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Abstract. The Jordan boson representation and point-splitting regularisation are applied to 
the one-dimensional two-fermion model (TFM) with momentum-transfer cut-off and zero- 
mode terms included. It is shown that the correlation functions of the Tomonaga-Luttinger 
modelobtainedin this way coincide with those given by diagramsummation. The energygaps 
entering the well known Luther-Emery-Peschel back-scattering and Umklapp scattering 
solutions acquire a physical dependence on the momentum-transfer cut-off. First-order 
perturbation calculations of the charge-density function give different results for the spin- 
parallel 'back-scattering' contributions to the bosonised TFM and corresponding Fermi gas 
model, thus indicating that these models are not equivalent. 

1. Introduction 

The cut-off procedure currently employed for regularising the ultraviolet divergences 
that occur with boson representation of fermion fields in one dimension (Luther and 
Peschell974, Mattis 1974) poses certain difficult problems (see, for example, Solyom 
1979). The correlation functions of the Tomonaga-Luttinger model obtained by using 
this cut-off procedure differ from their expressions given by diagram summation. The 
difference is that the ultraviolet cut-off a-' appears in place of both the band-width cut- 
off and the momentum-transfer cut-off. It is as if this a-' cut-off is so strong that there 
is no dissociation between the band-width cut-off and momentum-transfer cut-off. The 
same cut-off procedure leads to an CY-' dependence of the energy gaps appearing in the 
back-scattering (Luther and Emery 1974) and Umklapp scattering (Emery et a1 1976) 
problems. However, the boson representation holds only in the limit CY-+ 0 (which 
would render these gaps infinite) and the commutation relations of the bosonised fermion 
fields are preserved under a canonical transformation of the boson operators that 
diagonalises the Tomonaga-Luttinger model only if a momentum-transfer cut-off r-l is 
introduced which should be kept finite as (Y goes to zero (Theumann 1977). In fact, the 
need to introduce a momentum-transfer cut-off in calculating correlation functions with 
the boson representation has already been emphasised ever since the discovery of boson 
representation (Luther and Peschell974). Nevertheless, in spite of this, it is preferable 
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in current practice to disregard the momentum-transfer cut-off and to work solely with 
the ultraviolet cut-off a-l appearing in the boson representation. 

The above-mentioned difficulties which are related to the ultraviolet cut-off a-' 
originate in the infinite particle density of the non-interacting one-dimensional two- 
fermion model (TFM) (Apostol 1982, 1983) whose regularisation requires the Jordan 
point-splitting procedure (Jordan 1935, 1936a, b, 1937). The point-splitting regu- 
larisation prescribes a pure band-width cut-off a-l, thus allowing the momentum- 
transfer cut-off r-' required by the interaction Hamiltonian. The Jordan boson rep- 
resentation is exact in the limit a--* 0 which should be taken whenever possible while r 
is kept finite (Apostol 1983). The consistent use of the point-splitting regularisation 
removes the aforementioned difficulties of the bosonised TFM and, in addition, enables 
a direct comparison to be made between the results of this model and those of the Fermi 
gas model (FGM) (Grest 1976, Haldane 1979, Rezayi et a1 1979, Grinstein et a1 1979). 
The previous boson representations (Luther and Peschel1974, Mattis 1974, Heidenreich 
et a1 1975, Haldane 1979,1981) lead to the same results when proper allowance is made 
for the band-width cut-off a-' and momentum-transfer cut-off r - l .  

In the present paper the Jordan point-splitting regularisation as applied to the 
bosonised TFM is dealt with. The aim is to incorporate consistently both the band-width 
cut-off a-' and the momentum-transfer cut-off r-' into the bosonised TFM. In 0 2 the 
Jordan boson representation and point-splitting regularisation are briefly reviewed and 
the bosonised TFM is discussed in relation to the FGM. The zero-mode contributions are 
included not only in the kinetic Hamiltonian (Haldane 1981, Apostoll982,1983) of the 
TFM but also in its interaction part. Consequently, the canonical transformation that 
disentangles the charge-density degrees of freedom from the spin-density degrees of 
freedom has to be extended so as to take care of these zero-mode contributions also. 
This is done in § 3 where the correlation functions of the Tomonaga-Luttinger model 
are calculated by means of the Jordan bosonisation technique and found to be identical 
with those given by diagram summation (Dzyaloshinsky and Larkin 1973). The well 
known solutions of the back-scattering (Luther and Emery 1974) and Umklapp scat- 
tering (Emery et a1 1976) problems are obtained again in § 4 with the only difference that 
the energy gaps in the fermion spectrum depend on the momentum-transfer cut-off r-' 
and not on CY-'. This is an inevitable consequence of the consistent use of a bosonisation 
technique which incorporates both the band-width cut-off a-' and the momentum- 
transfer cut-off r-'. First-order perturbation calculations of the charge-density cor- 
relation functions of the bosonised TFM are dealt with in § 5 .  It is found that the spin- 
parallel 'back-scattering' gill contribution differs from both the spin-antiparallel 'back- 
scattering' gl, term in the bosonised TFM and the gill term in the corresponding FGM. The 
former discrepancy has already been noticed (Grest 1976) with the use of the ultraviolet 
cut-off a-' in the boson representation given by Luther and Peschel(l974) and, there- 
fore, it is not related to the boson representation. It arises from the difference between 
the glll and gl, terms in the bosonised TFM (amongst other features, for example, these 
terms are not spin rotationally invariant whenglli = glJ;  although thegl, term preserves 
its form from the FGM, the gill term acquires a form that is peculiar to the bosonised 
TFM. This discrepancy indicates the difference between the bosonised TFM and the 
corresponding FGM, a difference that is even more evident in the latter discrepancy (glil 
contributions) mentionedabove. Thisdifference shows that theglii termsinthe bosonised 
TFM and the corresponding FGM are not equivalent. Conclusions are given in 0 6. The 
paper ends with a mathematical Appendix on the Fourier transform of the charge- 
density correlation function. 
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2. The Jordan boson representation and point-splitting regularisation 

The non-interacting one-dimensional m is described by the kinetic Hamiltonian (Lut- 
tinger 1963) 

where uF is the Fermi velocity, 

v,s (x) = L -lP z a lps  exp(i PX) 
P 

are the fermion fields for each type of fermion j = 1 ,2  (embedded in a box of length L) 
and each spin orientation s = & 1 and : - : means normal ordering relative to the non- 
interacting ground state 10) which is filled with particles whose wave-vector p = 
2nL-I x integer runs from --t4 to 0 for j = 1 and from 0 to +-t4 fo r j  = 2. Owing to the 
infinite particle density of the model a band-width cut-off a-' should be introduced, 
which yields the following regularised expressions for 111; ( X ) ~ , ~ ( X )  and v,s(x)vi  (x) 
(Apostoll982,1983): 

v; (x ? ia/2)v,,(x T i a/2) = 1/2na + L-'B,, + (2n)-l (F,,(x) + F; ( x ) )  

+ na:[L-'B,, + (2n)-'(F,,(x) + Fjf(x))]Z: + O(a2) 

+ na:[L-lBls + (2n)-'(F,,(x) + F;(x))]2: + O(a2) 

v,,(x 2 i a/2)v/+S ( x  T i a/2) = 1/2na - L-'B,, - (2n)-l (F,,(x) + F; (x)) 

(2.2) 

where the upper (lower) sign corresponds t o j  = 1 (2). In (2.2) the 'charge operators' B,, 
(Kronig 1935) are given by 

B,s = j dx:  v ;  (x)v,s(x) : 

and 
F,, (x) = 2nL-' p,s (3 k )  exp( ? i kx) 

where p,, ( 7 k) are the Fourier components of the particle density. The normal ordering 
in (2.2) refers to p,$ ( T  k )  which satisfy boson-like commutation relations (Tomonaga 
1950, Mattis and Lieb 1965) and p,s (?k)10) = 0. These boson-like commutation 
relations make possible the boson representation (Jordan l935,1936a, b, 1937, Luther 
and Peschel 1974, Mattis 1974, Heidenreich et a1 1975, Haldane 1979, 1981) of the 
fermion field operators 

k > O  

where the coefficients cis have been given by Apostol (1983), Sjs = exp(i Njs) ,  N i  = 
N j s ,  INjs,  Bjf,.] = ? i ajj, a,,, and 

Qjs(x) = 2nL-I k-lp,(?k) exp( kikx). 
k > O  
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All the commutation relations among the operators qjs(x), pis ( T k ) ,  Bjs and Ho, including 
the Jordan commutator obtained from (2.2) and given by 

[ q $ ( x ) ,  qjs(x)] = lim [ q $ ( x  -+ ia/2)qjs(x T i a/2) - qjs(x * i a/2)q$(x T i a/2)] 
U’ 0 

=2L-’Bjs + n-’(Fjs(x) + F $ ( x ) )  (2.4) 

are satisfied by the boson representation (2.3) provided that the Jordan point-splitting 
regularisation 

is used, the limit a+- 0 being taken whenever possible. 
It is worthwhile mentioning here that the Jordan boson representation (2.3) differs 

from the boson representation given by Luther and Peschel(l974) not only in the normal 
ordering of the boson operators but also in the fact that the cut-off a-l is absent in (2.3) 
unlike the ultraviolet cut-off which explicitly appears in the boson representation given 
by Luther and Peschel(l974). The specific use of the band-width cut-off a-1 is required 
by the original fermion problem (in particular the fulfilment of (2.2)) and is prescribed 
by the point-splitting regulation (2.5) (Apostoll983). 

If the Jordan boson representation (2.3) and the point-splitting regulations (2.5) are 
made use of, the bosonised form of the kinetic Hamiltonian (2.1) is obtained: 

a relationship that is often called the ‘Kronig identity’ (Uhlenbrok 1967, Dover 1968, 
Heidenreich et a1 1980). The standard form of the bosonised interaction Hamiltonian of 
the TFM can be obtained by starting with the following interaction Hamiltonian of the 
FGM : 

1 r 
v(x) = - 

2nx2 + (r/2)2 
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being therefore the momentum-transfer cut-off. Indeed, replacing the quantities 
VJ $ ( x )  VJ js ( x )  in (2.7) by 

where u(k)  = exp( -rlkl/2) is the Fourier transform of u(x ) .  
As the bosonised TFM given by (2.6) and (2.9) will be discussed in relation to the 

corresponding FGM given by (2.1) and (2.7), a few comments on the latter are in order 
here. Significant differences occur (Haldane 1979) between the results from this FGM 
and those corresponding to the original FGM (Dzyaloshinsky and Larkin 1971, Grest et 
a1 1976, S6lyom 1979), the most important arising from the gill and gl, terms which do 
not represent a true back-scattering contribution. A momentum transfer has been 
introduced in the glli term in (2.7) via the potential u ( x )  and in this respect the present 
FGM resembles the model proposed by Rezayi et a1 (1979, 1981) and Grinstein et a1 
(1979). However, a contact (zero-range) interaction has been allowed for in theg,, term 
in (2.7) in contrast with the model used by the above-mentioned researchers. 

Perturbation calculations can be performed with the interaction Hamiltonian (2.7), 
the divergent quantities being regularised by means of both the momentum-transfer cut- 
off r-' and the band-width cut-off a-l. The latter enters the calculations quite simply via 
the free Green functions 

(2.10) 
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where a(t) = LY sgn t and the point-splitting regularisation (2.5) has been used. Indeed, 
let us calculate the first-order contributions of the first two terms in (2.7) to the charge- 
density correlation function: 

N ( x ,  t )  = N , ( x ,  t )  + N2(X, 9 
N , W  = - ~i (~ lTVl l (X3  t>Vll(x,t)V~1(0,0)V21(0,O)l6) 

N2@,  t> = - 2i(OlTVtlk t)Vll(X, ~ ~ ~ ‘ : - 1 ~ ~ , ~ ~ V 2 - 1 ~ ~ , ~ ~ I ~ ~  

N o ( x ,  t )  = N(x, t )  = - 2 i Gyl(x, t)G!&(-x, -t) 

(2.11) 

16) being the exact ground state. The zeroth-order expression of N ( x ,  t ) ,  i.e. 

(2.12) 

has the Fourier transform (see Appendix) 

dx dteiwt Gyl(x, t )  

(2.13) 

The gl, contribution to N2(x ,  t )  can be obtained straightforwardly by means of the 
standard perturbation calculations: 

N i ( x ,  t )  = - 2gl, dx’ dt  Gy-, ( x ’ ,  t’)Gi-l( - x ’ ,  -t’)  

X Gy,(x - x ’ ,  t - t’)G&(x’ - X ,  t’ - t )  (2.14) 

where the point-splitting regularisation is used in the free Green functions by means of 
the band-width cut-off CY-’. The Fourier transform of (2.14) is 

N:(w)  = igl,N2,(m) a (g11/2n24) ln*(am/+). (2.15) 

In contrast with (2.15), which is controlled only by the band-width cut-off a-’, the g,ll 
contribution depends on both the a-’ and the momentum-transfer cut-off r - l .  In the 
limit a+ 0, one obtains 

U‘U/VF’O 

N : ( m )  OC [(gill - g211)/2(2nvF)21 ln2 (rm/4uF) (2.16) 

a result that agrees with those obtained by Rezayi et al (1979). In the opposite limit 
r+  0, the perturbation calculations yield 

rw/du -0 

(2.17) 

One can see from (2.15) and (2.17) that the band-width cut-off a-l applies in the same 
way to both gl, and glli - g211 contributions, as might be expected from the form of the 
first two terms in (2.7) which differ only in their spin orientations when r+ 0 (Grest 
1976). 

It should be emphasised at this point that the quantities 111; ( x ) V j s ( x )  are not regu- 
larised in the Hamiltonian (2.7) but, instead, the regularisation is achieved via the 
free Green functions according to (2.10). This is quite different from the bosonised 
Hamiltonian (2.9) where the glli - g2il term is no longer of the same type as it is in (2.7); 
it has been regularised by means of the point-splitting procedure (2.8) while the g,, term 
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has been left unchanged. Consequently, it is reasonable to expect differences in their 
contributions to the perturbation calculations; the contributions arising from theglli - gzll 
term in (2.9) will be regularised by means of both the momentum-transfer cut-off r-1 

and the band-width cut-off a-' while those corresponding to the gl, term in (2.9) 
will be regularised solely by the band-width cut-off a-', as in the FGM (2.7). Similar 
differences will occur also between the gill - g211 contributions of the bosonised TFM (2.9) 
and those of the corresponding FGM (2.7). In the former the quantities q$ (x)~),~(x) have 
been replaced by (2.8). Consequently, they are expressed in terms of Bis and pis( Tk) 
operators; the fermion fields entering them can no longer be separatedirom one another. 
Incontrast, the fermion fieldsin theFGM (2.7) may participateinany contractioninvolved 
in perturbation calculations, the regularisation being achieved via the free Green func- 
tions (2.10). These differences are explicitly shown in 0 5 for the first-order perturbation 
calculations of the charge-density correlation function N(x, t )  within the TFM. They 
indicate that the FGM (2.7) and the bosonised TFM (2.9), are not equivalent; in fact, 
this is already evident in the mathematical expressions (2.7) and (2.9) of the two 
Hamiltonians. 

3. Correlation functions of the Tomonaga-Luttinger model 

The Green function 

G1,(x, t )  = -i(6lTly1,[x + i a(t)/2, t]q:,[-ia(t)/2,0]16) 

of the Tomonaga-Luttinger model HTL = H o  + HP(glll = gl, = g3 = 0) can be cal- 
culated by using the boson representation (2.3) provided that the standard canonical 
transformations (Mattis and Lieb 1965, Luther and Emery 1974) that diagonalise this 
model are extended to include the zero-mode contributions also. Straightforward cal- 
culations lead to 

G~,(X, t )  = (1/2rc)[(x - uO,t + ia(t))(x - uO,t + ic~(t))]-"~ 

x [(x - u:t + ir(t))(x - u:t + i r(t))]"* 

x [(x - u p t  + i r(t))(x - u,t + i r(t))]-"2 

x [r-Z(x - u,t + i r(t))(x + uPt - i r ( t ) ) ] - @ p  

x [ r - 2 ( x  - uut  + i r ( t ) ) ( x  + u,t - i r(t))]-"o (3.1) 

where 

a(t) = asgn  t r ( t )  = r sgn t a,,, = 1(yP,o/2uF)2 

U;,, = u:2u - Y;,u = UF + (2X)-'k41/ * g41) (3.2) 

Y P . 0  = (2n)-'(gzil * g2,) 
and the k dependence of y,,, - exp( - r k / 2 )  has explicitly been used. 

It can be seen that the Green function (3.1) calculated by means of the boson 
representation (2.3) and point-splitting regularisation (2.5) contains both the mom- 
entum-transfer cut-off r-l and the band-width cut-off a-' and reproduces the result 
obtained by diagram summation (Dzyaloshinsky and Larkin 1973, Solyom 1979). The 
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same result can be obtained by using the previous boson representations (Luther and 
Peschell974, Mattis 1974, Haldane 1979,1981) provided that the two cut-offs a-’ and 
r-l are included and, in fact, a particular form of (3.1) has already been obtained by 
Luther and Peschel(l974). 

The charge- and spin-density correlation functions can be obtained in the same way. 
We limit ourselves here to giving only the results of these calculations performed with 
the present bosonisation technique: 

(3.3) 

where 

gP,,(x, t )  = ~ ’ - ~ ( x  - up,,t + ir’(t))(x + uP,,t - ir’(t)) 
Also r ’ ( t )  = fr sgn t and Pp,, = yp,u/2up,o. Similar results are obtained for the 4kF cor- 
relation function (Klemm and Larkin 1979). 

The common feature of these correlation functions (including the Green functions) 
is the dissociation between the band-width cut-off (Y-’ and the momentum-transfer cut- 
off r-’; the former occurs, as expected, only in the non-interaction contributions to the 
correlation functions while the latter is associated exclusively with their interacting parts. 

4. Back-scattering and Umklapp scattering Hamiltonians 

When the boson representation (2.3) is made use of, the gl, term in (2.9) becomes 

wherethecoefficientscjp,,aregivenbyclp = C Z + - ~ , C Z ~ =  c21,c10= ~ ~ ~ , ~ ~ ~ = ~ 1 - ~ ( A p o s t o l  
1983), Bj, = (1/v2)(Bj1 - B j - l ) ,  Nj,  = (1/d2)(Nj1 - Nj-l) and ai(+ k) = 
(1/V2)(pj1(Tk) - P ~ - ~ ( T ~ ) ) .  When the projection of h,(x) on )@)41=42=o  is taken 
(according to Appendix 1 of Apostoll983) the product clpc2p can be replaced by 1, so 
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h,(x) depends only on the a degrees of freedom. Under the canonical transformation 
exp(S' + SO), 

x exp( -8nL-' k-'w,(w, + U,,)) exp(fi:,(x)) 
k > O  

where U, = cosh q,(k), w, = sinh q,(k) - exp(-rk/2), tanh 2y,(k) = - Yk/U!, 
k b O a n d  

aju(x) = 2nL-' 2ll2 k-' exp(q.(k) k ikx) ai( T k). 
k > O  

It should be emphasised at this point that h,(x) does not contain either the ultraviolet 
cut-off E-' (Luther and Emery 1974) or the band-width cut-off a-' given by the present 
point-splitting regularisation. The divergences resulting from the non-normal ordering 
of the boson operators in (4.1) have been regularised in (4.2) solely by the momentum- 
transfer cut-off r-' contained in 

exp ( -8nL-' k-lw,(w, + U , )  
k>O 

The main contribution of these divergences is obtained by omitting the dependence on 
r in f i ju (x )  (but not in the exponential pre-factor) and setting 21/2 exp( q,(k)) = 1 for any 
k 2 0. We get then 

exp ( -8nL- '  k-'w,(w, + U , ) )  
k > O  

=exp 3nL-I k-' e-'k/2) exp (-nL-l  k-' e-rk ( k>O k > O  

so we have 

A,  ( x )  = (2 1'2/nr)v X x ) v z u  (XI 

where the boson representation has been used again to recover the fermion fields. The 
back-scattering Hamiltonian can now be diagonalised in terms of two types of free 
fermion with energy spectrum f A&), A&) = sgn p (u:p2 + A;)lI2, where the gap 
A,, = 21/21gl,I/nr depends on the momentum-transfer cut-off r-'. A very similar result 
is obtained when the Umklapp scattering term g3 is included, the corresponding gap 
being Ap = 21/21g31/nr. 
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5. The charge-density correlation function 

The contribution from the gl, term in (2.9) to the charge-density correlation function 
N2(x ,  t )  given by (2.11) can be obtained straightforwardly by using the boson rep- 
resentation and point-splitting regularisation. As expected, the result is identical with 
(2.15) which corresponds to the FGM. The structure of the glli - g211 contribution from 
the bosonised Hamiltonian (2.9) to N l ( x ,  t )  is different from (2.14). Straightforward 
perturbation calculations performed with either the fermion or the boson representation 
of the fermion fields yield 

with r ’ ( t )  = hr sgn t. In obtaining (5.1), use has been made of the two cut-offs; the non- 
interaction divergences in the free Green functions have been regularised by the band- 
width cut-off a-l according to the point-splitting prescription while the divergences from 
the interaction Hamiltonian have been regularised by the momentum-transfer cut-off 
r-l already included in this Hamiltonian according to (2.9). Exactly the same result is 
obtained by expanding N ( x ,  t)  given by (3.3) in powers of the coupling constants if 
allowance is made for the glil contributions. Indeed, we obtain from (3.3) 

which, to first order in the coupling constants and neglectingg,li and g41, is exactly (5.1). 
The Fourier transform of (5.1) is now (see the Appendix) 

N t ( w )  UCO/llF-+O a [(gZlI - gl~~)/(2nuF)21 1n2(aw/2uF) ( 5 4  

which differs from both theg,, contribution (2.15) of the bosonised TFM and theglll - g211 
contributions (2.16) and (2.17) of the corresponding FGM. The discrepancy between 
(5.2) and (2.15) results from the two different ways in which the band-width cut-off a-’ 
applies to the gl, and the glil - g211 contributions. This discrepancy has previously been 
pointed out by Grest (1976) for the ultraviolet cut-off a-lin the Luther and Peschel(l974) 
boson representation. Consequently, it is not related to the bosonisation technique but, 
instead, it arises from the different forms that the glil- g2il and gl, terms take in the 
bosonised TFM (2.9) (in particular, they are not spin rotationally invariant). The dif- 
ference between (5.2) and (2.16) is that the former is controlled by the band-width cut- 
off a-l while the latter contains the momentum-transfer cut-off r-’ .  The band-width cut- 
off a-’ appears in (2.17) although the opposite limiting process ( r -  0, afinite) has been 
used in deriving (2.17) as compared with that employed in determining (5.2) (a- 0, r 
finite). As has been emphasised in P 2, the difference between (5.2) and (2.16) arises 
from the different forms that the gill - gzil terms take in the bosonised TFM (2.9) and the 
corresponding FGM (2.7). In the bosonised TFM the gill - g211 term is expressed by means 
of the Bis and pis ( 7 k) operators which come from the quantities I)$ @)Vis ( x )  via a 
definite point-splitting regularisation according to (2.8). This regularisation is not pre- 
included in the FGM (2.7); it appears during the perturbation calculations with every free 
Green function (according to (2.10)), e.g. (2.14). The discrepancy between (5.2) and 
(2.16) compared with the identical results (2.15) for thegl, contributions to the charge- 
density correlation function shows that the bosonised TFM (2.9) and the corresponding 
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FGM (2.7) are not equivalent. These are two distinct models, each of them requiring its 
own regularisation procedure. 

6. Conclusions 

The consistent way of using the Jordan boson representation of fermion fields in one 
dimension has been shown by applying it to the bosonised m with the momentum- 
transfer cut-off and zero-mode terms included. It involves the band-width cut-off E-' as 
required by the point-splitting regularisation of the divergencies arising from the infinite 
particle density of the model and the momentum-transfer cut-off r-l which regularises 
the remaining divergences from the interaction. The consistency of the calculations is 
ensured by letting LY go to zero whenever possible while r is kept finite (Apostol1983). 
It has been shown that, in contrast with the use of the ultraviolet cut-off in current 
practice, the present regularisation procedure leads to the same mathematical 
expressions for the correlation functions of the Tomonaga-Luttinger model as those 
obtained by diagram summation. In addition, the energy gaps in the back-scattering and 
Umklapp scattering models acquire the desired dependence on I-' instead of on a-'. 
Consequently, the method used by Emery e? a1 (1976) to obtain the scaling equations of 
the coupling constants for these models can no longer be applied; instead one has to 
resort to another approach which scales the coupling constants with the momentum- 
transfer cut-off r-' instead of with &-' (Apostol et a1 1984, 1985). Further elaboration 
on this point, which will be given elsewhere, will provide a firm basis on which a direct 
comparison can be made between the scaling results of the bosonised TFM and FGM 
(Grest et a1 1976, Grest 1976, Emery 1979, Rezayi et a1 1979). As regards the latter, it 
has been shown that the divergences due to the quantities W $  ( x ) W j s  ( x )  are regularised 
by the band-width cut-off LY-' via the free Green functions appearing in the perturbation 
calculations and, consequently, there is almost no need for a momentum-transfer cut- 
off. The situation is quite different from that encountered with the bosonised TFM where 
these quantities are regularised directly into the Hamiltonian which, in turn, requires 
the presence of the momentum-transfer cut-off. A two-cut-off problem is obtained 
therefore as in the original formulations of the one-dimensional many-fermion system, 
although the true back-scattering character of the interaction is lost. The FGM discussed 
in the present paper includes the momentum-transfer cut-off in the (glll - g211 term as in 
the model proposed by Rezayi eta1 (1979) and Grinstein eta1 (1979); however, in contrast 
with this latter model a contact (zero-range) interaction has been allowed for in the g,, 
term. First-order perturbation calculations yield the sameg,, contribution to the charge- 
density correlation function for both the FGM and the bosonised TFM. The expression for 
this is controlled by the band-width cut-off LY-'. In contrast, the glli - g2il contribution 
(2.16) of the FGM contains the momentum-transfer cut-off r-' (in agreement with the 
results obtained by Rezayi et a1 1979) while the corresponding contribution (5.2) of the 
bosonised m is controlled by the band-width cut-off a- l .  This indicates that the two 
models are not equivalent; this arises because the two distinct Hamiltonians (2.7) and 
(2.9) require distinct regularisation techniques. In fact, this non-equivalence has already 
been suggested in the literature. It is well known that the FGM (2.7) with the momentum- 
transfer cut-off rF1 included in the gl, term (Rezayi et a1 1979) separates the charge- 
density degrees of freedom from the spin-density degrees of freedom (in the scaling 
equations of the coupling constants) as the bosonised TFM does. However, this separation 
is achieved in the latter model only by letting r go to zero in the g,, term (Luther and 
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Emery 1974), as we did in the present paper. This point has been emphasised by Grinstein 
et al(1979) who showed that the partition function of the bosonised TFM (corresponding 
to a two-dimensional Coulomb gas) is obtained only by letting r go to zero in the gl, 
term. This is a characteristic feature of the regularisation required by the bosonisation 
technique (the functional integration method, of Fogedby (1976), employed by 
Grinstein et al(1979), is, in fact, simply the bosonisation technique) in contrast with the 
regularisation (via the free Green functions) required by the FGM. 
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Appendix. The Fourier transforms of the various contributions to the charge-density 
correlation function N(x ,  t )  

The Fourier transform (2.13) of the zeroth-order contribution No (x, t )  to the charge- 
density correlation function can easily be obtained by performing the integration over x 
over the upper half-plane: 

1 
N , ( w )  = - dte-iwt + (w+ - 0). : ib; -2UFt + 2 i  a 

Changing the t-integration path to the lower imaginary semi-axis we get 

where Ei is the exponential integral (ErdClji 1953). Equation (2.13) can then be readily 
obtained. 

The Fourier transform of N i  ( x ,  t )  given by (5.1) can be written as 

N i ( w )  =- g211 -gill ( - 2 1 n r ' ~ ~ ( w )  + I ,  (w) + I ~ ( -  w) + z2(w)  + z2(  - 0)) 

where 

2jt.U F 

ln(x + U F t  - i r ' )  
(X + U F f  - i a ) ( x  - u F t  + ia) '  

12(w) = - 2 JOm dte-'" 1 dx 
2n 

The integral I,( w) can straightforwardly be performed in the limit a + 0 and holding r 
finite, as required by the regularisation procedure. Following a technique similar to that 
used above for obtaining No(w)  we get 

1 
0~ - h ( i  r')  h(aw/uF). 

u O / u p o  2nuF 
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The contour of integration over x in Z2(o) should encircle the - uFt + i a  pole and the 
slit (0, r ’ )  and should close over the upper half-plane. In the limit a+ 0 the leading 
contributions (real part) to 12(o) are 

the latter coming from the integral (Bateman 1953) 

Putting the results together we get 

1 
Z l ( o ) + Z 2 ( ~ ) + ( w - - , - o )  a 21nr’~,(w)+-1n2(aw/2uF).  

awjv y o  2nuF 

Hence (5.2) follows at once. 

References 

Apostol M 1982 Phys. Lett. 91A 177 
- 1983 J .  Phys. C: Solid State Phys. 16 5937 
Apostol M, Barsan V and Mantea C 1984 ICTP Trieste Preprint IC/108 
- 1985 Mol. Cryst. Liq. Cryst. 119 453 
Bateman H 1953 Tables of Integral Transforms vol 1 (New York: McGraw-Hill) p 148 
Dover C B 1968 Ann. Phys., NY 50 500 
Dzyaloshinsky I E and Larkin A I 1971 Zh. Eksp. Teor. Fiz. 61 791 (Engl. Transl. 1972 Sou. Phys.-JETP 

- 
Emery V J 1979 High-Conducting One-Dimensional Solids ed. J T Devreese, R P Evrard and V E van Doren 

Emery V J ,  Luther A and Peschel I 1976 Phys. Rev. 13 B1272 
Erdtlgi A (ed.) 1953 Higher Transcendental Functions vol 11, ed. H Bateman (New York: McGraw-Hill) p 

Fogedby H C 1976 J .  Phys. C: Solid State Phys. 9 3757 
Grest G S 1976 Phys. Rev. B 14 5114 
Grest G S ,  Abraham E, Chui S T, Lee P A and Zawadowski A 1976 Phys. Rev. B 14 1225 
Grinstein G ,  Minnhagen P and Rosengren A 1979 J .  Phys. C: Solid State Phys. 12 1271 
Haldane F D M 1979 J .  Phys. C: Solid State Phys. 12 4791 
- 1981 J .  Phys. C: Solid State Phys. 14 2585 
Heidenreich R, Schroer B, Seiler R and Uhlenbrok D 1975 Phys. Lett. 54A 119 
Heidenreich R, Seiler R and Uhlenbrok D 1980 J .  Stat. Phys. 22 27 
Jordan P 1935 Z .  Phys. 93 464 
- 1936a Z .  Phys. 99 109 

- 1937 Z .  Phys. 105 114,229 
Klemm R A  and Larkin A I 1979 Phys. Rev.  B 19 6119 
Kronig R L 1935 Physica 2 968 
Luther A and Emery V J 1974 Phys. Rev. Lett. 33 589 
Luther A and Peschel I 1974 Phys. Rev. B 9 2911 
Luttinger J M 1963 J .  Math. Phys. 4 1154 
Mattis D C 1974 J .  Math. Phys. 15 609 
Mattis D C and Lieb E H 1965 J .  Math. Phys. 6 304 

34 422) 
1973 Zh.  Eksp. Teor. Fiz. 65 411 (Engl. Transl. 1974 Sou. Phys.-JETP38 202) 

(New York: Plenum) 

143 

- 1936b Z .  Phys. 102243 

cz1 



3124 M Apostol et a1 

Rezayi E H, Sak J and Sdlyom J 1979 Phys. Rev.  B 20 1129 
- 1981 Phys. Rev.  B 23 1342 
S6lyom J 1979 A d v .  Phys. 28 201 
Theumann A 1977 Phys. Rev.  B 15 4524 
Tomonaga S 1950 Prog. Theor. Phys. 5 544 
Uhlenbrok D A 1967 Commun. Moth. Phys. 4 64 


