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The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical
particles with two energy levels is investigated in the presence of external electromagnetic fields.
The coupled non-linear equations of motion are solved in the stationary regime and in the limit of
small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic
occupation of both the energy levels of the particles and the corresponding photon states, governed by
a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing
effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for
typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual
external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to
the great disparity in the coupling constants. In the absence of the external field, the solution, which is
non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance),
which was previously investigated.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In a previous paper [1], the coherent interaction of the elec-
tromagnetic radiation with an ensemble of polarizable, identical
particles with two energy levels has been investigated in the ab-
sence of external electromagnetic fields, and the corresponding
coupled non-linear equations of motion have been solved. It was
shown that the solution has a non-perturbational character (it is
non-analytic in the coupling constant). The main role in this prob-
lem is played by a dimensionless coupling constant

λ =
√

2π

3a3h̄ω0

J01

ω0
, (1)

where J01 is the matrix element of the current associated with
each particle, a is the mean inter-particle distance and h̄ω0 =
ε1 − ε0 is the energy separation between the two levels. It was
shown [1] that, at zero temperature, the two levels ε0,1 and the
corresponding photon states h̄ω0 are macroscopically occupied,
provided λ > 1; at finite temperature, this coherent state sets up
for λ > 2 and below a critical temperature Tc (given by Tc �
λ2h̄ω0/8). This second-order phase transition is usually known as
a super-radiance transition [2–8]; it corresponds to a long-range
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order of the quantum phases (a lattice of coherence domains) [1],
associated with the internal motion (polarization) of the particles.

For numerical estimates we may take J01 = ω0 p, where p = el
is the dipole momentum of the particles, l being the distance over
which an electron charge e is displaced in the polarization process.
For typical atomic matter we may take, for illustrative purposes,
l = a0 = 0.53 Å (Bohr radius), h̄ω0 = 1 eV and a = 3 Å (p = 2.4 ×
10−18 esu). We get λ � 0.5, which is insufficient for setting up the
coherent state. Similarly, for atomic nuclei we may take l = 1 fm
(10−13 cm), h̄ω0 = 1 MeV and a = 3 Å, and get λ � 10−8, which is
an extremely small value for the coupling constant.

We turn our attention in this Letter to the presence of an ex-
ternal electromagnetic field, whose coherent interaction with the
ensemble of particles may lead to a lasing effect. We get here the
solution of the coupled non-linear equations of motion in the pres-
ence of an external field, in the stationary regime and in the limit
of small values of the coupling constants. It is shown that the two
levels and the corresponding photon states are macroscopically oc-
cupied, to an extent which depends on the coupling constant λ and
the external field, leading thus to a lasing effect. While for atomic
matter (λ � 0.5) this effect may be considerable (for usual field in-
tensities), it is extremely small (practically insignificant) for atomic
nuclei (λ � 10−8). The problem is similar with the well-known
“semi-classical theory” of the laser, which has been extensively in-
vestigated, by various approaches and from many angles [9–20]. It
is worth noting that the theoretical considerations presented here
pertain to a consequent field-theoretical approach to the coher-
ent interaction of matter with electromagnetic radiation, as distinct
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from the usual semi-classical approaches of the current theories of
the laser (see, for instance, Refs. [21–23]).

2. Coherent interaction

As it is well known, the electromagnetic field is described by
the vector potential

A(r) =
∑
μk

√
2π h̄c2

V ωk

[
eμ(k)aμkeikr + e∗

μ(k)a∗
μke−ikr] (2)

in the standard Fourier representation, with the transverse gauge
div A = 0, where c is the velocity of light, V is the volume,
ωk = ck is the frequency and eμ(k) are the polarization vectors,
eμ(k)k = 0, eμ(k)e∗

μ(k) = δμν (μ,ν = ±1), e−μ(−k) = e∗
μ(k). The

electric and magnetic fields are given by E = −(1/c)∂A/∂t and, re-
spectively, H = curl A, and three Maxwell’s equations are satisfied:
curl E = − 1

c ∂H/∂t , div H = 0, div E = 0. The time dependence is in-
cluded in the Fourier coefficients aμk , a∗

μk .
We use a similar expression for the external vector potential

A0(r), the corresponding Fourier coefficients being denoted by a0
μk ,

a0∗
μk , with a prescribed time-dependence.

We use also the classical lagrangian of the radiation field

L f = 1

8π

∫
dr

(
E2 − H2), (3)

which can be expressed by means of the Fourier coefficients aμk ,
a∗
μk , and the interaction lagrangian

Lint = 1

c

∫
dr · j(A + A0)

=
∑
μk

√
2π h̄

ωk

[
eμ(k)j∗(k)

(
aμk + a0

μk

)
+ e∗

μ(k)j(k)
(
a∗
μk + a0∗

μk

)]
, (4)

where j(k) is the Fourier transform of the current density,

j(r) = 1√
V

∑
k

j(k)eikr, (5)

with div j = 0 (continuity equation). The Euler–Lagrange equations
for the lagrangian L f + Lint lead to the wave equation with sources

äμk + ä∗
−μ−k + ω2

k

(
aμk + a∗

−μ−k

) =
√

8πωk

h̄
e∗
μ(k)j(k), (6)

which is the fourth Maxwell’s equation curl H = (1/c)∂E/∂t +
4π j/c.

We consider a set of N independent, non-relativistic, identical
particles labelled by i = 1, . . . , N (N � 1) and write the hamilto-
nian corresponding to their internal degrees of freedom as Hs =∑

i Hs(i). We introduce a set of orthonormal eigenfunctions ϕn(i),
where εn is the energy level of the n-state, and construct also a
set of orthonormal eigenfunctions

ψn = 1√
N

∑
i

eiθni ϕn(i), (7)

where θni are some undetermined phases.
The field operator

Ψ =
∑

bnψn, (8)

n

with boson-like commutation relations [bn,b∗
m] = δnm , [bn,bm] = 0,

leads to the (macroscopic) number of particles N = ∑
n b∗

nbn and
to the lagrangian

Ls = 1

2

∑
n

ih̄
[
b∗

nḃn − ḃ∗
nbn

] −
∑

n

εnb∗
nbn, (9)

where Hs = ∑
n εnb∗

nbn is the hamiltonian of the ensemble of
particles. The corresponding equation of motion ih̄ḃn = εnbn is
Schrodinger’s equation.

The current density associated with this ensemble of particles
can be written as

j(r) =
∑

i

J(i)δ(r − ri) = 1

V

∑
ik

J(i)e−ikri eikr = 1√
V

∑
k

j(k)eikr,

(10)

where ri is the position of the ith particle and J(i) is the current
associated with one particle. Now, making use of Eqs. (8) and (10),
it is easy to see that the interaction lagrangian given by Eq. (4) can
be written as

Lint =
∑

nmμk

√
2π h̄

V ωk
Fnm(μk)

(
aμk + a∗

−μ−k + a0
μk + a0∗

−μ−k

)
b∗

nbm,

(11)

where

Fnm(μk) = 1

N

∑
i

eμ(k)Jnm(i)eikri−i(θni−θmi). (12)

Jnm(i) being the matrix element of the current associated with the
ith particle.

For any pair (n,m) of levels, the quantum phases θni can be
arranged in a periodic lattice with the shortest (generating) re-
ciprocal vectors denoted by kr , r = 1,2,3. For a given pair (n,m)
we take these vectors as being equal in magnitude, kr = k0 and
ω0 = ck0 [1]. Under these circumstances the phase in Eq. (12) may
satisfy the condition krrpi − (θni − θmi) = const, where p labels the
unit cells of the phase lattice. This condition was called the coher-
ence condition in Ref. [1]. Then, the interaction lagrangian acquires
a simple form, which, limiting ourselves to only two levels, and
using the coherent states operators [24] b0,1|β0,1〉 = β0,1|β0,1〉, can
be written as

Lint =
√

2π h̄

V ω0
J01

(
α + α∗ + α0 + α0∗)(β∗

1β0 + β1β
∗
0

)
, (13)

where we have assumed J00 = J11 = 0. In Eq. (13) we have also
replaced the photon operators aμkr , kr = k0, by c-numbers α, the
same for any polarization μ and any direction of the vectors kr ,
and similarly for the external field. We note that the external field
depends on time; we take α0 + α0∗ = 2|α0| cosω0t . A similar re-
placement of the field operators by c-numbers is made in the free
lagrangians of the field and particles. The summation over μkr ,
kr = k0, in the field lagrangian L f gives a factor 12, for a three-
dimensional lattice (three ±kr ’s and two polarizations). This factor
can be absorbed in the photon operators, so we can write down
the full “classical” lagrangian

L f = h̄

4ω0

(
α̇2 + α̇∗2 + 2|α̇|2) − h̄ω0

4

(
α2 + α∗2 + 2|α|2),

Ls = 1

2
ih̄

(
β∗

0 β̇0 − β̇∗
0β0 + β∗

1 β̇1 − β̇∗
1β1

) − (
ε0|β0|2 + ε1|β1|2

)
,

Lint = g√ [
α + α∗ + α0 + α0∗](β0β

∗
1 + β1β

∗
0

)
, (14)
N
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where the coupling constant is given by

g =
√

π h̄

6a3ω0
J01; (15)

hence, the dimensionless coupling constant λ = 2g/h̄ω0 intro-
duced in Eq. (1).

The lagrangian given by Eqs. (14) leads to the equations of mo-
tion

Ä + ω2
0 A = 2ω0 g

h̄
√

N

(
β0β

∗
1 + β1β

∗
0

)
,

ih̄β̇0 = ε0β0 − g√
N

[
A + A0(t)

]
β1,

ih̄β̇1 = ε1β1 − g√
N

[
A + A0(t)

]
β0, (16)

where A = α + α∗ and A0(t) = 2|α0| cosω0t . It is easy to see, by
using these equations of motion, that the number of particles N =
|β0|2 + |β1|2 is conserved. Making use of Eqs. (14), we can define
a total hamiltonian

Ht
f = h̄

4ω0

[
Ȧ + Ȧ0(t)

]2 + h̄ω0

4

[
A + A0(t)

]2
,

Hs = ε0|β0|2 + ε1|β1|2,
Hint = − g√

N

[
A + A0(t)

](
β0β

∗
1 + β1β

∗
0

)
, (17)

where the external field is included.

3. Stationary solutions

We focus on the equations of motion (16), where we put for
convenience ε0 = 0. In the absence of the external field (A0(t) = 0)
the solutions are of the form β0,1 = B0,1eiΩt , where B0,1 are con-
stant amplitudes, B2

0 + B2
1 = N , and the frequency Ω is given by

2Ω + 1 − λ2 = 0 (and A = λ
√

N(1 − 1/λ4)1/2) [1]. The total energy
given by Eqs. (17) (for A0(t) = 0) reads

E = −1

4
h̄ω0λ

2N
[
1 − 1/λ2]2 = −h̄Ω B2

1 (18)

(whence the criticality condition λ > 1 for the super-radiance tran-
sition). This energy is lower than the non-interacting ground-state
energy Nε0 = 0. It may be viewed as the formation enthalpy of
the coherence domains. The coupled ensemble of matter and ra-
diation is unstable for a macroscopic occupation of the particles
quantum states and the associated photon states, provided λ > 1.
The non-analytic character of this solution with respect to the cou-
pling constant λ is obvious.

We assume now A0(t) �= 0. It is convenient to put the prob-
lem in more general terms. First, we introduce the notation ε1 =
h̄ω1, where, in general, ω1 may differ from ω0. Second, we in-
troduce the total field At(t) = A + A0(t) and define the parame-
ter

x(t) = 2g

h̄ω1
√

N
At(t) = λ√

N
At(t), (19)

where λ = 2g/h̄ω1. We look for solutions of the form β0,1 =
B0,1eiθ for the system of the last two equations (16). We get im-
mediately Ḃ0,1 = 0 and

β0 = B0eiθ0 − f B1eiθ1 , β1 = f B0eiθ0 + B1eiθ1 ,

θ̇0,1 = 1
ω1

(−1 ±
√

x2(t) + 1
)
, (20)
2

where

f (t) = x(t)√
x2(t) + 1 + 1

. (21)

The coefficients B0,1 are determined by requiring the initial val-
ues of the occupancy numbers |β0,1(t = 0)|2 be equal with N0,1
(N0 + N1 = N). We get the amplitudes

B0,1 = 1

1 + f 2(t)

[√
N0,1 ± f (t)

√
N1,0

]
(22)

and the occupancy numbers

|β0,1|2 = N0,1 ± 1

2

x(t)

x2(t) + 1

[
2
√

N0N1 − x(t)(N0 − N1)
]

× [
1 − cos(θ0 − θ1)

]
, (23)

where the phase difference θ0 − θ1 is given by

�θ = θ0 − θ1 = ω1

t∫
0

dt
√

x2(t) + 1. (24)

The oscillations in the occupancies given by Eq. (23) are
reminiscent of the well-known Rabi oscillations in the Jaynes–
Cummings model (see, for instance, Refs. [25–27]). We take the
time averages of all the relevant quantities given above. We can
see, by Eqs. (20), that the energy levels ε0,1 are changed by inter-
action into the mean values of h̄θ̇0,1, and, in addition, the inter-
action mixes up the two states, as expected. We can see also that
the mean values of the coefficients B0,1, as well as the mean val-
ues of the coefficients f B0,1 entering Eqs. (20), are constants, as it
is required for a stationary solution; it becomes apparent that N0,1
are constants of integration.

4. Polarization field

We turn now to the first equation (16) for the polarization field
A. It is worth noting that the r.h.s. of this equation is proportional
to the polarization of the ensemble of particles. Indeed, making
use of Eqs. (7) and (8), the polarization

P = 1

V

∑
i

p(i) (25)

acquires the form

P = 1

N V

∑
i

[
p01(i)e−i(θ0i−θ1i)β∗

0β1 + c.c.
]
, (26)

where p01(i) = p∗
10(i) are the matrix elements of the dipole mo-

mentum p(i) of the ith particle. The ensemble of particles is po-
larized by the field, so these dipole momenta are oriented along
the field and have the same spatial dependence as the field, cor-
responding to the reciprocal vectors kr of the coherence domains
lattice (kr = k0 = ω0/c). Then, it is easy to see that the coherence
condition used before (krrpi − (θni − θmi) = const) gives a non-
vanishing polarization, involving the Fourier coefficients p01(kr) of
the components along the field of the dipole momenta. There is
no particular reason to have different dipole momenta p01(kr) for
different vectors kr , so we may put p01(kr) = p10(kr) = p. The po-
larization becomes

P = p

V

(
β0β

∗
1 + β1β

∗
0

)
, (27)

which is proportional to the r.h.s. of the first equation (16), as ex-
pected.
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The quantity β0β
∗
1 + c.c. entering the r.h.s. of the first equa-

tion (16) can be computed by using Eqs. (20). We get

β0β
∗
1 + β1β

∗
0 = 1

x2 + 1

{
x[2x

√
N0N1 + N0 − N1]

+ [
2
√

N0N1 − x(N0 − N1)
]

cos�θ
}
. (28)

The external field A0, which satisfies the wave equation Ä0 +
ω2

0 A0 = 0, may be added to the polarization field A in the first
equation (16); this equation becomes

ẍ + ω2
0x = ω0ω1

λ2

N

1

x2 + 1

{
x[2x

√
N0N1 + N0 − N1]

+ [
2
√

N0N1 − x(N0 − N1)
]

cos�θ
}
. (29)

This is a non-linear (integro-differential) equation. We assume
λ � 1 and A0(t)/

√
N , A(t)/

√
N finite, so that we can seek the

solution as a power series in λ, x = λx0 + λ2x1 + λ3x2 + · · ·, where

x0 = 2|α0|√
N

cosωt . The frequency ω will be determined by requiring

the absence of the ω-resonating terms. The leading contribution
to the phase difference �θ can then be written as ω̃1t , where the
frequency ω̃1 remains to be determined. Eq. (29) becomes

ẍ + ω2
0x = 2ω0ω1

√
N0N1

N
λ2 cos ω̃1t

+ ω0ω1
N0 − N1

N
λ3x0(1 − cos ω̃1t) + · · · . (30)

A similar series expansion ω = ω0 + λ2Ω + · · · is used for the fre-
quency ω. We get

x1 =
√

N0N1

N

2ω0ω1

ω2
0 − ω2

1

cos ω̃1t,

x2 = |α0|√
N

N0 − N1

N
ω0

[
1

2ω0 + ω1
cos(ω + ω̃1)t

− 1

2ω0 − ω1
cos(ω − ω̃1)t

]
(31)

and

ω = ω0 − λ2ω1
N0 − N1

2N
, ω̃1 = ω1 + λ2ω0

|α0|2
N

. (32)

(Ω = −ω1(N0 − N1)/2N) for ω1 �= ω0,±2ω0. We note that these
resonances can be related to the parametric resonances 2ω0 � nω1
(n positive integer) of a Mathieu equation [28], which, for N1 = 0,
may be viewed as a linearized, approximate form of Eq. (29). As a
matter of fact, except for the resonances, the solutions given above
for N0,1 = 0 are close to the leading contributions to the (non-
periodic) solutions of Mathieu’s equation. In the particular case
ω = ω̃1 (or other similar cases of the approximate form 2ω = nω̃1)
they are very close to the leading contributions to the (periodic)
Mathieu function ce2(ω̃1t/2) (or, in general, cen(ω̃1t/2)). However,
we must note that the linearized form of Eq. (29), which is a Math-
ieu equation, is not a satisfactory approximation for the non-linear
Eq. (29), because of the apparition of the x-term in the r.h.s. of
this equation, instead of the correct x0-term, as in Eq. (30). In
other words, a consequent expansion in powers of the parame-
ter λ makes the leading contributions to Eq. (29) to acquire a form
which is different, in fact, from a Mathieu equation. Leaving aside
the (weak) frequency renormalization, the resonances exhibited by
Eqs. (31) are in fact what we may expect from a non-linear oscil-
lator with the basic frequency ω0 subjected to an external force of
frequency ω1. As it is well known, such an oscillator exhibits the
combined-frequency phenomenon, as reflected in the occurrence
of frequencies of the form ω0 ± ω1 and denominators 2ω0 ± ω1,
etc. (arising from terms like ω2

0 − (ω0 ± ω1)
2).

We note that the term x1 in Eqs. (31) represents the oscilla-
tions of the ensemble of particles (for N0,1 �= 0), and the effect
of the external field appears only in the next order (the term x2),
with combined frequencies ω ± ω̃1. For N1,0 = 0, the polarization
process is governed entirely by the external field, as expected (and
the constraint ω0 �= ω1 is removed). We note also that the interac-
tion shifts both the frequency of the external field and the energy
levels of the ensemble of particles, according to Eq. (32).

Having known the parameter x(t), we can determine the phase
difference �θ (and cos �θ ) according to Eq. (24), and the mean
values (averages over the time) of all the relevant quantities can
be computed, as given by Eqs. (20)–(24). We get, for instance, the
frequencies

Ω0 = 〈θ̇0〉 = λ2ω1
|α0|2
2N

,

Ω1 = 〈θ̇1〉 = −ω1 − λ2ω1
|α0|2
2N

(33)

and the mean occupancies〈|β0,1
∣∣2〉 = N0,1 ∓ λ2 N0N1

N

ω0ω1

ω2
0 − ω2

1

∓ λ2 N0 − N1

N

∣∣α0
∣∣2

. (34)

One can see that the external field can pump, or deplete, the upper
level, depending on the parameters N0,1 and ω0,1. Particularly in-
teresting is the case N1 = 0 (corresponding to an upper level which
is empty at the initial moment t = 0). In this case, the occupancy
of the upper level is given by〈|β1|2

〉 = λ2
∣∣α0

∣∣2
, (35)

the external field leads to a macroscopic occupation of this level.
The release of the corresponding energy Es = h̄ω1〈|β1|2〉 is a lasing
effect, driven by the external field.

The polarization can be computed from Eqs. (27) and (28), by
using the solution x(t) given by Eqs. (31). Within this approxi-
mation, the polarization contains many oscillating terms, including
both a quadratic dependence on the external field and frequency
doubling, as expected for such non-linear equations. We collect
here a few relevant contributions:

β∗
0β1 + β∗

1β0 = 2
√

N0N1 cos ω̃1t

+ 2λ
|α0|√

N
(N0 − N1)(1 − cos ω̃1t) cosωt

+ 2λ2
√

N0N1

N

[
4
∣∣α0

∣∣2
cos2 ω̃0t

− (N0 − N1)
ω0ω1

ω2
0 − ω2

1

cos2 ω̃1t

]
+ λ3 ω1|α0|2

4ω0N
(N0 − N1) sin ω̃0t sin ω̃1t. (36)

The mean value of the polarization is given by〈
β0β

∗
1 + β1β

∗
0

〉 = λ2
√

N0N1

N

[
4
∣∣α0

∣∣2 − (N0 − N1)
ω0ω1

ω2
0 − ω2

1

]
,

(37)

where the quadratic dependence on the external field is to be
noted. It is also worth noting that it vanishes for N0,1 = 0.
Making use of Eq. (2) we can compute the electric field Et =
−(1/c)∂ At/∂t , while the polarization is given by Eq. (28). The per-
mittivity, defined as P = κ Et (for the Fourier components), is κ =
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(2p2/h̄ω1a3)(N0 − N1)/N for the ω-component. We can see that
the particle polarizability is α = κa3 = 2p2/h̄ω1 (for N1 = 0), so
that we can also represent the coupling constant as λ = √

πα/3a3

(for ω0 = ω1). It follows that we are justified in assuming λ � 1, as
long as the polarizability per unit volume of the ensemble of par-
ticles is sufficiently small. Similarly, introducing the electric field,
Eq. (35) can be transformed into

〈|β1|2
〉 = N

(
pE0

h̄ω0

)2

, (38)

where E0 is the strength of the external electric field. One can
recognize in Eq. (38) the well-known Rabi frequency pE0/h̄.

5. Concluding remarks

Making use of the parameter x(t) derived above and averaging
over time in the hamiltonian given by Eqs. (17), we get the leading
contributions to the energy:

Et
f = E0

f + 1

2
λ2

[
h̄(ω2

0 + ω2
1)

ω0

N0N1

N

(
ω0ω1

ω2
0 − ω2

1

)2

− h̄ω1
N0 − N1

N

∣∣α0
∣∣2

]
,

Es = h̄ω1

[
N1 + λ2

(
N0N1

N

ω0ω1

ω2
0 − ω2

1

+ N0 − N1

N

∣∣α0
∣∣2

)]
,

Eint = −h̄ω1λ
2
(

N0N1

N

ω0ω1

ω2
0 − ω2

1

+ N0 − N1

N

∣∣α0
∣∣2

)
, (39)

where E0
f = h̄ω0|α0|2 is the energy of the (bare) external field. The

total field energy can also be written as

Et
f = h̄ω

∣∣α0
∣∣2 + λ2 h̄(ω2

0 + ω2
1)

2ω0

N0N1

N

(
ω0ω1

ω2 − ω2
1

)2

. (40)

For N1 = 0 the above equations become

Et
f = h̄ω

∣∣α0
∣∣2 = E0

f − 1

2
h̄ω1λ

2
∣∣α0

∣∣2
,

Es = −Eint = h̄ω1λ
2
∣∣α0

∣∣2 = ω1

ω0
λ2 E0

f . (41)

One can see that the total energy Et = Et
f + Es + Eint reduces to the

total field energy Et
f , the polarization energy (Es) being entirely

compensated by the interaction energy, as expected. The efficiency
quotient of this lasing process is λ2(ω1/ω0). It may appear that
it is favorable to diminish ω0 with respect to ω1, but one must
avoid the resonance occurring at 2ω0 = ω1, on one hand, and, on
the other, one must be aware that a decreasing ω0 is limited by
λ = 2g/h̄ω1 � 1 (according to Eq. (15)) (and by Et

f > 0).
For N1 = 0 we take for convenience ω0 = ω1. As discussed in

Section 1, for a typical sample of atomic matter the coupling con-
stant is λ = 0.5 (h̄ω1 = 1 eV, a = 3 Å, p = 2.4 × 10−18 esu). For
reasonable values E0

f = 103 J, N = 6 × 1023 (Avogadro’s number)
we get Es = 250 J, which may be viewed as a considerable ef-
fect. For atomic nuclei λ = 10−8 (h̄ω1 � h̄ω0 = 1 MeV, a = 3 Å,
p = 5 × 10−23 esu), and we can see that the released energy is
extremely small.

In conclusion, we may say that we have solved the coupled
non-linear equations of motion, in the stationary regime and for
small coupling constants, for an ensemble of polarizable, identical
particles with two energy levels interacting coherently with their
own polarization field and with an external electromagnetic field.
It was shown that a lasing effect is possible, driven by the exter-
nal field. For typical atomic matter the effect may be considerable,
while for an ensemble of atomic nuclei the effect is extremely
small. The difference originates in the great disparity between the
corresponding coupling constants.
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