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Abstract. Jordan’s theory of the boson representation of the fermion fields in one dimension 
is reviewed and generalised to the one-dimensional two-fermion model (TFM). It is shown 
that an additional constraint (Jordan’s commutator) on the fermion fields has been over- 
looked so far by the theory of the TFM. This supplementary condition requires a particular 
cut-off procedure which has been considered a little in recent times. 

1. Introduction 

Although the investigation of the one-dimensional problem of interacting fermions 
started a long time ago it was only recently that contact was made between theory and 
experiment with the attempts for understanding the unusual properties of quasi-one- 
dimensional materials. This aroused a great deal of interest in the many-fermion system 
in one dimension. This paper will deal with the one-dimensional two-fermion model 
(TFM) proposed many years ago by Luttinger (1963) and generalised by Luther and 
Emery (1974) to include the backscattering interaction and by Emery et a1 (1976) to 
include the Umklapp scattering. There is a close analogy between this model and the 
one-dimensional Fermi gas model (FGM) whose characteristic features are briefly 
recalled further below. 

The one-dimensional FGM consists of weakly interacting spin-half fermions with 
wavevector p ranging (in the ground state) from - k F  to + k F ,  kF being the Fermi 
momentum. As the low excited states can be built up by superposing particle-hole pairs 
in the neighbourhood of the f k ~  points a bandwidth cut-off ko is introduced, much 
smaller than kF,  which restricts the single-particle states participating in the dynamics of 
the system within the range 2ko around f k ~ ,  2 k~ - ko < p < k kF + ko. A linear expres- 
sion is used for the energy of these states, = p + u ~ ( / p I  - k ~ ) ,  where p is the Fermi 
level and uF is the Fermi velocity, thus obtaining two linear branches of the fermion 
spectrum asp  lies near + k~ or - k ~ .  The dynamics of the low excited states is governed 
by two interaction processes. The first one is the forward scattering process that involves 
a small momentum transfer. This process exites a particle-hole pair in the neighbour- 
hood of ‘ 2  kF. The second one is the backward scattering process, with momentum 
transfer near k 2 k ~ ,  that excites a particle-hole pair across the Fermi sea. The excitation 
energies associated with these processes are very small and, consequently, both pro- 

@ 1983 The Institute of Physics 5937 

C31 - 0 



5938 M Apostol 

cesses play an essential role in the physics of the system. If there is an underlying lattice 
periodicity and the band is half filled there is one more process whose importance can 
not be neglected, This is the Umklapp scattering that excites two particle-hole pairs 
across the Fermi sea. The momentum transfer in this process is near i 2 k ~  and the 
momentum conservation is ensured by the reciprocal lattice vector G = 4 k ~ .  The FGM 
is further specified by allowing for a momentum transfer cut-off kD which differs from 
ko. This cut-off is imposed on the processes with momentum transfer near ? 2kF which 
may be interpreted as coming from phonon-mediated effective interaction. Thus the 
momentum transfer cut-off is reminiscent of the Debye cut-off. 

The FGM as formulated before is not a model which is exactly soluble. Various 
attempts have been made to obtain approximate solutions. The model with backscat- 
tering and bandwidth cut-off has firstly been treated (Bychkov er a1 1966, Dzyaloshinsky 
and Larkin 1971) by summing the most divergent diagrams (parquet approximation), 
thus leading to a typical problem with logarithmic singularities. This approach predicts 
a phase transition which can not be accepted in one dimension. The lowest-order 
logarithmic corrections have been taken into account by using the skeleton graph 
technique (Ohmi er a1 1976) and the renormalisation group approach (Menyhard and 
Solyom 1973, 1975, Solyom 1973, Fukuyama er a1 1974, Kimura 1973). Beyond the 
parquet approximation it was found that all the singularities of the vertex and response 
functions are shifted to zero frequency and temperature. The momentum transfer cut- 
off was introduced by Chui et a1 (1974) and the renormalisation group technique was 
applied to this model (Grest et al1976, Solyom and Szab6 1977) as well as to the model 
with Umklapp scattering (Solyom 1975, Kimura 1975). All this work was recently 
reviewed by S6lyom (1979). The spectrum of the particle-density excitations was also 
investigated (Apostol 1981, Apostol er al1981) in the model with backscattering in the 
limit of weak coupling strengths, when the Fermi sea is not too strongly distorted by 
interaction. 

Unlike the FGM with backscattering and Umklapp scattering the model with forward 
scattering only is an exactly soluble model. Many years ago Tomonaga (1950) showed 
that those parts of the Fourier components of the particle-density operator which 
correspond to each of the two branches of the fermion spectrum satisfy boson-like 
commutation relations in the weak coupling limit. A model Hamiltonian can be derived 
to describe the collective excitations of the particle density. This Hamiltonian is 
expressed as a bilinear form of the two types of boson operators and can be straightfcr- 
wardly diagonalised (Tomonaga model). The FGM with forward scattering was further 
developed by Dzyaloshinsky and Larkin (1973) in a very interesting way. They assumed 
that the two linear branches of the fermion spectrum may be interpreted as being 
approximately described by two independent fields of fermions with a linear spectrum 
of the form p & U F ( ~  T k ~ ) .  Herep is confined to the whole energy band which is of the 
order of k ~ .  In order to obtain physical results for the correlation functions and momen- 
tum distribution of the fermions near ? k~ a momentum transfer cut-off is required. 
Both these quantities and the structure of the excitation spectrum were derived by means 
of the Ward identity (Dzyaloshinsky and Larkin 1973, Everts and Schulz 1974, see also 
Solyom 1979, Apostol and Barsan 1981) and a version of the functional integral method 
(Fogedby 1976, Klemm and Larkin 1979). It is known that these methods are equivalent 
to a direct diagram summation. 

The first precise statement of the one-dimensional PM was made by Luttinger (1963). 
The Luttinger model consists of two types of fermions whose energy levels are i uFp. 
The non-interacting ground state is filled from - cc to + k~ with fermions of the first type 
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and from -kF to + cz with fermions of the second type. It is argued that this extension 
of the allowable fermion states does not modify the physical results-at least in the weak 
coupling case-as the newly introduced states are far away from the Fermi points. Mattis 
and Lieb (1965) showed that this infinite filling of the Fermi sea causes the Fourier 
components of the particle-density operator to satisfy rigorously boson-like commuta- 
tion relations. The kinetic part of the Hamiltonian was shown to be equivalent to a 
model Hamiltonian which contains only boson operators. The model with forward 
scattering interaction (expressed as a bilinear form in boson operators) can be easily 
treated by means of the canonical transformation method and the results turn out to be 
those of the Tomonaga model. This is why both these models will be hereafter referred 
to as the Tomonaga-Luttinger model (TLM). However it is worth remarking that there 
is a difference between these models: whereas in the Tomonaga model the forward 
scattering process excites a particle-hole pair near i kF in the Luttinger model this 
excited pair may be placed everywhere. By using the boson algebra the momentum 
distribution of fermions (Mattis and Lieb 1965, Gutfreund and Schick 1968) and the 
one-particle Green function (Theumann 1967, 1976) were calculated in the TLM. A 
momentum transfer cut-off was required in such calculations to obtain finite results. The 
TLM was recently reviewed by Bohr (1981). An interesting development of this model 
was attempted by Haldane (1980,1981a, b) who added non-linear terms to the fermion 
dispersion relation. The concept of the ‘Luttinger liquid’ was introduced by this author 
and argued to apply to a wide class of one-dimensional systems. 

The boson algebra of the Fourier components of the particle-density operator was 
fully exploited when Luther and Peschel (1974) and Mattis (1974) introduced a boson 
representation for the fermion field operators. This representation was used to treat the 
model with backscattering (Luther and Emery 1974, Lee 1975, Gutfreund and Klemm 
1976) and Umklapp scattering (Emery et a f  1976). It was shown that for particular values 
of the coupling constants both these models are exactly soluble. A gap is opened in the 
spin- and charge-density wave spectrum, respectively, which has an important effect on 
the infrared behaviour of the correlation functions. It is worth mentioning here that, 
despite the formal resemblance of the backscattering and Umklapp scattering terms in 
the Hamiltonian of the TFM to the corresponding terms in the FGM, there are some 
important differences between these models (Grest 1976, Haldane 1979, Grinstein et a1 
1979). First, an ambiguity reveals itself when one attempts to assign a momentum 
transfer to these processes in the TFM. Secondly, whereas the momentum transfer 
involved by these processes in the FGM is near ? 2 k ~  there is no such restriction for the 
momentum transfer, whatever it is, in the TFM. 

Although the boson representation of the fermion field operators proved to be of 
great use in treating the one-dimensional TFM there are nevertheless some difficulties in 
dealing with it. All these difficulties are related to the cut-off parameter aintroduced by 
Luther and Peschel (1974). The boson representation given by Luther and Peschel 
(1974) is not normal-ordered in boson operators. When normal ordering is attempted 
factors appear which contain divergent summations over an infinite range of wavevec- 
tors. Luther and Peschel (1974) introduced a cut-off parameter LY in their boson rep- 
resentation in such a way as to ensure the convergence of these summations in a simple 
way. The boson representation is shown to be exact only in the limit a- 0. However 
this cut-off procedure leads to some inconsistencies which will be successively sketched 
here (S6lyom 1979). The one-particle Green’s function and response functions of the 
TLM can be calculated by using the boson representation of the fermion field operators 
and the bosonised Hamiltonian. When compared with the same quantities calculated by 
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the usual direct diagram summation one can see that the two cut-offs (bandwidth and 
momentum transfer) appearing in these latter expressions are both replaced by the 
cut-off CY-'. Thus a-' can be interpreted neither as a bandwidth cut-off nor as a momen- 
tum transfer cut-off, but appears in place of both of them. This suggests that the cut-off 
parameter a is too strong, as it leaves no room for the dissociation of the bandwidth 
cut-off from the momentum transfer cut-off. Another type of difficulty arises when the 
backscattering and Umklapp scattering are introduced. As is well known these models 
are exactly soluble and have a gap in the excitation spectrum of the spin- and charge- 
density degrees of freedom for particular values of the coupling constants. This gap is 
proportional to a-' and when a is allowed to go to zero the gap becomes infinite, a 
physically meaningless result. Instead of making a equal to zero Luther and Emery 
(1974) kept it finite and interpreted (Y-' as a bandwidth cut-off. However, Theumann 
(1977) still showed that, in order to preserve the anticommutation relations of the 
fermion fields under the canonical transformation on the boson operators that diagon- 
alises the Hamiltonian of the TLM a momentum transfer cut-off r-' is needed which must 
be kept finite while (Y goes to zero. The momentum transfer cut-off r-l proves to be 
essential to the preservation of sum rules for the spectral density (Theumann 1976) and, 
in fact, the cut-off parameter r was used earlier by Luther and Peschel(l974) for deriving 
the correlation functions of the TLM by means of the bosonisation technique. However, 
it was pointed out by Theumann (1977) that the backscattering Hamiltonian (as well as 
the Umklapp scattering one) can be diagonalised by using Luther and Peschel's boson 
representation only if the limiting process is inverted, that is by letting r +  0 while 
keeping (Y finite. Grest (1976) calculated perturbationally the first-order contributions 
to the charge-density response function of the TFM with backscattering by using Luther 
and Peschel's boson representation. He found that the expression of this function does 
not coincide with that corresponding to the FGM (calculated both with bandwidth cut-off 
and with bandwidth and momentum transfer cut-offs). The discrepancy relates to the 
cut-off parameter (Y which does not apply in the same way to the contributions that differ 
only by their spin indices (glli and gl1). As Grest (1976) correctly pointed out this 
discrepancy arises from the nature of the parameter a, as it is used by Luther and Peschel 
(1974), which is not a true bandwidth cut-off parameter but merely a parameter intro- 
duced ad hoc in order to remove divergences. 

Recently Haldane (1979,1981a) showed that a major failing of the previous boson 
representations (Luther and Peschel1974, Mattis 1974) is the zero-mode terms associ- 
ated with the particle-number operators. He consistently took into account these terms 
and obtained the complete form of the boson representation. This boson representation 
looks very much the same as that encountered in the field-theoretical literature (see, for 
example, Heidenreich et af 1975) and, in fact, it was derived a long time ago by Jordan 
(l935,1936a, b, 1937) for a single field of fermions with energy levels + p  in his attempt 
to construct a neutrinic theory of light. The boson representation given by Haldane 
(1979,1981a) is normal ordered in boson operators so that there is no need for the cut- 
off parameter a in this expression. However, products of two or more field operators 
are to be calculated and the normal-ordering problem arises again. In order to make the 
summations over wavevectors appearing in problems of this type finite Haldane (1979, 
1981a) pointed out a cut-off procedure which is essentially the same as that given by 
Luther and Peschel(l974) although the parameter ahas  a different interpretation. The 
boson representation and the cut-off procedure given by Haldane (1979,1981a) remove 
all the aforementioned inconsistencies of the TFM (although an explicit proof of this fact 
has not been produced until now). 



Boson representation of the T F M  5941 

However there is a quantity pointed out by Jordan (1935, 1936a, b, 1937) (and 
hereafter referred to as Jordan’s commutator) which has been overlooked so far by all 
these boson representations (Haldane’s included). Owing to the fact that the Fermi sea 
of the TFM has an infinite number of particles some operators may have infinite values 
when acting upon the states of the system. Jordan redefined these operators in such a 
way as they be finite and the infinite c numbers which result were controlled by the 
cut-off parameter (Y. As a result the commutator of the Hermitian conjugate fields at the 
same space point must satisfy a certain relationship. This Jordan’s commutator plays 
the part of an additional condition which must be satisfied by the boson representation. 
Its importance is directly connected to the renormalisation of the infinitely large density 
of particles. The fulfilment of Jordan’s commutator ensures the complete equivalence 
of the boson representation to the original formulation of the TFM in terms of the fermion 
field operators. The cut-off procedure given by Luther and Peschel (1974) does not 
make the bosonised fermion fields satisfy Jordan’s commutator chiefly because this 
boson representation omits the zero-mode contribution. A slight modification? of Hal- 
dane’s cut-off prescriptions (Haldane 1981a, 1982) ensures the correct reproduction of 
Jordan’s commutator. This modification is implicitly contained in Haldane (1981a) and, 
in fact, it had been suggested by Jordan (1936a, b, 1937) (also see Apostol 1982). 
Moreover, Jordan’s theory provides the precise relationship between the kinetic Ham- 
iltonian of the TFM expressed with the fermion operators and its bosonised form. The 
bosonised form of this Hamiltonian contains zero-mode terms associated with the 
particle-number operators. These zero-mode contributions are ineffective in the TLM 
(although they play an important role in the extension of the TLM to include particle- 
number and current excitations, as Haldane (1981a) recently pointed out) but would 
presumably lead to non-trivial results in the TFM with backscattering and Umklapp 
scattering . 

It is worth emphasising here the nature of the cut-off parameter (Y introduced by 
Jordan and its connection with the cut-off parameter r of the momentum transfer and 
the cut-off parameters proposed by Luther and Peschel(l974) and Haldane (1981a). In 
order to obtain a consistent boson representation of the fermion fields in one dimension 
in a continuum model approach it is necessary not only to regularise the divergences 
which occur but also to reproduce all the properties of the original fermion fields 
correctly. Among these properties there is Jordan’s commutator of the Hermitean 
conjugate fermion fields at the same point which is directly related to the products 
y + ( x ) y ( x )  and y r ( x ) y ’ ( x ) ,  V ( x )  being the fermion field and yr+ (x )  its Hermitian 
conjugate. Jordan (1936a, b ,  1937) pointed out that these products are infinitely large 
and regularised them by using a particular cut-off procedure of introducing the cut-off 
parameter a. Regularised in this way these expressions can be expanded in powers of 
a, the leading contribution being of order a-’. It follows that a-’ is a bandwidth cut-off 
and that the renormalised expressions of these quantities are given by the next-to-leading 
contributions in a, which do not depend on a. These ‘physical’ contributions reveal 
themselves in the one-particle Green function and their correct evaluation is essential 
for deriving the bosonised form of the kinetic Hamiltonian. When Jordan’s commutator 
is computed the leading contributions to y +  ( x )  ~ ( x )  and y(x )  y +  ( x )  cancel one another 
and only the relevant contributions appear in this commutator. This is why this com- 
mutator plays a particular role in the regularisation of the boson representation. It is 
noteworthy that the cut-off parameter (Y is altogether distinct from the cut-off parameter 

t The author is deeply indebted to one of the referees for useful comments on this point 
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r appearing in the coupling constants of the TLM: this latter cut-off parameter belongs 
entirely to the interaction and corresponds to a momentum transfer cut-off. While the 
cut-off parameter r is an ingredient of the interaction and has to be kept finite in 
calculations the parameter a is essential to the regularisation scheme of the non-inter- 
acting model and the physical results should not depend on it in the limit a+ 0. All 
these features of the regularisation scheme are to be correctly reproduced by the boson 
representation. Luther and Peschel (1974) introduced a cut-off parameter in their 
non-normal-ordered boson representation with the aim of ensuring the convergence of 
infinitely large factors. This cut-off procedure correctly reproduces the leading contri- 
butions to q’ ( x )  y (x )  and y(x)  y’ ( x )  but it fails in reproducing Jordan’s commutator. 
The presence of the cut-off parameter in this boson representation causes all the afore- 
mentioned inconsistencies of the TFM. Great progress was achieved by Haldane (1979, 
1981a) who took into account the zero-mode terms and constructed a normal-ordered 
boson representation. Due to the normal ordering there is no need of the cut-off 
parameter in the boson representation. This boson representation can be used together 
with Haldane’s cut-off prescriptions (1981a) to remove all the inconsistencies reported 
for the TFM (although the explicit calculations of this kind have not been performed until 
now). Moreover, a slight modification of Haldane’s cut-off procedure (Haldane 1982) 
correctly reproduces Jordan’s commutator as well. Actually, this modified cut-off pro- 
cedure has implicitly been used by Haldane (1981a) in deriving the bosonised form of 
the kinetic Hamiltonian and, in fact, it is but another version of Jordan’s regularisation 
scheme (Apostoll982). 

The aim of this paper is to generalise Jordan’s theory to the TFM (which is described 
by four fermion operators, spin included) and to introduce Jordan’s regularisation 
scheme. The paper is organised as follows. In § 2 Jordan’s theory is reviewed for a single 
fermion field in one dimension with linear energy levels + p .  Here the complete equiv- 
alence between the boson representation and the original formulation of the problem 
in terms of the fermion operators is emphasised. Jordan’s theory is generalised to the 
TFM in § 3 and conclusions are given in 4 4. Four objects are introduced in Appendix 1 
in such a way as to ensure the anticommutation relations of the four different field 
operators. Appendix 2 is devoted to the interplay between the cut-off a-’ and the 
momentum transfer cut-off r-’ (Theumann 1977). It is shown that the anticommutation 
relations of the fermion operators and Jordan’s commutator are invariant under the 
canonical transformation on the boson operators that diagonalises the Hamiltonian of 
the TLM. The effect of Jordan’s cut-off procedure on the TFM as well as the effect of the 
zero-mode contributions on the backscattering and Umklapp scattering problems are 
discussed in Apostol(1983). The relationship between the TFM and the FGM are discussed 
there. 

2. Jordan’s theory 

Let a;, , j = 1,2 ,  q = 2nL-’(n + i), n integer, be the destruction operators of two types 
of fermions with the properties 

- 
a;, = q-, {a,,, a;,,’} = ~ , , ~ S , - , ,  (2.1) 

L being the length of the box the system is confined to. Under such circumstances Jordan 
(1935) proved that the operator 
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bk = i 2 aiq ax- ,  

[bk, bin] = (27r)-'Lkbkk~. (2.3) 

bk = b'k ( 2  * 2)  
4 

where k =27rL-'n, n integer, satisfies boson-like commutation relations: 

The proof is as follows. Let us firstly suppose that k, k' L 0. The operators bk and bk+' 
may be written as 

Fork  5 k'  2 0 we have 

since we noticed that 

2 q q q k - k j - q  = 2 , @ ] k - k ' - q q q  = - 2 a ] q ( Y l k - k ' - q  = 0. 
O< q < k - k' O < q < k - k  O<q<k-k '  

Similarly we have for k' 2 k 2 0 

Fork,  k' S 0 it follows immediately 

[bk, b i , ]  = [bzk,  b-k'] = (27C-lLkbkk.. 

For completing the proof we have still to consider k 2 0, k' s 0 .  In this case we have 
[bk,bz,] =[bk, b - k t ]  andfork ,k 'LOweobta in  

Let 
~ ( x )  = L - " ~  2 ap exp(ipx) 

P 

be the fermion field operator whose Fourier components up obey the anticommutation 
relations 

the wavevectorp being given byp  = 27rL-'n, n integer. We define the operators a;, by 
the following relations: 
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where q = ?(p + nL-’ )  = 2nL-’(n + i), n integer. One can easily see that the opera- 
tors a;, fulfil the conditions (2.1). Let us introduce the Fourier components p( - k )  of the 
particle-density operator 

p ( - k )  = C a ; a p - k  p - ( - k )  = E a;ap-k = p ( k )  k > 0. (2.6) 
P P 

With the aid of (2.5) we get 

where we again used the property 

E q q f f , k - q  = - 2 a j q a j k - q  = 0 
4 4 

fork  > 0. It follows from ( 2 . 3 )  and (2.7) that 

[p(-k),  p + ( - k ’ ) ]  = (h ) - ’Lkdkk ,  [ p ( - k ) ,  p(-k’)] = 0 k, k ’  >o.  (2.8) 

These are the well-known boson-like commutation relations of the Fourier components 
of the fermion-density operator in one dimension. Tomonaga (1950) derived these 
relations within the approximation of weak coupling strengths (when the Fermi sea is 
not too strongly distorted by interaction) and Mattis and Lieb (1965) used a ‘unitarily 
inequivalent’ particle-hole representation to obtain them. 

We pass now to Jordan’s boson representation. Let us assume that the field operator 
V ( x )  corresponds to a one-dimensional many-fermion system with cylic boundary con- 
ditions on the box of length L ,  -L/2 < x s L/2. Throughout this paper the calculations 
are performed under the assumption L+ -m so that the sum Z p  may be replaced by 
(2n)-’LJdp.  The single-particle energy levels are U F P ,  UF being the Fermi velocity and 
p = 2nL-’n, n integer, the wavevector. This system is governed by the kinetic 
Hamiltonian 

where up (a ; )  is the destruction (creation) operator of the single-particle state labelled 
by the wavevector p .  These operators obey the anticommutation relations given by 
(2.4). The ground state 10) is filled with particles from --m to kF, k~ being the Fermi 
momentum, so that the ground-state energy is EO =(4n) - ’Lu~k:  . Instead of working 
with the particle-number operator Zpa,’ up which has an infinite value when acting upon 
the states of the system the ‘charge’ operator is used 

B = C a i a p  - X spa; = 2 apiap + 2 ( a p a p  - 1) 
P > O  p s o  P>O p r o  

(2.10) 

which counts the particles with p > 0 minus the holes with p C 0. When applied to 
the ground state this operator yields B ( 0 )  = (LkF/2n)IO). Let us also introduce the 
quantities 

V ( x )  = -i2nL-‘ 2 k-’exp(ikx)p(-k) 
k>O 

aV(x> F ( x )  = - = 2nL-I 2 exp(ikx)p(-k) 
ax k>O 

(2.11) 

where p( -k) is defined by (2.6). With these definitions the particle-density operator 
can easily be expressed as 
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Ip+(x) V(X) = L - ' z  exp(ikx)a;a,,k 
P.k  

p s 0  
= L-' 1 4 L-'B + (2n)-'[F(x) + F+(x)].  (2.12) 

In order to control the divergent sum in (2.12) Jordan introduced the cut-off parameter 
cu>Oby 

(2.13) y* ( x )  y(y)  = lim [ ~ ( x  - ia/2)] + y(y  - i(r/2) 
LY- 0 

and found 

[ y ( x  - ia/2)]-1p(x - ia/2) = L-' C exp(pLY)aia, - L-' C exp(pcu)(a,a;- 1) 
P'0 p s 0  

+ L-' C exp[(p + /C/~)LYI exp(ikx)a;a,+k 

+ L-' E exp[(p -C /C/~)LYI exp(-i/Cx)ag,kap 

p.k>O 

(2.14) 
p . k > O  

which for small acan  be written as 

[ y ( x  - ia/2/2)]'1p(x - i 4 2 )  

= (1/2n(u) + L-'B + (2n)-'[F(x 

Similarly we define 

y(x> y + ( y )  = lim ~p(x + 4 2 )  
LY- 0 

and have 

~ ( x  + ia;/2)[y(x + ia/2)]+ 

+ F ' ( x ) J  + O(LY). 

= ( 1 / 2 i ~ 4  - L - ~ B  - (~x)- '[F(x) + F'(X)J + ~ ( L Y )  

so that 

(2.15) 

(2.16) 

(2.17) 

One can see that the regularised expressions (2.15) and (2.17) of the infinitely large 
products y+(x)  y(x )  and y(x)  ~ ' ( x )  may be expanded in powers of the cut-off par- 
ameter a, the leading contribution being (2na)-'. In the limit n+O the relevant 
contributions are the next-to-leading ones which are independent of LY. These renor- 
malised quantities are the only ones which contribute to Jordan's commutator (2. IS), 
whose expression is thus independent of a. This commutator was pointed out by Jordan 
(1936a, b, 1937) and it has been overlooked so far by the theory of the TFM. Jordan's 
commutator (2.18) represents an additional condition which must be satisfied by the 
boson representation of the fermion field. Let us note a useful relation which can be 
derived from (2.14) and (2.15): 

1 -- - + L - ~ B  + ~ ( a ) .  
2 n a  (2.19) 
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Using the anticommutator { y + ( x ) ,  ~ ( y ) }  = 6 ( x  - y )  and (2 .15) ,  (2.18) we remark that 
(ncu)-'stands for 6(0). 

One can easily verify that the conditions 

[ Y ( X > ,  d - k ) l  = exp(-ikx) V(X)  
[ v ( x ) ,  P ' ( -k ) l  = exp(&x)ty(x) [ v ( x > ,  BI = v ( x )  (2.20) 

v ( x >  = x(x> exp(iV'(x)) exp(iV(x)) (2.21) 

[x(x), P(-k)l = M x ) ,  P'(-k)l = 0 [ x ( x ) ,  BI = x(x>. (2.22) 

are satisfied if ~ ( x )  is of the form 

where ~ ( x )  should be chosen in such a way as 

We have used here the fact that B commutes with p( - k )  and p'( - k ) .  Let us introduce 
the unitary operator S which is defined by 

saps-' = a p + 2 x L - 1  

S a p  = U,'-2,L-l S y - ( x ) S - '  = exp(i2nL-'x) y ~ *  ( x ) .  (2.23) 

S y ( x ) S - '  = exp(-ihL-'x) y ( x )  

One can easily see that 

[S,  p(-k)l = [S,  p + ( - k ) l  = 0, 

that is 

[ S ,  B ]  = - S  [S- ' ,  B ]  = S-' .  

We have similarly? 

(2.24) 

(2.25) 

or 

[s, Ho] = - 2 3 d - ' U ~ ( B  - 4)s = - ~ X L - ' U F S ( B  + 1).  (2.26) 

Looking at (2.22) and (2.25) we find that ~ ( x )  must be of the form 

x(x) = S- ' xo (B ,  x )  (2.27) 

t Strictly speaking we may not replace the sumE~,p42.TL.1 by the integralL(2;r)-' J r - ' p d p  =id-' as we 
have done in deriving (2.26). However this apparent inaccuracy leads to the correct result which can be 
obtained rigorously as follows. Let us introduce the set S, of unitary operators defined by S,apS;' = 
up+2aL-~un etc, CY,, = n ,  n integer. We haveS,W(x)S;' =exp( - ~ ~ ; ~ L - ' c Y ~ x ) I ~ ( x ) ,  SJ3.5;' = B  - CY,,. S,H&' = 
Ho -2d-'uFCY& + .zL-'u&, where b,, = n(n - 1). The operator S will be defined by SuJ '  = U ~ - ~ ~ ~ - I , ,  

S ~ p ( x ) S - l  =exp( - i2;rL-'ax)y(x), SBS-' = B  - CY. SH&' =Ho - 2irL-luFCYB + xL-'u~p where CY= 
limn-=(crn)ln =1 and/3=limn,,(b)'" = 1. It followsthat Sdefinedinthisway hasthesameeffect as thatof  
S given by (2.23) provided that the sum Ei<p42TL.3 is replaced by the integral L(2n)-' J p ' - ' p d p  =xL-'. It 
is noteworthy that this definition of S may be extended to the real powers of this operator by allowing for a 
continuous range of the wavevectorp. 
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where xo(B ,  x )  has to be further specified. Moreover 

S x ( x ) S - '  = S-'xo(B - 1 ,x )  = exp(- i2;cL-'x)S-'~o(~,x)  

whence 

x o ( B , x )  = e x p ( i 2 n ~ - ' x ) x ~ ( B  - 1 ,x )  

that is 

x o ( B , x )  = K ( x )  exp(i2nL-'Bx) (2.28) 

K ( x )  being an undetermined function of x .  In order to find K ( x )  we investigate the 
equation of motion for the fermion field 

[ ~ ( x ) ,  H o ]  = - i u F -  a ~ ( x )  = -iuF-exp(iV+(x)) ax(x> exp(iV(x)) ax ax 

a 
ax 

- i UFX(X) - [exp(iV-(x)) exp(iv(x))] 

= [x(x), Hol exp(iV'(x1) exp(iV(x)) 

+ x(x)[exp(iV+(x)) exp(iv(x)), Ho]. (2.29) 

Using (2.26) we obtain straightforwardly 

[x(x), Ho] = 2nL-'uFS-'(B - i ) x o ( B ,  x )  

where we have used the commutator [ B ,  Ho] = 0. Taking into account the relation 

[ p ( - k ) ,  HO] = uFkp( - k )  (2.30) 

we obtain similarly 

[exp(iV+(x)) exp(iV(x)), Ho] = -iuF-[exp(iV'(x)) exp(iv(x))]. 

Introducing these results into (2.29) we obtain the equation 

a 
ax 

-iaxo(B,x)/ax = 2 n ~ - ' ( ~  - i ) ~ o ( ~ , x )  

whose solution is 

xo(B, x )  = c exp[i2nL-'(B - 1) x ]  (2.31) 

c being a constant. Therefore K ( x )  = c exp( -inL-' x )  as one can see by comparing 
(2.28) and (2.31). Bringing together the resultsgiven by (2.11), (2.21), (2.27) and (2.31) 
we obtain Jordan's boson representation 

~ ( x )  = C S - '  e x p [ i 2 n ~ - ' ( ~  - i>x]  exp - 2 n ~ - '  2 k-' exp(-ikx)p*(-k) 

(2.32) 
i ( k > O  

x exp 2nL-l k-'exp(ikx)p(-k) . ( k>O i 
It still remains to check whether the anticommutation relations 

{ V - b ) ?  V(Y>> = w - Y >  { v ( x > ,  V(Y>> = 0 (2.33) 

and Jordan's commutator (2.18) are satisfied by this boson representation. In order to 
do this we follow Jordan's prescriptions (2.13) and (2.16) of introducing the cut-off 
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parameter (Y. When using this cut-off procedure and the boson representation (2.32) for 
calculating products of two fermion fields we encounter sums of the type 

f(z) = 2nL-' k-'exp(-kz) R e z s 0 ,  z+O. (2.34) 

1 (condition fulfilled for any fixed z and L+ =) this sum may be 

f(z) = - ln(2nL-'z) + nL- 'z  

k > O  

For L-'lzl 
approximated by 

(2.35) 

and this approximation will be used throughout this paper. By straightforward calcula- 
tion we obtain for x # y 

{ty(x), ~ ( y ) )  = c ' s - ~  exp[i2nL-'(B - I ) (x  + y)] 

x e x p ( - 2 n ~ - '  k > O  k-'[exp(-ikx) + exp(-iky)lp-(-~c)) 

x exp 2 n ~ - '  go k-1 [exp(ikx) + exp(iky)l P( - k )  ) 
x [exp{-i2nL-'x - f[-i(x - y)]} 

+ exp{-i2nL-'y - f[i(x - y)]}] = 0 

i 
(2.36) 

and 

yt'(x> = c2s-2 e x p [ i i i n ~ - ' ( ~  - 11x1 expi-4;rl-l k > O  k-1 exp(-kx)p+(-k))  

x exp 4nL-I zo k-' exp(ikx) p( - k ) )  exp( - f ( O ) )  = 0 (2.37) 

due to the last exponential factor which is equal to zero. Using the cut-off procedure 
given by (2.13) and (2.16) we obtain 

i 
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x exp(-2nL-' k > O  k-'[exp(ikx) - exp(iky)] p( - k ) )  

(2.40) 

If follows that c = cgL-12, CO being a constant with Ice/ = 1. We have similarly from 
(2.38) 

[ y(x  - ia/2)] t- ~ ( x  - ia/2/2) = L-' exp[2n~- ' (  B - 1) a + f( a)]  

x exp 4nL-' 2 k-' exp( -ikx) sinh ( k > O  2 

4nL-l kTo k-' exp(ikx) sinh - p( - k )  
2 i 

=L + L- lB  + (2n)-'[F(x) + F - ( x ) ]  
2 n a  

+ na: { L - ' B  + (2n)- '[F(x) + F+(x)]}': + O ( 2 )  (2.41) 

where : , . , : means the normal ordering of the boson operators; from (2.39) we obtain 

y(x + 4 2 )  [ y(x + iqO)]- = (1/2na) - L -'B - (2n) - ' [ F ( x )  + ~ ' ( x ) ]  

+ na: { L - ' B  + (2n)-'[F(x) + F ' ( x ) ] ) 2 :  O ( 2 ) .  (2.42) 

These expressions agree with those given by (2.15) and (2.17) and one can easily see 
that Jordan's commutator (2.18) is obtained by this bosonisation technique. We notice 
that the factor exp( ak/2) appearing in these calculations may be considered as a short- 
hand notation for its first-order power expansion 1 + ak/2. In this way the limit a- 0 
may be safely transposed with the summation over k. This done, the validity of Jordan's 
boson representation (2.32) and the cut-off prescriptions (2.13) and (2.16) are com- 
pletely established. We should now obtain the bosonised form of the kinetic Hamiltonian 
HO given by (2.5). By straightforward calculation we have 

-i  ,/ cix [ V ( x  - id211 + - V ( x  - id21 
a 
ax 

= 2 exp(pa)pa;a, - 2 exp(pa )p (a , a~  - 1) 
p > o  p s o  

(2.43) 

and comparing with 

we obtain 

(2.45) 
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J 

=- L + B + nL-'a B2 + 2 p + ( - k ) p ( - k ) )  + O ( a 2 )  2 n a  ( k>O 

and introducing this into (2.45) we obtain 

whence 

(2.46) 

(2.47) 

= ~ L - ~ U ~ B Z  + 2 n ~ - ' u ~  C. p - ( - k ) p ( - k ) .  (2.48) 

One can see that (2.26) and (2.29) are satisfied by this bosonised form of H o .  From 
(2.43), (2.44), (2.46) and (2.48) one obtains also 

k > O  

This latter relation can also be obtained by using the boson representation of the fermion 
field directly. The expectation value of the product[ V ( x  - id2) ]+  yl (x  - ia/2) given by 
(2.41) on the ground state is (2na)- '  + (2n) - 'k~  + O ( a ) ,  whence one may interpret 
a-' as a bandwidth cut-off. 

Concluding this section we remark that Jordan's theory provides the exact and 
complete correspondence between the original problem formulated in terms of the 
fermion fields and its bosonised form. 

3. Boson representation for the TFM 

We pass now to the generalisation of Jordan's boson representation to the set of four 
fermion operators appearing in the theory of the TFM 

Y , ~ ( X >  = L-*  ' C. sips exp(ipx) a l p s  1 = a,, a,, ass {alps, a l p s  I = 0 (3.1) 
P 

where j = 1, 2, p = 2nL-'n, n integer and s = 21 is the spin index. The Hamiltonian of 
the system is given by 
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and the Fermi sea is filled with particles of the first type ( j  = 1) from p = --x to p = 
+ kF and with particles of the second type ( j  = 2) f romp = -kF t o p  = + -x. The ‘charge’ 
operators are 

which commute with H o .  One can easily see that the operators a;.,, and Piqs defined by 

where q = ?Cp + nL-’) = 2nL-’(n + i), n integer, satisfy the conditions (2.1) so that 
the Fourier components of the particle-density operators 

p i S ( - k )  = & ( k )  = Caipsaip+ks = iC a l q s a 2 k - q s  

P 4 (3.5) 
b ( k )  = p i . ( - k )  = E aiptksa2ps = i 2 P i q s P 2 k - q s  k > O  

P 4 

obey the boson-like commutation relations 

[pis( T k ) ,  ~ ; ~ , ( T k ’ ) l  = (2n)-’Lk6j,~Sss~Skk 

[ P j s ( t k ) ,  p , , s , ( T k ’ ) ]  = O  k , k ’ > O  

where the upper (lower) sign corresponds to j ,  j ’  = l(2). In addition any p i s ( T k )  com- 
mutes with any B,, and 

[ P J s ( ~ ~ ) ,  Ho] = uFkpp(Tk)  [Bp,  Ho] = 0. (3.7) 

(3.8) 

Likewise as before we introduce the unitary operators Si, =(S;’)+ 

S. 1s a .  I’ps’ S- 1s - - 6lj’ &,ap + 2,7L-’S + ( 1 - 8,jP dSs, )a,,,,, 
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provided that Jordan's prescriptions are used for introducing the cut-off parameter CY: 

(3.12) 

Y,s(x)Y;(Y) = lim Y,s(X 2 id2)[Yl,s(Y 2 i d 4 1 - .  
a-. 0 

The coefficients cIs are chosen in such a way as to satisfy the relations 

c; CIS = cis c; = 1 ( j s )  f ( j ' s ' ) .  (3.13) 

Their construction is given in Appendix 1. t 
Jordan's boson representation (3.11) is normal ordered in boson operators and 

consistently includes the modes corresponding to k = 0 (through the Bls operators). This 
boson representation has also been derived recently by Haldane (1979,1981a) by means 
of an entirely different technique. It is noteworthy that the ladder operators constructed 
by Haldane (1981a) have all the properties of the SI, operators introduced here (including 
their action on the field operators and on the kinetic Hamiltonian). It is easy to verify 
that the boson representation of Luther and Peschel (1974) does not satisfy Jordan's 
commutator (last line in equation (3.10)). Indeed, for j = 1 and dropping the spin index 
this boson representation reads (Luther and Peschell974) 

{ C I S ,  CJ s 1 = {CIS f c:s } = 0 

t The conditions (3.13) are satisfied by the Dirac matrices as well as by the operational representations of the 
coefficients c,, in terms of the 'charge' operators B,, (see for example Heidenreich et a/  1975. Solyom 1979). 
However, in order to diagonalise the Luther-Emery Hamiltonian and the umklapp scattering Hamiltonian 
(as is done in Apostol(l983)) the coefficients cjr must be subjected further to additional conditions which are 
satisfied neither by the Dirac matrices nor by the operatorial representations of c,~. 
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q (x>  = (2n(u)-”2 exp(ikFx + 2 n  2 k-’  exp(-(uk/2) 
k>O 

x [exp(ikx)p(-k) - exp(-ikx)p+(-k)] 

so that we have 

y- (x)  y(x)  = q(x )  y+(x )  = [ 1 - exp(-2na)]-’ = ( h a ) - ’ .  

One can see that this cut-off procedure correctly reproduces only the first term in (2.15) 
and (2.17) and gives [ q+(x ) ,  q(x)]  = Oin contrast to (2.18). Haldane’s boson represen- 
tation (1981a) is normal ordered so that the parameter a may be taken out from its 
expression. However Haldane regularises the divergent factors appearing in products 
of field operators by means of a cut-off exp( - Ek) ( E +  0’ ) which is essentially the same 
so that again only the first term is correctly obtained in q* (x) q (x )  and q(x)  q4 ( x ) .  It 
is obvious that the cut-off parameter &should be introduced in such a way as not only to 
simply regularise the divergent factors but also to reproduce the properties of the original 
fermion fields correctly. The expressions (2.15) and (2.17) are correctly obtained, and 
hence the commutator (2.18), by a slight modification of Haldane’s cut-off prescriptions 
(Haldane 1982), namely 

qvr (x) y(x)  = lim y+ (x + a/2) y(x - a/2) 

~ ( x )  y + ( x )  = lim y(x + a/2) y - (x  - a/2) 

a-0 

a- 0 

(where the limit E+ 0’ in Haldane’s cut-off prescriptions is taken). Obviously this is 
nothing but another version of Jordan’s cut-off procedure (2.13) and (2.16) and, in fact, 
it has been used by Haldane (1981a) to derive the bosonised form of the kinetic Ham- 
iltonian. One may see that Jordan’s cut-off procedure is more specific than the usual one 
in which only the factor exp( - &/2) appears. 

Finally we note that the kinetic Hamiltonian Ho given by (3.2) becomes in the boson 
representation 

(3.14) 

As [B,s,  Ho] = 0 the additional zero-mode contribution appearing in Ho has no notable 
effect on the energy spectrum of HO which can be described either in terms of one- 
fermion excitations or in terms of p excitations (Mattis and Lieb 1965). 

Ho = x L - ’ U F c B ; r  + 2nL-’uF c p ; ( T k ) p J T k ) .  
1s j s , k > O  

4. Conclusions 

It has been shown that Jordan’s commutator has been overlooked so far by the theory 
of the TFM. This commutator plays the part of an additional condition which must be 
satisfied by the boson representation of the fermion fields in one dimension. Including 
Jordan’s commutator in the theory of the TFM amounts to introducing a well-determined 
cut-off procedure for calculating products of two fermion fields at the same space point. 
This cut-off procedure differs from that usually given in the literature (Luther and 
Peschell974) and, in fact, it can be obtained by a slight modification from that proposed 
by Haldane (1981a). Jordan’s theory of the boson representation of fermion fields in  
one dimension has been reviewed in the present paper and generalised to the TFM. The 
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precise connection between the fermion problem and its bosonised counterpart has been 
emphasised. 

Appendix 1. The coefficients 

Let us consider four types of fermions labelled by (is) = i = 1 , 2 , 3 , 4  so that (1, + 1) = 
l ,(l,  -1) = 2, (2, +1) = 3and(2, -1) = 4eachwiththeenergylevelsp = integer. The 
ground state / b )  of this system is filled with particles fromp = - CQ t o p  = 0 (or any other 
constant, not necessarily the same for all particles; in this case the definition of bi below 
should be changed correspondingly). Let us define the ‘charge’ operators 

where nb is the occupation number of thep  level with i-type particles, n; =0, 1 . All the 
b, yield zero when acting upon the ground state b,10) = 0. We consider the states 
I bl b2b3b4) characterised by specified eigenvalues b, (integers) of the ‘charge’ operators 
and define the operators c, by 

ct1b1b2b3b4) = (-1)’ J ’<’ b1 lbl .  . . b, -1.  . . b4) 

c : l b 1 b : b 3 b 4 ) = ( - 1 ) 0 ~ l b J ~ b 1 . .  . b , + 1 . .  . b 4 )  

where i = 1 , 2 , 3 , 4  and bo = 0. It is easy to check that the commutation relations (3.13) 
are satisfied by the operators c, = clS defined on the space spanned by the states 
I b1 b2 63 b4). 

Let us define the operators cIP and c,. by clp = & I ,  czP = c21, clo = c11 and c : ~  = 
c ~ - ~ .  Taking the superposition 

j @ = 2 exp[i( bl q1 + b3 q2)  1 (- 1 ) [b l (b l  - 1) +b3(b3 - 1 ) ~  1 b b2b3b ) 
bibzb364 

where are real parameters, one can easily verify the relations 

C l P C 2 P  I @ )q*n = c:pc2p I @ )qlpz = exp(iq2) I @ )qlpz > 

ClaC2.l @)plqQ = ClOCi ,  I @ )pipz = - exp(iq1) I @ )q1q2 

clpc2+l@)qlQ1 = CTpc;pI@’q,q*  = -exp(-iq2)/@)q1q2, 

~ h 7 I @ ) q 1 Q 1  = ~ ~ u ~ ~ l @ ~ p , q *  = exp(-iq1)I@)q1p2 

which are useful in diagonalising the Hamiltonian of the TFM with backscattering and 
Umklapp scattering. 

Appendix2. The interplay between the bandwidth cut-off a-’ and the momentum transfer 

We investigate the effect of the canonical transformation 
cut-off r-l 

Pjs(’k)+ Pjs(’k) = u s ( k ) ~ , s ( T k )  + w s ( k ) ~ ; ( ’ k )  

w h e r e j = l f o r ] = 2 a n d j = 2 f o r j = l , v ; ( k )  - w : ( k )  = 1, w S ( k )  =w,exp(- rk/2),r-’ 
being a momentum transfer cut-off, on the anticommutation relations of the field 
operators and on Jordan’s commutator. We shall prove that these relations are 
preserved by such a transformation provided that a+ 0 while r is held finite. This 
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WZ n - I  a 
= 6 ( x  - y) 

r2 

(? + ( x  - % a2 + ( x  - y)2 
X 
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and 

Similarly one can see that {1+3~,(x), $,,(y)} = 0, so that we may conclude that all the 
aforementioned anticommutation relations and Jordan's commutator are invariant 
under the transformation pis( T k )  + &( 3 k )  provided that a--, 0 while r is kept finite. 
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