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The model liquids discussed herein are represented as correlated ensembles of particles, moving around

and interacting with strong, short-range forces. A spectrum of local vibrations is introduced for the local,

collective movements of particles in such model liquids. The resulting statistics is formally equivalent

with that of an ideal gas of bosons in two dimensions, which in turn, as it is well known, leads to a

thermodynamics which is equivalent to that of an ideal gas of fermions in two dimensions. The

parameters used for describing the statistics of the model are the cohesion energy per particle, the

spacing between the energy levels of local vibrations and a constraining volume. The corresponding

thermodynamics is derived, with explicit emphasis on both low- and high-temperature regimes. The

condensation occurring in the low-temperature limit is discussed.

& 2008 Elsevier B.V. All rights reserved.
The model liquids discussed in this paper are represented as
ensembles of particles moving around and interacting strongly
with short-range forces. The motion of the particles in such model
liquids is highly correlated over short distances, in the sense that
the movement of a particle entails appreciable movements of the
neighbouring particles. The local character of the short-range,
strong forces and the high correlations involved have special
consequences on the particle motion. First the particle move-
ments are collective, so they may imply comparatively small
amounts of energy, in contrast with highly localized movements.
Next, the correlated particle movements are local. In addition, the
strong character of the interaction gives rise to a cohesion energy
��0o0, in the sense that one needs to spend such an amount of
energy in order to take a particle out of the ensemble. The role
played by the strong interactions and short-range correlations in
such ensembles of particles has been previously emphasized
[1–6].

The short-range correlations reduce the number of available
spatial states of particles moving in volume V of the liquid. The
motion of each particle is restricted by its neigbouring particles.
These short-range correlated configurations of particles are
identified by their distinct positions in space. It is convenient to
ll rights reserved.
associate a volume b to each of such local particle configurations,
such that the total number of available spatial states is V=b and
the corresponding density of states can be written as dV=b. In
view of the short-range character of these local correlations the
constraining volume b is, typically, of the order of a3, where a is
the mean inter-particle distance.

The energy of an ensemble of interacting particles in
equilibrium depends on this mean inter-particle distance a. An
energy �ðaÞmay therefore be assigned to each particle, such as the
total energy can be written as N�ðaÞ, where N is the number of
particles. This energy depends on the nature of the liquid, i.e. on
the forces acting between the particles, on their mass, etc. In order
to identify the possible movements of particles, one may allow
small deviations da of the mean inter-particle distance from its
equilibrium value a and write down a series expansion of �ðaÞ in
powers of da. Such a series expansion reads

� ¼ ��0 þ AðdaÞ2 þ � � � , (1)

where A is an expansion coefficient. The first power in da is
missing from Eq. (1), as for an expansion about the equilibrium.
Eq. (1) suggests that the local spectrum of energy in such a model
liquid is a spectrum of vibrations with one degree of freedom.
Higher-order terms may be included in the expansion (1), as
corresponding to anharmonic vibrations. The local, short-range
correlations make the vibration spectra given by Eq. (1) to be
independent for each local particle configuration, in the sense that
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these vibrations are not coupled to each other for various particle
configurations. At the same time, these vibrations do not
correspond to individual particles, but to local particle configura-
tions. Correspondingly they represent collective movements,
extended over relatively short distances, and the expansion
coefficient in Eq. (1) may correspond to vibration frequencies
(and energies) much lower than the frequencies of a highly
localized particle. The dynamics of the present model liquid is
therefore represented by local particle configurations, labelled by
distinct positions in space, moving around over a restricted
number of spatial states and vibrating locally according to the
vibration spectrum given by Eq. (1). These particle configurations
can be viewed as elementary excitations of the model liquid.

The spectrum given by Eq. (1) corresponds to an isotropic
liquid, where local vibrations do not depend on direction. More
particular assumptions can be employed. Specifically, the range of
the correlations may be extended, or the anisotropies may be
taken into account, or anharmonicities may be included, etc. The
discussion herein is limited to the most simple spectrum as the
one described by Eq. (1), corresponding to a set of independent
harmonic oscillators with one degree of freedom. The correspond-
ing energy levels are therefore given by

� ¼ ��0 þ �1ðnþ 1=2Þ, (2)

where n ¼ 0;1;2; . . . is the quantum number of vibrations and �1 is
the spacing between the energy levels. Both parameters �0 and �1

in Eq. (2) depend on a. For a continuum spectrum the dependence
of �1 on a may be neglected.

The next step is to set up the statistics for such a model, in
order to establish its thermal properties. The vibration spectrum
given by Eq. (2) corresponds to a Bose–Einstein type of statistics. It
is associated with each local particle configuration, these config-
urations being labelled by distinct positions in space. Since these
positions are different, and since the vibration spectrum given by
Eq. (2) corresponds to a collective motion, it follows that the
Bose–Einstein statistics, as defined by the energy spectrum (2)
and by the motion of the vibrating configurations among distinct
positions in space, does not depend on the particular fermionic or
bosonic character of the constitutive particles of the liquid. It
holds therefore for ensembles of particles, irrespective of the
fermionic or bosonic character of the underlying particles in the
ensemble. This is a consequence of the assumption of strong
interaction and collective and correlated movements. As men-
tioned above, the quanta of the vibration spectrum given by
Eq. (2) associated with the particle configurations moving around
through the liquid may be viewed as the elementary excitations of
such liquids.

Since the vibration spectrum given by Eq. (2) associates one
degree of freedom to each particle, through the mean inter-
particle spacing a, it follows that the mean occupation number of
vibrations of each particle configuration is determined by the size
of these configurations. Therefore, the Bose–Einstein statistics has
a determined chemical potential m and, for a continuum spectrum
of energy with density d�=�1, the number of particles can be
written as

N ¼
V

b�1

Z 1
0

d�
1

z expðb�Þ � 1
, (3)

where b ¼ 1=T is the inverse of temperature T and z ¼ exp½�bðmþ
�0Þ� is the inverse of the fugacity. The particle concentration is
written as c ¼ N=V ¼ 1=a3. The continuum-spectrum approxima-
tion is valid for Tb�1. The degeneracy associated with the energy
levels given by Eq. (2), as naturally arising from various particle
movements in space, is incorporated in the spatial density of
states dV=b.
The statistics given by Eq. (3) corresponds to an ideal gas of
bosons in two dimensions. It is well known that it is equivalent
with the statistics of an ideal gas of fermions in two dimensions
[7–9], as expected from its applicability, irrespective of the
fermionic or bosonic character of the constitutive particles, as
noted above.

Eq. (3) requires z41, i.e. mþ �0o0. With decreasing tempera-
ture the integral in Eq. (3) decreases, so that mþ �0 increases, in
order to satisfy this equation. For the limiting value mþ �0 ¼ 0
(z ¼ 1) the integral in Eq. (3) has a logarithmic singularity at � ¼ 0,
so it is divergent, in contrast with the three-dimensional case.
Consequently, there is no critical temperature corresponding to a
Bose–Einstein condensation in two dimensions, as it is well
known. However, a continuous, gradual condensation on the zero-
point vibration level occurs in the limit of the low temperatures,
as it is shown below.

The integral in Eq. (3) can be performed straightforwardly. We
get

b�1=a3T ¼
X
n¼1

ðnznÞ
�1
¼ ln½z=ðz� 1Þ�, (4)

whence z ¼ ð1� e�CÞ
�1 and the chemical potential

m ¼ ��0 þ T lnð1� e�CÞ, (5)

where C ¼ b�1=a3T ¼ b�1c=T .
Similarly, the energy is given by

E ¼ �N�0 þ
VT2

b�1
GðzÞ, (6)

where

GðzÞ ¼
X
n¼1

ðn2znÞ
�1
¼
X
n¼1

1

n2
ð1� e�CÞ

n. (7)

In the low-temperature limit �15T5b�1=a3 it amounts to

E ¼ �N�0 þ p2VT2=6b�1, (8)

and for high temperature Tbb�1=a3

E ¼ �N�0 þ NT , (9)

as for a classical ensemble. However, anharmonic corrections in
the expansion (1) may be important in this limit, which modify
the simple T-law given by Eq. (9).

The entropy for the Bose–Einstein distribution introduced here
is given by

S ¼
V

b�1

Z 1
0

d�½ðnþ 1Þ lnðnþ 1Þ � n ln n�, (10)

where n ¼ ðzeb� � 1Þ�1 is the mean occupation number. It leads to

S ¼ �N lnð1� e�CÞ þ
2VT

b�1
GðzÞ, (11)

the free energy

F ¼ E� TS ¼ �N�0 þ NT lnð1� e�CÞ �
VT2

b�1
GðzÞ (12)

and the thermodynamic potential

O ¼ F � mN ¼
VT

b�1

Z
d� lnð1� e�b�=zÞ

¼ � ðEþ N�0Þ ¼ �
VT2

b�1
GðzÞ. (13)

The pressure p ¼ �ðqF=qVÞT ;N is given by

p ¼ �c2�00 þ
T2

b�1
GðzÞ, (14)

where �00 is the derivative of the energy �0 with respect to
concentration c. This is the equation of state of the present model



ARTICLE IN PRESS

M. Apostol / Physica B 403 (2008) 3946–39493948
liquid. The dependence of �1 on concentration is neglected.
We note that for suitable values of c2�00 the equilibrium can be
reached for low values of pressure.

In the low-temperature limit �15T5b�1=a3, the pressure given
by Eq. (14) reads p ¼ �c2�00 þ p2T2=6b�1, whence the isothermal
compressibility

kT ¼ V�1
ðqV=qpÞT ¼

1

cqðc2�00Þ=qc
o0. (15)

It is worth noting that cqðc2�00Þ=qc must acquire large, negative
values for the stability of the ensemble and for ensuring low
values of the compressibility, in accordance with the behaviour of
such liquids. Similarly, the thermal expansion coefficient at
constant pressure is given by

a ¼ V�1
ðqV=qTÞp ¼ �

p2T

3b�1
kT40. (16)

The entropy (11) at low temperatures reads S ¼ p2VT=3b�1 and
the heat capacity at constant volume is cV ¼ TðqS=qTÞV ¼ S. The
heat capacity at constant pressure is given by cp ¼ cV � Va2T=

kT4cV . Similarly, the adiabatic compressibility is given by
kS ¼ V�1

ðqV=qpÞS ¼ kT ð1þ p2T2kT=3b�1Þ4kT . It is related to the
sound velocity u by u2 ¼ �1=rkS, where r is the mass density.
These quantities may give access to experimental determination
of the parameters �0 and b�1.

In the high-temperature limit Tbb�1=a3 the present model
liquid behaves classically, with the entropy S ¼ N lnðe2a3T=b�1Þ

and pressure p ¼ �c2�00 þ NT=V . The compressibilities are given by

kT ¼ �
1

c
�

1

T � qðc2�00Þ=qc
,

kS ¼ �
1

2c
�

1

T � ð1=2Þqðc2�00Þ=qc
, (17)

the coefficient of thermal expansion is

a ¼ 1

T � qðc2�00Þ=qc
, (18)

and the heat capacities are cV ¼ N and

cp ¼ cV � VTa2=kT ¼ cV þ
NT

T � qðc2�00Þ=qc
. (19)

The validity of these expressions is restricted to a limited range of
temperature and concentration characteristic for such liquids.
Their experimental determination gives access only to the
parameter �0. Likely, for high values of T anharmonic corrections
have to be included.

For values of the temperature T comparable with the spacing �1

between the energy levels the quantum effects are important and
the accuracy of replacing the summation over n in Eq. (2) by
integral (3) must be checked, according to MacLaurin’s formula

Xb

a

f ðxnÞ ¼

Z bþ1=2

a�1=2
f ðxÞdx� ð1=24Þf ;bþ1=2

a�1=2 þ � � � . (20)

Applying this formula to function f ¼ ½ze�b�1ðnþ1=2Þ � 1��1 we get

b=a3 ¼
X
n¼0

1

z exp½b�1ðnþ 1=2Þ� � 1

¼

Z
0

dn
1

z expðb�1nÞ � 1
�
b�1

24
�

z

ðz� 1Þ2
þ � � �

¼
1

b�1
ln

z

z� 1
�
b�1

24
�

z

ðz� 1Þ2
þ � � � , (21)

and we can see that the error made in approximating the
summation by integral becomes comparable with the integral
for large values of b�1 and z! 1. This error arises from the fact
that the integral gives little weight to the value of the function at
n ¼ 0. Consequently, we single out the term n ¼ 0 in Eq. (21), and
write

b=a3 ¼
1

z0 � 1
þ

1

b�1
ln

z0eb�1=2

z0eb�1=2 � 1
�
b�1

24
�

z0eb�1=2

ðz0eb�1=2 � 1Þ2
þ � � � , (22)

where z0 ¼ zeb�1=2. In the low temperature limit b�1 !1 it is the
first term in Eq. (22) that brings the main contribution and we
have

z ¼ ð1þ a3=bÞe�b�1=2; b�1 !1. (23)

In the high-temperature limit b�1 ! 0 the main contribution is
brought by the ln-term in Eq. (22), and

z ¼
a3T

b�1
e�b�1=2; b�1 ! 0. (24)

A fair interpolation between Eqs. (23) and (24) gives

z ¼ ð1þ a3=bþ a3T=b�1Þe
�b�1=2 (25)

and the chemical potential

m ¼ ��0 þ �1=2� T lnð1þ a3=bþ a3T=b�1Þ. (26)

As one can see, although there is a condensation on the lowest
state of zero-point vibrations in the limit of low temperatures,
there is no phase transition, i.e. no discontinuity, and z approaches
gradually zero (not unity!) for T ! 0, in contrast to the
Bose–Einstein condensation in the three-dimensional case [10].
The characteristic temperature of this continuous condensation is
given by b�1�1. For such temperatures, the liquid may undergo,
very likely, a phase transition, probably to a solid-like phase. Such
a transition is characterized by the increase of the constraining
volume b, which becomes of the order of the volume V ¼ Na3,
such that the number of the available spatial states for each
particle in the ensemble reduces to unity. The ensemble now
becomes rigid and it can only move as a whole. At the same time,
the vibration spectrum changes correspondingly, from one of local
vibrations to global, collective oscillations.

The low-temperature behaviour derived herein has long been
introduced for the statistical model of the atomic nuclei [11–13].
Making use of Eqs. (8), (11) and (12), we get

Q ¼ Eþ N�0 ¼ �ðF þ N�0Þ ¼ p2VT2=6b�1 (27)

and

S ¼ p2VT=3b�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2VQ=3b�1

q
, (28)

where Q denotes the excitation energy of the nucleus. The density
of states r ¼ dN=dQ ¼ eSðdS=dQ Þ gives the spacing between the
energy levels

d� ¼ dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b�1Q=p2V

q
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2VQ=3b�1

p

. (29)

These equations are valid in the low-temperature limit corresponding

to �15T5b�1=a3, where T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b�1Q=p2Na3

q
. The distribution of the

energy levels among states with different angular momenta changes
to a somewhat extent the prefactor in Eq. (29), without material
consequences for the estimations given here [12]. For heavy nuclei
one may take approximately d��5 eV for Q ’ 8 MeV, as derived from
experiments of neutron scattering, resonances, or radiative capture
[12]. Eq. (29) gives then b�1=a3 ’ 40 MeV and temperature T ’

1 MeV for N�200. If volume b is of the order of a3, this temperature
would be much lower than the energy �1 as derived from
b�1=a3 ’ 40 MeV. It is likely, therefore, that a transition to a solid-
like state is expected, i.e. the volume b becomes of the order of b ¼

Na3 (the volume of the nucleus is given by V ¼ Na3, where
a ¼ 1:5� 10�15 m ¼ 1:5 fm). The energy �1 acquires then the
value �1�40 MeV=N ¼ 200 keV for N ¼ 200, and it may be viewed
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as an estimate of the mean separation of the energy levels in the
nucleus.

A similar evaluation can be made for classical, common,
liquids. A typical value for �1 for such liquids might be of the order
of 1 meV. The mean inter-particle spacing is a few Å’s and this is
also the order of magnitude of the molecular size and short-range
forces. It follows that each molecule has a number of spatial states
of the order of N at its disposal, i.e. b is of the order of a3.

In conclusion, a model liquid is introduced herein, described as
a correlated ensemble of particles, moving around and interacting
strongly with short-range forces. The correlations give rise to a
constraining volume b, which is one of the parameters of the
thermodynamics of such a model liquid. The local, collective
movements are described as a set of independent harmonic
oscillators with one degree of freedom, corresponding to vibra-
tions of local particle configurations. The other two parameters
are the distance �1 between the energy levels of these vibrations
and the cohesion energy ��0 per particle. The statistics derived on
this basis is formally equivalent with the statistics of an ideal gas
of bosons in two dimensions, which, as it is known, leads to a
thermodynamics which is equivalent with the one of an ideal gas
of fermions. This thermodynamics is explicitly derived, both in the
low- and the high-temperature limits. The limit of temperatures
comparable with the distance �1 between the energy levels is also
discussed, where a continuous, gradual condensation on the
lowest energy level occurs, which may be the precursor of a
transition toward a solid-like state. The transport properties of
such a model, the thermoconductivity, fluctuations, diffusion and
the response to external perturbations are worth investigating.
Such investigations are underway, and will be reported in a
forthcoming publication.

The author is indebted to the referees for many useful
comments and suggestions.
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