have simple physical meaning.
Using (10) we get for the shear modes ug = uyy = ugz = 0 the encrgy densiy
27uf,, whence 7 can be called the shear modulus. Similarly, for the compressiph
(dilation) modes us = u;, = 0, uyy = usz one gets the energy density 2.('2,u + r)uln.
whence 2+ 7 can be identified as the compression modulus; the radial mf)t_lﬂ llT
o is obtained for the radial modes uij = 0, whose energy is oui. An additiona
elasticity modulus is A, which corresponds to the pinch modes w12 = 0, un
U+ (A20)1 = uz + (A/o)uyy = 0. The associated cnergy density 18

= U922,

1 A2 . 2 (12)
[5(2‘-‘ +T) - ZE] 4".‘131 = 2(2;{ -+ 'J')u.?1 — ous,

A. One notices that it has
tA>0 correspom!s
unrealistic

"j““-*'ifies the denomination of pinch modulus for
deﬁ ite gign, and from ug = —(\/o)up1 one may say tha e
urface that can be pinched (uy, < 0,uz > 0), while the T
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be pinched (u1; < 0,ug

! surface that cannot : _ 9

0 dcscrl})eﬁi:g; by the derivative of (10) with re_spect to Ru;,

siress tensor {fif‘s ga“d fa2 correspond 1o the surface tensions', while the radial

prCSSU;C < {hc: tfiiigcfglggsition vector given by (1) and (2) one easiiy ORI
rom g

the kinetic energy .
lpRz /dS (uf + sin20 w2+ 13), (13)
2

case A <

Ekin =
mass density. The identification of the elastic moduli

i very convenient for investigating Lhe v.ibrahons of t:hls hollow-mo.le-
made abmclsl\fl Yu 1, the decomposition into the eigenfrequencies cannot easily
cular n;mdd’ e EL for the azimuthal <hear waves and the radial waves. Indeed,
be carried o;;t,ex:z: ua = 0, uyy = Uzz We see that the u; displacement depends
@ th_c Sllea;'::ﬁ:llal tiodesi and the us displacement is a function of 6 only (polar
1 ?1?;3;:)1%&' ;Iamiltonian of the azimuthal shear waves is therefore easily obtained

from (8) and (13) as

o ou g .
Hu= pR4 /d‘p&% + TR? /d&” (‘{T{;‘) (14)

1/2 where m is any integer. Simtlarly,

where p is the (supcrﬁcial)

Jeading to the cigenfrequencies (rm?[pR*)

] the radial modes described by the Hamiltonian -f
H, = 3ol f 452 + o [ dSul (15) 3
are easily decomposed in sphe.rical harmonics
(0, 9) = Y, vim Yim (6, 9) (16)
Im

and quantized by

B = (1) e = %\/ ";7?" [af, + (=) ar-m] , a7

where M = 47pR? is the mass of the sphere and

el [E
I_R p

is the frequency (pulsation) of the radial modes. The Hamilton an
the harmonic-oscillator form v

He=%"hw (ot am + 1/ 2) 5
Im |

Whence one can see the high degencracy of t
Finally, we note that the independe




and (2) The consistency with the harmonic approximation
mgy (8) requires, in principle, the expansion of E. to the second

Eét'—" llw 2W2R3/d5(u1 sin 20 4 2uasin’ @

3 +uj cos 20 + uj sin’ 0 + 2u  uzsin 20), (21)

2 wm I = (87/3)pR* = (2/3)M R? is the inertia moment of the spherical molecule.
"~ Since B+ does not contain us and ¢, the solutions of the Lagrange equations are
up = 0 and uy 3(0). The elastic energy (8) becomes

,I_o'deua-{-A/dSus +(p+ )fds (a"‘) (22)

and the equilibrium equations read ;;
1 0 duy i
e Aug + 2 :
sinfl 99 {bmﬂ [ ua+2Apu+ )57 a0 ]} ?
+-;-pw2R2 [(L + 2u3)sin20 + 2u; cos 6] = 0 (23) %
and
6
puzl?,z [(l + ug) sin? 0 + uy sin 20] — 20uz — auol = 0. (24)
' e Introducing the parameter
L _ PR (25)
Qe a= :
;i 20
| the latter equation (24) can be recast as
A 0wy (26)

(1 — asin®@)uz = asin® 0 + asin 20 - uy — 2% a0’

jcin
whence one can see that we can get meaningful results only for a < 1. Noticing

that the parameter a given by (25) can also be written as

1"1}22.(.02 3 Iw‘ 15 brot (27)
8 45, 2 Eo

e Eror = (1/2)Iw? and Ep = 4rR%0 is the “int
ergy stored in a uniform radial expansion or COH'P"‘EIIG  ation sucgy

displacement. |ug| = 1), the condition a < I requires for the deformable

 smaller than the “internal” elastic energy, mn or

sce that for
le when subjected to rotations. In partncullar z?; c;:lll : pmsmm
‘may blow up during rotation at some values

t&ﬁwﬂ‘
' Mural perturbation parameter ! in treating the ro

Bl o=
| ernal” elastic energy (i.c. the
ssion of maximum
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the deformations of a spherical molecule, as well as the radial Vi'bl‘iﬁif""'w
e defor -
shall see in the next section.

To the first order in @ W€ get from (26)

o int 0] o
=asi1130+asin26-ulm#2;(1+asm 0) 5

which introduced in (28) yields uy = af(0), where
. ( r'?f) Za[3h+20) sin f cos 0,

us

sin 0 80
the denominator being always negat
(11). Equation (29) can casily bf.) solved for
—f(x = 0), so that we get the displacernents

sin 0—35 = N _—da(p+7)
ive as required by the stability conditions
[ with the boundary condition f(0) =

uy = af(sin20 — 20+ 7) (30)
and
ug = aasin®0, (31)
where
a=202(p+7)+ A3/ e+ 7) — 2%, (32)
8= 0()\)2+0/3)/[Aa(u+T1) = N*].

We remark that since Dro ~ alig only the linear approximation in displacements
is relevant for the centrifugal energy (21)%. 1 gt

Having obtained the deformations u; and ug as given by (30) and (31), "
respectively, we are now able Lo specify the shape of the deformed molecule: during
rotation the spherical molecule flattens, acquiring the shape of a symmetric top
(with the principal axes of inertia set up by the rotation), the polar radius being
given by

R0+ 60) ~ R(0) = R[1 + us(0)), 33 &
the variation of the polar angle being 60 = uy(0). We obtain straightforwardly the E 18
area of the deformed molecule }

S=58+ R2/d9dr,o(u1 cos 0 + 2uzsinf) = S [1 + %a(a+ 23)] )

where S = 47R*, and the volume enclosed by the deformed molecule
V=1ps : - ' "
(T gt d0dep(sin 0 + uy cos 0 + Sugsin ) = V [ -

: m‘/ = (4x/ 3.)R3..The tensor of inertia ca'g.alsa:;..h;é;:::g.

=3 " £ : st L By Y
ahs ol s ¥ . ] N i o |
ol . - | — % A " . = [ 3 e 4 =i L
il e Bl 3 h 4 .
|
i



e 1 12 4
E =Fi+ Fa = §Iw2 [l + —5--11 (a e ﬁﬂ)] : (40) 4

o '_" 5 ! ) . : i
T ‘The guantization of the rolation energy requires the modulus K, = wl,, ol the t
~ angular momentum K. From (27) and (37) we get i

o 4

120w (4 |

K = IPu? [l + -,—-; (a -+ —;3)] < (41) ;
(5} I'Jﬂ 3 " T
o

whence one can see that during rotation the deformable molecule diminishes the EV

angular velocity in order to conserve the angular momentum. Eliminating w be-
tween (40) and (41) we get the energy

14d-

7

a2

=

K’ 4 &N K2 (42)
= = o 4 )
&= o7 [ 5 (“+ 3”) Eul]
: where K2 = hk(k + 1), k — any positive integer. The deformed rotational states
| have therefore the energics ;'[ '
02 4 1\ h? (43) i
Er=—k(k+1)]|1 - = - -T-—kk-.*-l)]. k|
\ : . s 4 1
| where k = 0,1,2,... and a, 8 arc given by (32); the k-state has also a 2k + :
L 1 TH orientational degeneracy. i
E : The stability condition a < 1 reads now ;'

h? (44)
mk(k SN,

e _ (45)
- hweoy = 0%/ & By, ik

: @ » . Usually th

n quanta are much smaller than the ‘internal” energy bl

‘very small. For Cso with E_‘_'i-:i'-&-*A ;'2?::%: .
‘temperature Eeor = fesrork (1) ~ |
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y 4. Radial vibrations

(e
sl
S

a first approximation that fora hollow, s

1
ici i d 7 are much larger than t
urface elasticity moduli ¢ an ; .
nllo}:'cc“lni::lls]::s o, in which case one may lcave astd:e tht_e tangential motion, the
fn?:;e]culc yibrations being described solely by the radial displacement us = u. The

position is then given by 7 = R(1+ ) and the velocity

Itis reasonable to assume as

V:wa(1+tl)+Rﬁ a0
Jeads to the kinetic energy
Exin = %P/dS‘UQ
1 3
:-l-jwz+%WzjoLIS(2u+u2)5in20+EPszdSu : (47)
2

s the absence of the Coriolis coupling. However, the second term
he centrifugal coupling between rotations and _
d quadratic contributions in u. Adding the '

where one note :
in the right hand side of (47) is t
vibrations, including both lincar an

clastic energy ;
b Ea=¢ / dSu?, (48) li
S one obtains ll;u Ilamiltonian of the rotating molecule with radial vibrations as i !
; H = %pﬁz ] ds [%w2+ o twlu? + w?(2u + u?)sin’ e] , (49) 4 | |

where w. = (20/pR?)!/? is the radial vibration [requency given by (18).

Noticing that the perturbation paramcter a given by (25) is the square ratio
of the rotation to the radial vibration pulsations, a = w?/w?, Eq. (49) can also be
written as

1 2 2
gy sz e [5“‘“‘3 +u twiu’ +awy(2u+ u?)sin® "] ' (50)

\\fhcntfﬁ one can see that while the rotation energy may be comparable to the .
wbraufm energy, the centrifugal coupling generated by rotations is a higher-order
correction wh}eh lies beyond the harmonic approximation. Indeed, by substit '
u; —ug + v in (50), where up = asin® @ is the static radial deformation given
(31) for a = 1 (4,7 > @), the leading contributions to (50) are R

= Lo 2 i3
H= EPRR./CIS (Eﬂwz—{- v stz) : | 2

:‘:. H 1= (1/2)1w? + H,, where Hy is the Hamiltonia
Ef;m L is worth noting the general structu
(“’” ‘)a where g is the “internal” elastic
text that the Coriolis coupling, if it were presen




o see that, within
S 1o that of the rigid moleculeY so -
HORALON 1 = T b O, W Bt Wi SO

| (52)
tive integer. The degeneration of the vibration n-state is ivexz
+ (N —1)! (i.e. the number of ways in which one can cast n bfi]s in
), where N = 3, lis the number of the degrees of freedom correspondin
o the radial vibrations. Denoting by N, the number of atoms in the molecule wﬁ
~get N = N — 6 by subtracting from 3N, the degrees of freedom corresponding
to translations (3), rotations (3) and those associated to the (frozen) tangential
vibrations (2/N,).
Having in view the general structure of M given by (50) and (51) one i |
can see that the harmonic-approximation condition v?2 & 1 requires By = j
Eov? & Ey, i.c. the stability of the vibrating molecule (entirely similar with E,,, =
(2/3)Eoa < Eq given by (27)). On the other hand, by using (17) we get
e, 2nh
v = —
M R?w,
which implies A/Jw; < 1, or wor € wr, a condition already contained in a < 1
(w < w;). From (18) one also obtains Aw, = [(4/3) Fohwe]''* < Eq, so that we
get

n<&l, (53)

g i d L

hweor € hw, < Ey, (54)

inequalities implied by @ < 1. One can say that the condition a < 1 and the B
harmonic-approximation condition v? < 1 express the stability of the rolating R
and vibrating molecule. The latter condition implies also temperatures much lower ¥
‘ than the “internal” energy, 1" < Ey.
' Finally, it is worth remarking that

@~ B k(k+1) ~ Batk(k + 1) < 1,

_2~fuu = hw
v wn -\J—-'-“EunKI,

which show that, although the rotations may involve encr

vibration encrgies, they always produce deformations much smaller b 41 :
ti 15 1 : : ‘brati £ gene i
tions. This is another way of seeing why the rotation-vibration coupling & = ]
? B i tion (of the
rotations have been separated from vibrations by f dSRx It = 0. The ‘_"’T:SI::::;:I":;“ s i
center of mass of the undeformed, non-vibrating molecule) can also be inc uhenein il ;
The translation quanta are hw, = h2/MV?2/3, where V is the vo!un;c ;: i
moves, and one can see that we have the hierarchy wy € wrot € @r (':;Ilfc - contrast with the
1). However, the translation energy Ei = ,\-[1;3/2 may %ake anlya:u: c::mdibions oxpress the
and vibration energies that are limited by Eo. While the O Aich o dition
e deformable molecule during rotations and vibrations, ¢ ‘t'ons [n the case of the
ice these are not coupled either to rotations or vibrations. 2
nter-of-mass decoupling reads [ dSiu =0- 5 i of the andas < BRI
energy that corrects the rotation spectrum in (43) is
¢ harmonic approximation.

(55)

|

gies comparable to the
than vibra-
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1,

deformations (as the present centrifugal coupling) is beyond the harmonie ap-
yvia delorn £ p-

proximation.

5. Concluding remarks

The rotation and vibralion spmf:trfx ofa dc@mable, h°]_1‘3_'w. spherical l_"Olccu[e
aper within a continuum Cl&SLICILy.Inodel which may

ovant for the Cgo lullerenc molecule. In particular, tl.m discussion has been

restricted to the radial vibrations, whose lowest ['regnency 1s accurately deseribed

by the continuum model. As usually, L!m t,r:'iuslaLmnal d‘cgrces of f‘ret?dorn hz}ve
¥ he rolation and vibration ones, while the Coriolis coupling
is absent for the radial vibrations. It ha‘s bcc"n shown that the remaining cen-
trifugal coupling between rotal.ions_ and vibrations Produccs a (rclative) d.cforn:la-
tion @ = (3/2)Eror/ Lo € 1 which 1s con'lparablc.wnh the mean Sf.l)llarc vibeation
22 = B,/ < 1 but which implies a deformation encrgy ~ Epa? much smaller
than the rotation energy and the vibration energy in the harmonic approxima-
tion. It follows that if the molecular deformalions have to be included (as corree-
tions, for example, Lo the thermal properties corresponding to rotations and vibra-
tions) higher-order contributions have also to be added then to the lowest-order,

have been discussed in this p

be rel

been separated from t

Rz harmonic-approximation cnergy.

Y Finally, we note that the radial vibrations discussed within the present con-
tinuum model correspond to the “breathing” mode (Ag, Raman active) whose
the discrete-structure models [8, 9] of Cgo assign the frequency w,y = 60 meVH,
This would correspond, according to (18) and (27), to ¢ =~ 10° dyn/cm and r
Ey =~ 10* eV; at room temperature it implics an extremely small deformation
parameter @ ~ T/Eg 2~ 10~1, which indicates a practically negligible deformation
of the Cgo molecule during rotation and vibrations.

References

[1] ILW. Kroto, J.R. llcath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nalure 318, 162
(1985),
[2] W. Kritschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 3&7;3“@ .
(1990). *;ﬂ i
[3] G.N. Murthy, A. Auerbach, Phys. Rev. B 46, 331 (1992). i
[4] N. Troullier, J.L. Martins, Phys. Rev. B 46, 1754 (1992). A

(5] 8. SafP&lh.\H V.P. Antropov, O.K. Andersen, O. Jepsen, O Gm LD
custein, Phys. Rev. BB 46, 1773 (1992). R
[6) Ph. Lambin, A A. Lucas, J.P. Vigneron, Phys. Rev. 1
[7] M.R. Pederson y ALA. Quong, Phys. Rev. B 1

BRE




G. Mcijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki,
M.S. deVries, Chem. Phys. Lell, 179, 181 (1991).
nn, M.F. Hundley, J.D. Thomps
, 2016 (1992).

on, F.N. Diederich, G. Griiner, Phys




