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Within the mean-field approach the existence of the four-fermion condensate is proved in a translationally invariant system 

with four-fermion interaction. 

Recently there has been a renewed interest in the 
four-fermion condensate in connection with the well- 
known question whether nuclei possess a superfluid 
state made of o1 particles (see, for example, ref. [l] 
and references therein). The problem has been ap- 
proached [I] within the interacting boson model by 
means of a BCSlike treatment of two-boson conden- 
sate, each boson corresponding to a pair of nucleons. 
However, the underlying fermion structure of these 
bosons is of great importance as fas as genuine four- 
fermion correlations are looked for. Early attempts to 
account for 0L particles in nuclei as four-fermion con- 
densates [2] run into difficulties which on the one 
hand are inherent to the complex nuclear structure 
and on the other hand arise from the much too general 
framework within the problem put forward. 

Nevertheless the relevance of the four-fermion con- 
densate is not restricted to the field of nuclear physics, 
the question being interesting in itself. It might be re- 
garded as the next step in describing fermion conden- 
sates after the well-known pairing theory of supercon- 
ductivity, charge density waves, excitonic insulator, 
etc. The aim of this paper is to put forward a simple 
model of translationally invariant interacting fermions 
which exhibits a transition towards a superfluid state 
made of four-fermion condensates. 

The relevant one-fermion states, denoted by 1 and 
2 and, respectively, 3 and 4, are restricted to the op 
posite ends of two arbitrary diameters of the spherical 
Fermi sea Leaving aside the angular coordinates of 
the wavevectors as well as the spin index (although 

their contribution will thoroughly be taken into ac- 
count by the density of states at the Fermi surface) 
these states are labelled by p, where +kP t p stands 
for the wavenumber of the states 1 and 3 and -kP t p 

corresponds to the states 2 and 4, kF being the Fermi 
momentum. The reduced wavenumber p runs within 
the range (--kc, kc), kc being a momentum cut-off 
much smaller thank,. The kinetic energy of this 
model is given by the well-known free-fermion hamil- 
tonian (see, for example, ref. [3]) 

(1) 

where uP is the Fermi velocity, CL (c&j = 1, 2,3,4, 
are the creation (destruction) fermion operators and 
the one-fern-non energy (relative to the Fermi level) 
has been linearized in the neighbourhood of the Fermi 
surface. The four-fermion condensate will be thought 
as arising from the condensation of a hermitean field 
of bosons $(x) = Z&I exp(iq*x), &I =(2~+)-~/~(a~ 
+ a+_), where a4 are boson operators and o4 is the 
free-boson frequency. As we are interested only in 
the emergence of the condensate we may restrict our- 
selves to the boson mode 4 = 0, described by the free- 
boson hamiltonian 

@= fdOa+OaO. (2) 
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Consequently, the simplest form of the coupling be- 
tween fermions and bosons will be taken as 

ffi=g(2/WO)1’2 C (&lp~2_p~3p~~4_p* + h.c.), (3) 
PP’ 

where g is the interaction strength. Two comments 
are in order here. Firstly, we should remark that a 
pairing correlation (opposite wavevectors) is already 
included in (3), between the one-fermion states 1 and 
2 and, respectively, 3 and 4. More general pairing cor- 
relations can, of course, be introduced, for example 
those which couple the one-fermion states 1 and 3 
(respectively 2 and 4) and 1 and 4 (respectively 2 and 
3). However, bearing in mind the angular coordinates 
of the wavevectors, it might be expected that these 
additional correlations are much less effective as they 
affect one-fermion states lying on different diameters 
of the Fermi sea. Secondly, in order to get a four-fer- 
mion condensate a further correlation is needed be- 
tween the pairs (1,2) and (3,4) of one-fermion states 
in (3). This particular correlation will be ensured by 
the self-consistency conditions arising from the mean- 
field treatment of the model hamiltonian H = @ + 
Z$ t fIti The hamiltonian H is invariant under the 
gauge transformation that corresponds to the conser- 
vation of the “charge” B = 4nb + Z)inj, where nb = 
aiao is the boson number operator and nj = 2pCiCjp 
is the particle-number operator of the j-type fermions. 
The expectation value of the B “charge” on the non- 
interacting ground state is given by (OIBIO) = +f+,, 

$$~~n~ 1% 
k, is the energy cut-off and p = 
is the density of states at the Fermi 

surface (m being the fermion mass, n the fermion 
density and the integration over the angular coordinates 
of the wavevectors being restricted to the half-space). 

The ground state of the condensate has broken 
symmetry with respect to the aforementioned trans- 
formation and is defined by a non-vanishing expecta- 
tion value of the boson field (@o) = cp and the pairing 
correlations 

c (clpc2-p) = x12, 
P 

c (c3pc&p> = x34. (4) p 

The conditions (Go) = cp and (no> = 0, where no = 
i(oo/2)1/2(a$ - ao) is the canonical-conjugate mo- 
mentum, lead to (ao> = (a$ = (wo/2)‘i2~. The mean- 

field hamiltonian 3c is straightforwardly obtained 
then as 

JC =&;(P~ +h12 + h34 -m(x12x34 + h.c.1, (5) 

where 

h12 = UF c P(CfpClp - c&p) 
P 

c (6) 
P 

and h34 is obtained from h12 by changing the labels 
1 and 2 into 3 and, respectively, 4. The one-fermion 
hamiltonians h 12 and h34 can straightforwardly be 
diagonalized by means of a Bogoljubov-type transform. 
As a matter of fact this one-fermion problem is of the 
same type as those encountered in the superconductiv- 
ity [4] and charge density waves [5] theories. The 
new point arises here from the fact that the ground 
states of h12 and h3, will depend on x34 and, respec- 
tively, x12, so that (4) turn out to be self-consistency 
conditions between the parameters xl2 and x34: they 
will ensure the aforementioned correlations between 
the fermion paris (1, 2) and (3,4). Indeed, the diago- 
nalized form of h 

_ l2 
is acquired by means of the trans- 

form Clp = UpClp 
where up 

+ vpP;_p, c* = UPC@ + vpZ;_p, 
= cos 8,, VP = sgn(p) sin 8, exp_[i(argg + 

arg Q - w x&1, tan 28, = A&J&JI, 242 = 

2&x3& being the magnitude of the gap opened up 
at p = 0 and arg is standing for the phases of the cor- 
responding quantities (argg, arg Q = 0, n). The hamil- 
tonian h34 can similarly be diagonalized, so that the 
values in (4) can be worked out. Providing arg xl2 + 
arg x34 = n + argg + arg Q we get from (4) the self- 
consistent equations 

A12 = -P kQIA34 ln 
‘341% 

1 +(l t A;4/e;)1/2 

A34 = -PkQiAl2 h~ 
Al2l% 

1 + (1 + Af2/e;)1/2 
(7) 

where A34 = lg(px12I. The energy 6E,2 gained by the 
ground state of h,, as a result of the interaction which 
lowers the one-fermion levels can straightforwardly 
be obtained as 
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=12 = -pe; t A:2/e;)1/2 - 1 

- @~2/4) h 
A12/4 

1 t (1 t A;2/e;)1/2 . 
(8) 

A similar expression holds for 6E34, so that the dif- 
ference in energy between the condensed ground state 
of X given by (5) and the uncondensed one (cp = 0) is 

SE = f w;q2 + 6E12 + SE34 + 2A12A34/lg~I. (9) 

It is noteworthy here that the self-consistent equations 
(7) ensure the minimum of the energy GEwith respect 
to the fermion parameters Al2 and A34. Eqs. (7) 
admit the non-trivial solution 

Al2 = A34 = et, [SiIIh(X/2)] -l , w9 

where x = 2(p Igq 1)-l, so that the energy difference 
(9) becomes 

6E = (2&r) f(x) , 

f(x) = 1/2x2 - r e-x/2 [sinh(x/2)] --l , 

t- = ~~(~k~ @aO)2 * (10 

The effective-potential function f(x) is plotted in 
fig. 1 for various values of the dimensionless param- 
eter r. For small values of r the curves fall smoothly 
down to zero as x goes to infinity. With increasing 
values of r the curves start to exhibit a maximum and 
a minimum, the latter vanishing at x0 = 1.6 for r. = 
0.39. The most remarkable fact is that for r larger 
than r. the function f(x) develops a negative minimum 
located at x,, 0 <x, <x0. Therefore, one may con- 
clude that for r > r. the four-fermion condensed 
ground state is stable and energetically favoured with 
respect to the uncondensed one. 

In order to achieve a complete description of the 
condensed ground state one should resort to the 
physical interpretation of the boson field. Since each 
boson corresponds to a four-fermion bound state it 
follows that the boson number in the new ground 
state should equal onequarter of the total fermion 
number, (nb) = woy$,/2 = Peb, where lprnl = 
2(pIglxm)-1. This condition yieldsr = 2p(p21glxk)-2 
which combined withf(x,) = 0 leads to 

p3/2lgl = [K sinh(x,/2)] -1 . (12) 

Eq. (12) provides the critical condition for the emer- 

Fig. l. Effective-potential functionf(x) given by (11) for 
various values of the parameter r. A negative minimum occurs 
for r > ro = 0.39 corresponding to the transition towards the 
four-fermion condensed state. 

gence of the condensed state 

P%l 2 (P%l) a= a+m-J/2)1-1 

= 0.9, (13) 

where x0 = 1.6 is the largest permissible value of x, 
which corresponds to the setting up of the negative 
minimum of the functionf(x). It follows that the con- 
densed state exists only for sufficiently large coupling 
constants or sufficiently high fermion densities (one 
should bear in mind that p - n1j3). When the same 
picture is applied to the non-interacting ground state 
one can obtain the free-boson frequency 

00 = E&l,) = 4/l - 2eb 

= 4P 1 +4 sinh2(xm/2) -’ 
xm 

and the cut-off energy 

lt 
4 sinh2(xm/2) -1 

xm ) 1 , 

(14) 

(15) 
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where E. is the energy of the non-interacting ground 

state and P = (3~~n)~/~/2rn is the Fermi level. One 
can see from (14) and (15) that for large values of 
the quantity p3j21gl, i.e. for small values of Xmr tie 
approaches 4~ and eb/p vanishes. Consequently, for 
sufficiently strong coupling the four-fermion conden- 
sates occur within a very thin shell around the Fermi 
level. It is a straightforward matter now to calculate 
other quantities of interest, such as the binding energy 
of a boson 

b = 6E,/(nb) = 00 [ 1 - 2( 1 - e-xm)/xm] , (16) 

where 6E, is given by (11) for x = x,, the latter 
being obtained from (12) for each given value of 
p3j21gl larger than the critical one. The critical tem- 
perature TC below which the four-fermion transition 
might be expected could also be estimated as k, T, = 
1.146, exp(-x,/2), k, being the Boltzmann constant. 

In summary, one can say that the translationally 
invariant model with four-fermion interaction discus 
sed in this paper exhibits, within the mean-field theory, 
a transition towards a superfluid state made of four- 
fermion condensates. The relevance of this simple 
model for the realistic fermion systems might, admit- 
tedly, be questionable. The treatment of the correla- 
tions between the one-fermion states lying on differ- 
ent diameters of the Fermi sea or arbitrarily located 
in the neighbourhood of the Fermi surface would be 
interesting generalizations. However, in the opinion 
of the author, the most interesting development of 
the present model would consist in the investigation 
of the existence of aggregates larger than four fermions. 

The author is indebted to Dr. 0. Dumitrescu for 
stimulating discussions and Dr. J. Bulboaca for useful 
comments. 

Note added. The hamiltonian H given by (l)-(3) is 
equivalent to the four-particle interaction hamiltonian 

g=eSHemS=@+@+GP’P, 

2 where G = -2g2/wo and P = I&,~, ~1~~2_~~3~*~4_~* 

with p and p’ near zero (wavevectors in the neighbour- 
hood of the Fermi surface) and constant number of 
fermions. The unitary transformation has the well- 
known expression 

s =g(2/w(p c l 
pp’ 00 - 2&J + P’) 

X (~~cI~c~_~c~~~c~_~~ - h.c.). 
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