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Dynamics of electron–positron pairs in a vacuum polarized by an external radiation field
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The polarization of the vacuum under the action of an external classical field of electromagnetic radiation is
investigated in the stationary regime. The electron–positron pairs interact both with the external field and with
their own polarization field. For a macroscopic piece of vacuum the pairs are condensed on the low-momenta
states and tend to form a quasi-localized electron–positron plasma of pairs, with single-particle states labeled by
the position vector. In the polarization process under the action of a classical field of radiation the electron–
positron and photon dynamics can be treated by means of classical fields. Under these circumstances, the
corresponding coupled non-linear equations of motion are solved. It is shown that the pair dynamics consists of
quasi-stationary single-particle states, while the polarization field reduces to a static magnetic field. The single-
particle ‘energy’ (temporal phase) due to a monochromatic external field exhibits a spatial distribution
characteristic of a stationary wave. Both the pair energy and the polarization energy are computed. Their values
are extremely small, even for highly focused, reasonably high, external fields. The number of pairs is determined
by the external energy. Under the action of a classical field the polarized vacuum is magnetized, and the
corresponding (very low) magnetic susceptibility (the refractive index of the vacuum) is computed.

Keywords: electron–positron pairs; vacuum polarization; stationary regime; vacuum refractive index; high
external fields

Creation of electron–positron pairs from vacuum
under the action of high external electromagnetic
fields is a classical and still very attractive subject
[1–16]. A great deal of work has been devoted recently
to various aspects of this problem [17–24]. With the
recent development of high-power laser pulses focused
on very small spatial regions [25–36] the vacuum
polarization could become soon a matter of experi-
mental testing and routine measurements.

The annihilation of the electron–positron pairs in
the polarized vacuum suggests a possible stationary
regime, which may resemble a plasma of electron–
positron pairs. This paper deals with the stationary
dynamics of the polarized vacuum under the action of
an external classical field of electromagnetic radiation
(the thermalization of a non-equilibrium electron–
positron plasma has been investigated in [37]). It is
shown that the interaction of the electron–positron
pairs with their own polarization field in a macroscopic
piece of vacuum is mainly governed by the condensa-
tion of these pairs on low-momenta states. The pairs
are described by single-particle states labeled by the
position vector. In the polarization process under the
action of a classical radiation field the electron–
positron and photon dynamics can be treated by
means of classical fields. The corresponding coupled
non-linear equations of motion are solved.

The solutions exhibit a quasi-stationary regime, and

the single-particle energies are computed. The corre-

sponding polarization field is static, in the sense that

the electric field is vanishing and only a static magnetic

field is present. The polarized vacuum gets magnetized.

Under the action of an external field (monochromatic

plane wave), the single-particle ‘energies’ (temporal

phase) acquire the shape of a stationary wave driven by

the external field. The number of pairs, the pairs

energy and the polarization energy are computed. The

number of pairs is determined by the external field

energy. The resulting values are extremely small, even

for reasonably high external fields and energy densities.

This is due, mainly, to the Compton wavelength of the

electrons which is much smaller than the size of the

space region over which the external energy is focused.

The magnetic susceptibility is also evaluated (the

refractive index) for the polarized vacuum, and,

similarly, it is found to acquire very low values.
As is well known, the electromagnetic radiation

field is described by the vector potential

AðrÞ ¼
X
�k

2p�hc2

V!k

� �1=2�
e�ðkÞa�k expðikrÞ

þ e��ðkÞa
�
�k expð�ikrÞ

�
ð1Þ
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in the standard Fourier representation, with the

transverse gauge divA ¼ 0, where c is the velocity of

light, V is the volume, !k ¼ ck is the frequency

and e�ðkÞ are the polarization vectors, e�ðkÞk ¼ 0,

e�ðkÞe
�
�ðkÞ ¼ ��� (�, � ¼ �1), e��ð�kÞ ¼ e��ðkÞ. The

electric and magnetic field are given by E ¼

�ð1=cÞ@A=@t and, respectively, H ¼ curlA, and

three Maxwell’s equations are satisfied: curlE ¼

�ð1=cÞ@H=@t, divH ¼ 0, divE ¼ 0. The time depen-

dence is included in the Fourier coefficients a�k, a
�
�k

(photon annihilation and, respectively, creation

operators).
The Lagrangian of the radiation field

Lf ¼
1

8p

ð
dr E2 �H2
� �

¼
X
�k

�h

4!k

�
_a�k þ _a����k

��
_a���k þ _a��k

�

�
X
�k

�h!k

4

�
a�k þ a����k

��
a���k þ a��k

�
ð2Þ

leads to the equation of motion

€a�k þ €a����k þ !
2
k

�
a�k þ a����k

�
¼ 0, ð3Þ

which is the fourth Maxwell’s equation

curlH ¼ ð1=cÞ@E=@t.
The standard Dirac field for electrons and posi-

trons is written as

 ðrÞ ¼
X
�p

1

ð2"VÞ1=2

�
up�bp� exp

i

�h
pr

� �

þ vp�c
�
p� exp �

i

�h
pr

� �	
, ð4Þ

where " ¼ ðc2p2 þm2c4Þ1=2, m is the electron mass,

� ¼ �1 is the spin label and the bispinors up� , vp� are

given by

up� ¼
ð"þmc2Þ1=2w�

ð"�mc2Þ1=2ðnpÞw�

 !
,

vp� ¼
ð"�mc2Þ1=2ðnpÞw 0�
ð"þmc2Þ1=2w 0�

 !
; ð5Þ

here n ¼ p=p is the unit vector along the momentum p,

p denote the Pauli matrices and w�, w
0
� ¼ ��yw�� are

normalized spinors, w��w� 0 ¼ ��� 0 , w
0�
� w
0
� 0 ¼ ��� 0 (other-

wise arbitrary). The notation � means transposition

together with complex conjugation. In general, we use

the notations and conventions from [38,39]. As is well

known, the free hamiltonian of the fermions reads

H0 ¼
X
�p

"
�
b�p�bp� � cp�c

�
p�

�
, ð6Þ

which leads to the equations of motion i�h _bp� ¼ "bp�,
i�h _cp� ¼ "cp� for the electron and positron destruction
operators bp� , cp�.

Making use of Equations (1) and (4) we compute
the interaction Hamiltonian

Hint ¼ �
e

c

ð
dr �ðrÞj ðrÞAðrÞ, ð7Þ

where �e is the electron charge and j ¼ ca is the
particle current,

a ¼
0 p

p 0

� �
ð8Þ

being the Dirac �-matrices. The computation of the
matrix elements of the current j between different
electron–positron states involved in Equation (7) is
lengthy but straightforward. It is worth noting that the
current density for interacting electrons (positrons)
differs from the group velocity c2p=" of the free
electrons (positrons). The general form of the interac-
tion matrix elements can be represented as M�

�� 0 ð p, p
0Þ.

They contain the matrix elements ðpÞ�� 0 ¼ w��pw� 0 of
the Pauli matrices p. In general, the spinors may
depend on the momenta p (as for helicities), such that
ðpÞ�� 0 ð p, p

0Þ ¼ w��ð pÞpw� 0 ð p
0Þ. It is important to note

that there is an arbitrariness in these matrix elements,
due to the arbitrariness in the spinors w�. The matrix p
is related to the polarization matrix of each elementary
act of interaction, but the spinors do not reduce
necessarily to the well-defined spin states in the rest
frame, nor the vector p reduces to the polarization
vector measured usually in scattering experiments. In
the interaction process neither the spin, nor the
helicities are conserved, i.e. both are undetermined.
There is no reason to have a ‘spin’ dependence in the
interaction, so we omit the spin label in the electron–
positron operators and the polarization label in the
photon operators. The interaction matrix elements can
then be summed over the spin and polarization labels,
Mð p, p 0Þ ¼

P
��� 0 M

�
�� 0 ð p, p

0Þ. The general structure of
the interaction hamiltonian is then given by

Hint ¼ �ec
X
pk

2p�h

V!k

� �1=2�
Að p, p� kÞb�pbp�k

þ Bð p, � pþ kÞb�pc
�
�pþk þ B�ð�p� k, pÞcpb�p�k

þ Cð p, pþ kÞcpc
�
pþk

�
ak þ a��k
� �

, ð9Þ

where the coefficients A, B and C (the matrix elements
Mð p, p 0Þ) are given in Appendix 1. The most general
structure of the vector p ¼

P
�� 0 w

�
�pw� 0 is given in

Appendix 2. In accordance with our assumption that
the interaction matrix elements should not depend on
the ‘spin’ orientation we take the mean value of this
vector over all possible polarizations, and get ðpÞav ¼ 0.
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This amounts to a statistical (uniform) average of the

interaction hamiltonian over ‘spin’ states. The coeffi-

cients A, B and C simplify then appreciably, and the

interaction Hamiltonian becomes

Hint ¼ �ec
X
pk

2p�h

V!k

� �1=2

½Að p, p� kÞb�pbp�k

þ Bð p, � pþ kÞb�pc
�
�pþk þ Bð p, � p� kÞcpb�p�k

þ Að p, pþ kÞcpc
�
pþk� ak þ a��k

� �
, ð10Þ

where

Að p, p 0Þ ¼
1

ð"" 0Þ1=2
�
en½ð"�mc2Þð" 0 þmc2Þ�1=2

þ en 0½ð"þmc2Þð" 0 �mc2Þ�1=2
�
,

Bð p, p 0Þ ¼ �
1

ð"" 0Þ1=2


ey½ð"þmc2Þð" 0 þmc2Þ�1=2

þ ½ðenÞn 0y � ðnn
0Þey þ ðen

0Þny�

� ½ð"�mc2Þð" 0 �mc2Þ�1=2
�

ð11Þ

and " 0 ¼ ðc2p 02 þm2c4Þ1=2, e ¼
P

� e�ðkÞ. We empha-

size the dependence on k of the coefficients Að p, p 0Þ

and Bð p, p 0Þ, through the polarization vector e. For

brevity, we use notations like p� k for p� �hk. The
interaction Hamiltonian given by Equation (10) con-

tains electron–electron, positron–positron interactions

(the terms with the coefficients Að p, p� kÞ) and the

creation and annihilation of pairs (the terms with the

coefficients Bð p, � p� kÞ). The corresponding equa-

tions of motion read

€ak þ €a��k þ !
2
kð €ak þ €a��kÞ

¼ 2ec
X
p

2p!k

�hV

� �1=2�
Að p, pþ kÞb�pbpþk

þ Bð p, � p� kÞb�pc
�
�p�k þ Bð p, � pþ kÞcpb�pþk

þ Að p, p� kÞcpc
�
p�k

�
ð12Þ

and

i�h _bp¼ "pbp

� ec
X
k

2p�h

V!k

� �1=2

� Aðp,p�kÞbp�kþBðp, �pþkÞc��pþk

h i
ðakþa��kÞ,

i�h _cp¼ "pcp

þ ec
X
k

2p�h

V!k

� �1=2

� Aðp�k,pÞcp�kþBð�pþk,pÞb��pþk

h i
ðakþa��kÞ:

ð13Þ

It is easy to check that the interaction Hamiltonian
given by Equation (10) conserves the charge
Q ¼

P
p

�
b�pbp � c�pcp

�
. This is the standard framework

(not manifestly covariant) provided by the quantum
electrodynamics for an ensemble of interacting elec-
trons, positrons and photons. For the creation and
annihilation of electron–positron pairs in the process
of polarization of a piece of macroscopic vacuum we
adopt here a special route.

Before passing to solving the equations of motion
given above, it is worth noting that our procedure of
averaging over spin states, used here in order to
simplify the interaction matrix elements, is not applic-
able anymore if a polarized external field is present in
the interaction (e.g. a circularly polarized field). Then,
it is natural to refer the spinors w� to the external
polarized field, thus removing the arbitrariness in their
definition. The interaction matrix elements will depend
now on the polarization direction of the external field,
and the average over the angular directions of the
momenta in the effective coupling constant b given
below (Equation (18)) must take into account this
circumstance. The result is a corresponding change
in b, without affecting qualitatively the general
conclusions (as long as we are not interested in the
spin dynamics, which, in general, is affected by the
polarization of the external field).

In general, the states of interacting fermions with
spin one-half are admixtures of empty ( 0j i) and
occupied ( 1j i) states. The creation and destruction
operators can then be equivalently represented by one
c-number. For instance, let sj i ¼ � 0j i þ � 1j i be such a
state, with coefficients �, �. The destruction operator b
has only one non-vanishing matrix element,
0h jb sj i ¼ �, or sh jb 1j i ¼ ��. For definiteness, we
choose 0h jb sj i ¼ �. The occupation number is given
by sh jb�b sj i ¼ �

�� ��2. Since the states sj i for an ensemble
of interacting fermions are not, in general, well-defined
single-particle states, �

�� ��2 is not subjected to the
restriction �

�� ��2� 1. Instead, the summation of the
occupation numbers over all the states must equal the
total number of fermions. Consequently, we can take
such matrix elements in the first Equation (13), which
amounts to work with fermionic amplitudes which are
c-numbers, instead of operators. These amplitudes can
be viewed as classical fields. The charge conservation
Q¼ 0 for pairs suggests the replacement

bp! �p, c��p! �p, ð14Þ

in accordance with the particle–hole symmetry. This
procedure holds whenever the starting states, i.e. the
particular states we use to formulate the problem (in
our case momentum states), or finite linear combina-
tions of them, are not exact states (which, as we see

Journal of Modern Optics 613
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below, in our case are states labeled by the position
vector r). Obviously, this implies a macroscopic
number of fermions. Similarly, we replace the photon
operators by c-numbers,

ak þ a��k ! Ak, ð15Þ

whereAk are viewed as classical fields. As is well known,
this amounts to employing coherent states and a
coherent interaction of matter and radiation [40].
The (macroscopic) number of photons is not defined
anymore in such classical fields, in contrast with the
field phase, which is well defined. It is worth noting that
Equation (15) makes no distinction anymore between
absorption or creation of a photon, in agreement
with the fact that the number of photons is not a well-
defined number. The interaction hamiltonian becomes

Hint ¼ �2ec
X
pk

2p�h

V!k

� �1=2

Bð p, � pþ kÞ��p�p�kAk,

ð16Þ

and the equations of motion read

€Ak þ !
2
kAk ¼ 4ec

X
p

2p!k

�hV

� �1=2

Bð p, � p� kÞ��p�pþk,

i�h _�p ¼ "p�p � 2ec
X
k

2p�h

V!k

� �1=2

� Bð p, � pþ kÞ�p�kAk: ð17Þ

We can see that the scattering of individual electrons
(or positrons) disappears from the interaction
Hamiltonian (the terms with the A-coefficients in
Equation (10)), and the interaction is determined by
the vacuum polarization (creation and annihilation of
pairs), as expected. The product ��p�p�k in the
interaction Hamiltonian can also be viewed as corre-
sponding to the excitation (and dis-excitation) of an
ensemble of particles, each with two energy levels
(labeled by p and �pþ k), the levels corresponding to
positive and, respectively, negative energy states. This
latter feature is incorporated in the structure of the B-
coefficients. As is well known, such an ensemble of
particles can be excited (polarized) in a stationary
regime by an external classical field of radiation, which
pumps energy in the ensemble, resembling to some
extent the laser effect [41]. We note also that the
product ��p�pþk appearing in the rhs of the first
Equation (17) for the electromagnetic field is related
to the medium polarization (more exactly to the
polarization current).

For reasonable energies we may limit ourselves to
p, �hk5 p0 	 mc, where p0 is a momentum cutoff,
and expand the coupling coefficients Bð p, p� kÞ in
powers of p and k. Similarly, we approximate

"p in Equations (17) by "0 ¼ mc2. For such small

values of the momenta the angular dependence of the

coupling function Bð p, � pþ kÞ is practically irrele-

vant for the qualitative behavior of the solutions of the

system of Equations (17). The structure of this system

shows that the relevant coupling function is the

product Bð p, � p� kÞBð p, � pþ kÞ. Averaging over

p we get

b ¼ Bð p, � p� kÞBð p, � pþ kÞ
� �1=2

¼
p20

351=2m"0
:

ð18Þ

The constant b plays the role of an effective coupling

coefficient. Introducing the coupling constant gk ¼

2ecbð2p=V�h!kÞ
1=2, the system of Equations (17)

becomes

€Ak þ !
2
kAk ¼ 2!kgk

X
p

��p�pþk,

i _�p ¼ O�p �
X
k

gk�p�kAk, ð19Þ

where O ¼ "0=�h. It is easy to see that Equations (19)

are solved by the Fourier transforms

�p ¼
1

V

ð
dr�ðrÞ exp �

i

�h
pr

� �
, �ðrÞ ¼

X
p

�p exp
i

�h
pr

� �
:

ð20Þ

The number of pairs is given by

N ¼ 4
X
p

�p
�� ��2¼ 4

V

ð
dr �ðrÞ
�� ��2; ð21Þ

we have also

X
p

��p�pþk ¼
1

V

ð
dr �ðrÞ
�� ��2expð�ikrÞ: ð22Þ

The solution is immediately given by

�ðrÞ ¼ BðrÞ exp �iOtþ i

ðt
dt 0�ðr, t 0Þ

� 	
, ð23Þ

where �ðr, tÞ ¼
P

k gkAk expðikrÞ; B(r) is a ‘constant’ of

integration, given by

N ¼
4

V

ð
dr BðrÞ
�� ��2: ð24Þ

From Equation (23) we can see that the pair dynamics

is governed by single-particle states labelled by the

position vector r. This dynamics is quasi-stationary, in

the sense that it conserves the ‘occupation’ number

�ðrÞ
�� ��2¼ BðrÞ

�� ��2. Similarly, from the first Equation (19)

and Equation (22), we can see that the polarization

field does not depend on the time, so we get

Ak ¼
2gk
!k

1

V

ð
dr BðrÞ
�� ��2expð�ikrÞ; ð25Þ
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it follows

�ðr, tÞ ¼ �ðrÞ ¼
X
k

gkAk expðikrÞ

¼
X
k

2g2k
!k

1

V

ð
dr 0 Bðr 0Þ
�� ��2exp½�ikðr 0 � rÞ� ð26Þ

and

�ðrÞ ¼ BðrÞ exp½�iOtþ i�ðrÞt�: ð27Þ

The single-particle energy �hO� �h�ðrÞ has a spatial

dependence, reflecting the local force exerted on the

pairs by the polarization field. If one assumes the pairs

confined to a spatial region of finite extent, we can see

that this force tends to localize the pairs in that region,

as expected.
It is reasonable to assume that the pairs are

distributed uniformly in space, i.e. BðrÞ ¼ B ¼ N1=2=2.
This amounts to a condensation of the fermions on the

p ¼ 0 state; in fact, the pairs are distributed

(‘condensed’) over the low-momenta fermionic states.

The field Ak (Equation (25)), and the single-particle

energy � (Equation (26)) exhibit a singularity for k!

0, as expected for such an infinite uniform distribution.

In practice, the pairs are distributed quasi-uniformly in

space over a region of finite linear size d, so we may

take Ak ’ gkN=2!k for k5 k0 ¼ 1=d. The single-

particle energy becomes

��h� ’ �
2e2b2

pd
N, ð28Þ

and Equation (20) gives �p ¼ B expð�iOtþ i�tÞ for

p! 0. From the conservation of the number of

particles

N ¼ 4
X
p

�p
�� ��2¼ 4B2 V

ð2pÞ3�h3
4pp30
3
¼ 4B2

ð29Þ

we get the momentum cutoff p0=�h ¼ ð6p2Þ
1=3=d, which

is of the order of 1/d, as expected. It is worth noting

to see now the coupling coefficient b given by

Equation (18),

b ¼
p20

351=2m"0
¼
ð6p2Þ2=3

351=2
�c
d

� �2

, ð30Þ

where �c ¼ �h=mc is the electron Compton wavelength.

Since �c ’ 0:3� 10�10 cm, we can see that the coupling

coefficient b acquires an extremely small value. The

single-particle energy given by Equation (28) can be

written as

��h� ’ �
2e2b2

pd
N ¼ �

12

35
ð6p2Þ1=3

e2

d

�c
d

� �4

N, ð31Þ

which is extremely small. It is worth noting the
occurrence of the Coulomb energy e2=d of an electron
localized in a spatial region of linear size d. The
assumption BðrÞ ¼ B ¼ const used here is not a
restriction, it is just a simplifying (and reasonable)
condition, corresponding to a quasi-uniform distribu-
tion of pairs in the spatial region of interest. For pairs
interacting with their own polarization field it seems
natural to adopt such an assumption. It corresponds
also to an external field focused quasi-uniformly in the
region of interest. For other experimental situations,
depending on the spatial distribution of the external
field, the amplitude B(r) may have a prescribed spatial
dependence, as we can see from Equation (25).
In general, B(r) has the status of a ‘constant’ of
integration for the equations of motion.

Making use of Equation (1), we can compute the
magnetic field H ¼ curlA and the electromagnetic
energy Eem stored by the polarization field
Ak ’ gkN=2!k for k5 k0 ¼ 1=d. We get

Eem ¼
2e2b2

pd
N2 ¼

12

35
ð6p2Þ1=3

e2

d

�c
d

� �4

N2: ð32Þ

The number of pairs can be obtained from the
conservation of energy

Eem þ 2mc2N ¼
12

35
ð6p2Þ1=3

e2

d

�c
d

� �4

N2 þ 2mc2N ¼W,

ð33Þ

where W is the total energy and we have neglected the
single-particle energy ��h�. It is easy to see that the
N2-term brings an extremely small contribution (due to
the fourth power of the ratio �c=d	 1), so the number
of pairs is given by N ’W=2mc2. For a numerical
reference, we can take W¼ 1 J and get N ’ 1013 pairs.
We can see that the pairs number does not depend
practically on the size of the spot where the energy is
concentrated.

It is also worth commenting upon the solutions

�ðrÞ ¼ B expð�iOtþ i�tÞ ð34Þ

(for r5 d ). According to Equation (23) they represent
single-particle eigenstates. We can see that they
correspond to electrons (positrons) quasi-localized in
space, in the sense that these field amplitudes are
labelled by the position vector r. We can divide the
space into small, identical cells of volume v	 V, and
write the number of particles (Equation (24)) as

N ¼
4

V

ð
dr BðrÞ
�� ��2¼ 4v

V

X
r

B2 ¼
vN

V

X
r

1, ð35Þ

whence one can see that the ‘occupation’ number in
each cell of volume v is unity, as for fermions. This is
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a check of consistency for our assumption B¼ const,

and substantiates the picture of electrons (positrons)

quasi-localized in space and represented by fields given

by Equation (34).
The quasi-localization concept used here can be

seen straighforwardly by the following general argu-

ment. Making use of the Fourier transforms given by

Equations (20) we can write a general fermion field as

 ðrÞ ¼
X
p

�p exp
i

�h
pr

� �

¼

ð
dr 0�ðr 0Þ

1

V

X
p

exp
i

�h
pðr� r 0Þ

� �
; ð36Þ

here �ðr 0Þ are field amplitudes and the summation over

p plays the role of single-particle wavefunctions.

We can see that these wavefunctions (of variable r)

are labelled by r 0, i.e. the single-particle states are

labelled by the position vector r 0. If the momentum p in

the above summation is allowed to run over the whole

space, the summation gives the wavefunctions �ðr� r 0Þ,

which corresponds to a perfect localization (and the

field  ðrÞ reduces to one amplitude �ðrÞ). In our case,

the limitation imposed upon the variation domain of

the momentum p leads to wavefunctions quasi-

localized over the spatial region of finite linear size d.
We can see that the vacuum can be polarized with

electron–positron pairs, which create a polarization

field and acquire an additional ��h� energy for each

electron (positron). Even for very high energy densities

the number of pairs, the polarization energy and the

single-particle energies are extremely small. Comparing

the first Equation (19) with the classical wave equation

@2A=@t2 � c2DA ¼ 4pcj, where j is the density of the

polarization curent, we get

j ðkÞ ¼
ecb

V

X
p

��p�pþk ¼
4ecb

V2

ð
dr BðrÞ
�� ��2expð�ikrÞ

’
ecb

V
N ¼

1

351=2
ð6p2Þ2=3

ec

V

�c
d

� �2

N, k5 1=d,

ð37Þ

for the Fourier transform of the current density (for

one polarization). This is a very small current density.
We introduce now an external field Aext

k0
¼

Aext
�k0
¼ A0 ¼ 2a0 cos!0t (monochromatic wave), with

the frequency !0 ¼ ck0. The second Equation (19)

becomes

i _�p¼O�p�
X
k

gk�p�kAk�g0ð�p�k0 þ�pþk0 ÞA0, ð38Þ

where g0 ¼ 2ecbð2p=V�h!0Þ
1=2. The solution is given by

�ðrÞ ¼ BðrÞ exp½�iOtþ i�tþ i’ðr, tÞ�, ð39Þ

where

’ðr, tÞ ¼
4g0a0
!0

sin!0t cos k0r: ð40Þ

This phase implies an ‘energy’

�"ðr,tÞ ¼�4�hg0a0 cos!0tcosk0r

¼�2�hg0a0 cosðk0r�!0tÞþ cosðk0rþ!0tÞ½ �, ð41Þ

for the electron–positron pairs (it depends on position
and time), which appears as a stationary wave driven
by the external field. It is worth noting that, in contrast
with the polarization energy ��h� given by Equation
(31), which is quadratic in the coupling coefficient b,
the energy caused by the external field is linear in b, as
expected. It is convenient to estimate the mean value of
this ‘energy’ by making use of the external field energy
W0 ¼ 2�h!0 a0j j

2. We get straightforwardly

�" ¼
4

351=2
ð6p2Þ2=3

c

!0d

�c
d

� �2
e2W0

d

� �1=2

, ð42Þ

which, even for reasonably high energy densities, is still
a very low energy. The energy of the external field is
distributed over the energy of the polarization field
(which is very low) and the energy of the pairs,
according to Equation (33). It is worth noting that the
above results are sensitive to decreasing d (except for
the number of pairs), so we can enhance the relevant
values by the focalization of the energy in very small
volumes. However, for usually available energies this
enhancement is still insufficient for getting any
appreciable result.

The external field induces a polarization field which
is stationary (the vector potential does not depend on

the time), as a consequence of the stationary dynamics
of the electrons and positrons. Therefore, the polariza-
tion electric field is vanishing, and we are left only with
a static magnetic field. Under the action of an external
field the vacuum gets magnetized. The corresponding
vector potential of the polarization field is given by
Apol

0 ¼ g0N=2!0, according to the discussion made
above. This polarization field depends on the strength
A0 of the external field through the field energy W0

which generates the number of pairs N. Consequently,
we can define a static magnetic susceptibility of the
polarized vacuum. We get straightforwardly the
magnetic permeability

� ¼ 1þ
eb

4mc!0
H0 ¼ 1þ

ð6p2Þ2=3

4ð351=2Þ

�c
d

� �2
eH0

mc!0
, ð43Þ

where it is worth noting the linear dependence on the
strength H0 of the external magnetic field. As expected,
the vacuum polarized under the action of an
external field, acquires a (very small, static) magnetic
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susceptibility, and, consequently, a refractive index
n ¼ �1=2 (slightly greater than unity). It is worth noting
in Equation (43) the ratio of the magnetic energy (Bohr
magneton in the magnetic field H0) to the energy
quanta �h!0 of the external field.

In conclusion, we may say that the vacuum gets
polarized with electron–positron pairs under the action
of an external classical field of electromagnetic
radiation. The polarization field is static, i.e. the
electric field is vanishing and the vacuum sustains
only a static magnetic field. The corresponding
magnetic permeability (the refractive index of the
vacuum) has been computed for an external mono-
chromatic wave. The electron–positron pairs are
condensed on low-momenta states and exhibit a
quasi-stationary dynamics. They acquire a single-
particle ‘energy’ (temporal phase), which is a stationary
wave driven by the monochromatic external field. The
number of pairs are determined by the external energy,
while the single-particle energies and the energy of the
polarization field depend on the energy density of the
external field. All these numerical results are extremely
small, even for reasonably high external energies and
energy densities. An important role in the magnitude of
these effects is played by the Compton wavelength of
the electron, which is very small in comparison with the
extent of the spatial region over which we can
concentrate the energy of the external field. The results
presented here have been derived by treating the
electron–positron and photon dynamics by means of
classical fields, a procedure justified by the polarization
process, which implies continuous creation and anni-
hilation of electron–positron pairs under the action of
a classical field of radiation, resembling a (macro-
scopic) plasma of electron–positron pairs. The coupled
non-linear equations of motion have been solved for
these fields, and the solution led to the results described
above.
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Appendix 1. The coefficients A, B and C in

Equation (9)

Making use of the bi-spinor definition (Equations (5)) and
the algebra of the Pauli spin matrices (in particular
�i�j ¼ �ij þ i"ijk�k, where "ijk is the totally antisymmetric

tensor of rank 3), the coefficients A, B and C appearing in the
interaction hamiltonian (Equation (9)) can be computed
straightforwardly (leaving aside the spin dependence in the

electron–positron operators). They are given by

Að p, p 0Þ ¼
1

2ð"" 0Þ1=2
½ð"�mc2Þð" 0 þmc2Þ�1=2



2en� ipðe� nÞ½ �

þ ½ð"þmc2Þð" 0 �mc2Þ�1=2 2en 0 þ ipðe� n 0Þ½ �
�

Bðp,p 0Þ ¼ �
1

2ð"" 0Þ1=2
f½ð"þmc2Þð" 0 þmc2Þ�1=2½2ey þ iðe� pÞy�

þ ½ð"�mc2Þð" 0 �mc2Þ�1=2½2ðenÞn 0y � 2ðnn 0Þey

þ 2ðen 0Þny � iðenÞðn 0 � pÞy þ in 0ynðe� pÞ

þ iðepÞðn 0 � nÞy þ iðnpÞðe� n 0Þy�g,

Cðp,p 0Þ ¼
1

2ð"" 0Þ1=2
f½ð"�mc2Þð" 0 þmc2Þ�1=2½2en� i�yðe� nÞy

� inyðe� pÞy þ ieyðn� pÞy�

þ ½ð"þmc2Þð" 0 �mc2Þ�1=2½2ðn 0eÞ þ i�yðe� n 0Þy

þ in 0yðe� pÞy � ieyðn
0 � pÞy�g,

where " ¼ ðc2p2 þm2c4Þ1=2, " 0 ¼ ðc2p 02þm2c4Þ1=2, e ¼P
� e�ðkÞ and p ¼

P
�� 0 w

�
�pw� 0 .

Appendix 2. The vector p

The most general form of the spinor w�ð pÞ is

wþ1 ¼ expð�i’Þ cos 	uþ expði’Þ sin 	v,

w�1 ¼ � expð�i’Þ sin 	uþ expði’Þ cos 	v,

where u, v are the eigenvectors of the Pauli matrix �z
(�zu ¼ u, �zv ¼ �v) and the angles 	, ’, corresponding to the

wavevector p, are arbitrary; for p 0 (in w�ð p
0Þ) we denote these

angles by 	 0, ’ 0. It is worth noting that, in spite of some

resemblance, these spinors are not those related to the

helicities. The calculations of the vector p ¼P
�� 0 w

�
�ð pÞpw� 0 ð p

0Þ is then straightforward. We get

�x ¼ 2i sinð’� ’ 0Þ sinð	 � 	 0Þ þ 2 cosð’� ’ 0Þ cosð	 þ 	 0Þ,

�y ¼ 2i cosð’� ’ 0Þ sinð	 � 	 0Þ þ 2 sinð’� ’ 0Þ cosð	 þ 	 0Þ,

�z ¼ �2i sinð’þ ’
0Þ cosð	 � 	 0Þ � 2 cosð’þ ’ 0Þ sinð	 þ 	 0Þ:

It is worth noting that p is a complex vector, which depends

on four parameters (the angles ’, ’ 0, 	, 	 0), as expected for

the polarization of an ensemble of two fermions of spin 1/2.

Indeed, we have a polarization vector for one fermion,

relative to the direction of the polarization vector of the other

fermion, i.e. three parameters, and another parameter for the

magnitude of the former polarization vector. We can have

various choices for p, for instance we may take it perpen-

dicular to the two wavevectors p, p 0 (which amounts to four

equations with four unknowns). We can also write p as

p ¼ 2is1 þ 2s2, where s1,2 are two real, linearly independent

vectors, and take s1 parallel with p (in which case we are left

with only one free parameter). None of such choices brings

an appreciable simplification in the interaction matrix

elements, and, in fact, any particular choice is arbitrary.

The only meaningful procedure is the averaging over angles,

which gives ðpÞav ¼ 0, as for unpolarized elementary interac-

tion acts. This assumption is equivalent to a uniform

statistical average of the interaction with respect to the

‘spin’ polarization, as noted in the main text. We note that

such an average is consistent with the classical treatment of

the interaction given here. As noted also in the main text,

the arbitrariness in the spinors w� is lifted if they are referred

to a polarized external field, and an average over the

spin directions is not needed, nor appropriate, in this

situation.
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