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Abstract

The ground-state energy and geometric magic numbers are derived for large homo-atomic clusters consisting of heavy
metallic ions, within the quasi-classical description and the linearized Thomas—Fermi theory. © 2000 Published by Elsevier

Science B.V.

PACS: 61.46.+ w; 36.40.-c; 05.30.Fk; 03.65.Sq

Recently, there was an increasing interest in ap-
plying the Thomas—Fermi model to large metallic
clusters consisting of heavy ions [1-12]*. By em-
ploying the quasi-classical description we derive here
the linearized Thomas—Fermi theory for such clus-
ters, and present the corresponding variational treat-
ment. Within the framework of this theoretical
approach we obtain the inter-ionic potentials, and
compute the ground-state energy of large metalic
clusters and geometric magic numbers.

* Corresponding author. Tel.: +40-1-7807040,/3213; fax: +40-
1-4231701.
E-mail address; apoma@theory.nipne.ro (M. Apostol).
! For the Thomas—Fermi model see, for instance [13]; the
Thomas—Fermi model has previously been applied to molecules
by N.H. March [14]

The highly-elaborate theoretical methods em-
ployed nowadays for treating the chemical bond can
be conventionally classified as ab initio wavefunc-
tions methods and, respectively, density-functionals
methods (seg, for instance, Refs. [15,16]). Both share
a certain interplay between atomic-like orbitals and
molecular-like orbitals, which can be traced back to
the origins of the chemical bond theories. The
quasi-classical description offers the advantageous
starting point of the (quasi-) plane waves as the
appropriate form for the molecular-like orbitals, and,
in addition, it leads to the linearized Thomas—Fermi
theory as a convenient way of getting the main
contribution as the zeroth-order approximation, and
to treat the quantum corrections as the next-order
approximation. The theory we present here provides
a clear-cut distinction between the main contribu-
tions obtained within the quasi-classical description
and the quantum corrections to the metallic bond
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(and the chemical bond in general); its validity re-
sides in the large number of heavy ions, each con-
tributing a small effective number of electrons to the
metallic bond, in comparison with their atomic num-
bers. The present theoretical approach may also be
viewed as a contribution towards bridging the gap
between the ab-initio wavefunctions theories and the
density-functionals theories.

It is well-known that the electronic single-particle
wavefunctions of an atomic aggregate have a partial
atomic character; accordingly, not al of the nominal
valence electrons z participate in the chemical bond,
but only a fraction z* of effective valence electrons
[17]. For heavy metdllic ions, i.e. for ions with large
atomic numbers Z > 1, the effective valence charge
z* is comparatively small, as a consequence of the
effectiveness of the atomic screening (see, for in-
stance, Refs. [18—22]). Under this circumstance, the
electrons participating in the metallic bond of a
cluster consisting of a large number N > 1 of heavy
atoms may be viewed as a dightly inhomogeneous
liquid of electrons [23,24] moving in a background
of point-like ions; such an interacting electron liquid
is suitable for a quasi-classical description.

According to the quasi-classical description the
electrons in a metallic cluster move in a self-con-
sistent potential ¢, which varies slowly in space,
except for the neighbourhood of the ionic cores; the
equilibrium condition implies the vanishing of the
(local) chemical potential, which leads to k2/2 — ¢
=0, where k. is the Fermi wavevector (the atomic
units are used, i.e. the Bohr radius a, = #%/me* =
0.53 Afor lengths and €?/a, = 27.2eV for energy,
where m is the electron mass, —e is the electron
charge, and # denotes the Planck’s constant). Since
the Fermi wavevector k. has a slow spatial varia-
tion, one may substitute kck. for k2, and view k-
as a variational parameter, constant in space, while
transferring al the spatial variation upon the new Kg;
such a linearization is valid for those spatial regions
where k- is close to k. (and to the average value
Keoy Of kg, see below); this is the case for the
electrons participating in the metallic bond in a
dlightly inhomogeneous electron liquid. Similarly,
one may substitute k2k./3?2 for the electron den-
sity n=k&/3w2, and making use of k. =2¢/k,
one obtains the self-consistency equation n=
Q% /4, where the screening wavevector q is intro-

duced through g2 = 8k./3m. Then, the Poisson’s
equation reads

N
Ap=—4m ). z'8(r —1;) + 0%, (1)
i=1
where z" is the effective-valence charge of the i-th
metallic ion located at r;. The solution to Eq. (1) isa
superposition

o= X (z/|r—r)ear (2)

of screened Coulomb potentials, as expected. The
potential energy E,, of the electronsin the potential
¢ can easily be computed now (the intervening
integrals are two-centre integrals); adding the
Coulomb repulsion (1/2)%;. 7"z’ /|r,— ;| be
tween the ionic cores one obtains

N
Ep0t= _%q 32 Zi*2+
i—1
N
+ Y 7'z (1-2/qIr —rjl)emannl

i#j=1
(3)

it is worth noting that this potential energy corre-
sponds to effective inter-ionic potentials
Q=327 q(1-2/qlr; —rl)e nl,(4)
which depend on the ions positions through the
dimensionless variables |x; —x;|, where x; =ar;.
These potentials have a close resemblance to Buck-
ingham potentials [25]; they are dlightly attractive at
infinite, repulsive at the origin, and have a (negative)
minimum vaue at distances of the order of 1/q; in
addition, they exhibit a dow spatial variation for
smal g-values, as required by the quasi-classical
description of the dlightly inhomogeneous e ectron
liquid. The kinetic energy E,, = Vk2/1072 of an
electron gas enclosed in a volume V is written as

1 4
EkinZWkadr'kF

= (27772/640)q4'; z (5)

for a dlightly inhomogeneous electron liquid, and one
can see that it does not depend on the inter-atomic
distances; it follows that the equilibrium geometric
forms of the metallic clusters are obtained by mini-
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mizing the potential energy (3) with respect to the
dimensionless variables x;. For homo-atomic clus-
ters this amounts to minimizing — ¥, ; f(| X; — xj|),
where f(x) =(1— 2/x)e™; this function does not
depend on the effective-valence charges z", i.e. it
does not depend on the nature of the chemical
species. Once the geometric structures determined
for certain equilibrium values X; of the parameters
X;, the equilibrium energy is obtained as the mini-
mum value of the quasi-classical energy functional
Eq = Euin + Epot  With respect to the variationa
Thomas—Fermi screening wavevector g; thereafter,
the inter-atomic distances are derived from
q|Ri —Rj|=|X; = X;|; in addition, the vibration
spectra of the clusters can be derived (as another test,
for instance, for the stability of the geometric forms).
One can see easily that the equilibrium screening
wavevector q is small for small values of the effec-
tive valence charges z", as required by the present
quasi-classical description; indeed, the quasi-classi-
ca energy functional can be written as E;=
N(Aqg*/4 — Bq), where the coefficients A and B (B
depending on N) are determined from (5) and, re-
spectively, (3), and the minimum value E,=
—3BNg/4 is reached for q=(B/A)"3; for homo-
atomic clusters (z* =z*) A~z*,B~z*?, and the
screening wavevector q=(B/A)Y3 goes like q~
z*1/3, which acquires small values for small values
of z* (z* <1); consequently, one can say that
under such circumstances the quasi-classical descrip-
tion of a glightly inhomogeneous electron liquid is
consistent. It is worth noting here that for large
values of N the coefficient B, as determined from
(3), has a weak dependence on the number N of
atoms in the cluster, as required by the thermody-
namic limit. The equations presented above describe
the linearized Thomas—Fermi theory and its varia-
tional treatment. The linearized Thomas—Fermi the-
ory has aso been applied to atoms, where it gives
satisfactory results; in particular, it reproduces the
leading term —16Z7/3eV to the empirical binding
energy of the heavy atoms, when quantum correc-
tions are included [26,27]%. In addition, it is worth

2 For comparison, see, for instance, the asymptotic series ex-
pansion for the atomic binding energy in Refs. [28—32]

noting that the virial theorem is not satisfied by the
present linearized Thomas—Fermi model (E, =
—E,/4 instead of E;, = —E,,/2); consequently,
both the kinetic energy and the potential energy
separately are affected by errors, but the quasi-classi-
cal energy is correctly given, as a consegquence of the
quasi-classical description and the variational proce-
dure®.

Within the quasi-classical description the total
energy E is obtained by adding the exchange energy
Ee to the quasi-classical energy E,; for a dlightly
inhomogeneous electron liquid the exchange energy
is given by [23,24]

1 _ N
E®(=—mk§fdr~kF=—3—92q2i§lzi*, (6)

where q=(B/A)"/2 is the equilibrium value of the
screening wavevector (as it is well-known, it corre-
sponds to the exchange energy E,, = —(1/473)Vk¢
of an electron gas confined to a volume V). It is
worth noting that the exchange energy given by (6)
is not included in the minimization procedure of the
quasi-classical energy E, given by (3) and (5), since
the exchange energy is left unchanged for local
variations of the electron density within the quasi-
classical description, as a consegquence of its non-lo-
ca (quantum) character; however, its value at equi-
librium is added to the quasi-classical energy (as a
purely quantum contribution); consequently, the total
energy can be written® as E=E, + E, = —(3/4)
x NA(B/A)3[(B/A)”° +20/9m?|. Moreover,
since the electronic single-particle states participat-

% This may be viewed as another indication of the fact that the
linearized Thomas—Fermi theory alows for a proper account of
the quantum corrections; in this respect, it is distinct from the
so-called quasi-classical limit of the non-linear ‘3/2'-Thomas—
Fermi model (where n~ ¢%/2); in this connection, the reader is
referred to the discussion in the second part of the paper by [33]
(given in Refs. [26-32)]); it seems that the linearized Thomas—
Fermi theory is the answer to the low density region that is the
domain of chemistry, in Schwinger's terms (loc cit).

4 Leaving aside the small contribution of the ionic interaction to
the potential energy (the inter-ionic potentials @;; in (3)) one
obtains B=3z"2/4, q=077z"Y® and the energy E=
— N(0.43z" /3 +0.172*%/%) = — N(11.782" "/® + 4.53z" >/3)eV
for homo-atomic clusters.
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ing in the metallic bond within the quasi-classica
description have a vanishing energy in the atoms
separated at infinite, the total energy E given above
represents also the binding energy of the cluster. It is
worth stressing here that thisis so, in spite of the fact
that the total energy E obtained here has a formal
appearance of a sum of independent contributions of
atoms indefinitely separated; yet, one should notice
that while such independent-atom contributions (like
the kinetic energy (5), or the exchange energy (6), or
the ionic ‘self-energy’ part included in the potential
energy (3)) are valid for clusters, they are irrelevant
for independent atoms, since the quasi-classical de-
scription and the Thomas—Fermi theory are not valid
when applied to atoms with small ‘atomic numbers
z* (z" ~ 1); in this respect the inter-atomic potential
&;; given by (4) are, in fact, pseudo-potentials.

The minimization of the potential energy given by
(3) for homo-atomic metallic clusters is carried out
by the usual gradient-method up to N = 80, with an
error of 10 3% at most (equilibrium forces less than
10~* eV /A); various geometric forms are obtained
for every value of N, which are independent of z*;
their energy is computed as described above, for a
physically reasonable range of the effective-valence
charge 0 < z* < 3; the lowest energy is assigned to
the ground-state, while the higher energies are asso-
ciated with the isomers. It is found that for this range
of z"-values the most stable clusters are those shown
in Fig. 1. They correspond to 13 magic numbers
N =6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61
shown in Fig. 2, as obtained from the usual mass-
abundance spectrum D = In(12/1  ly_1) =
E(N+ 1)+ E(N—-1)—2E(N), where Iy is the
Boltzmann atistical weight and E(N) is the
ground-state energy of the cluster consisting of N
atoms (beyond N = 80 the peaks in the mass-abun-
dance spectrum diminish gradualy, as the clusters
approach the bulk behaviour); it is found that these
magic humbers do not depend on z* for0<z* < 3.
Similar results have also been obtained recently by
using model-parameters Morse potentials [34]. Some
of the magic numbers in the sequence shown in Fig.
2 have been identified previously, both experimen-
tally and theoretically, and sometimes they are re-
ferred to as geometric, or icosahedral, numbers (seg,
for instance, Refs. [35,36] and references therein, and
also Ref. [37]; indeed, the centered icosahedron N =

13 is an outstanding structure, according to its sym-
metry and stability, and several intertwinned icosahe-
dra may aso be identified in other highly-symmetric
structures shown in Fig. 1, as, for instance, in the
remarkable body corresponding to N = 45; the ‘ per-
fection’ of these bodies seems to reside in a ‘ space
economy’ principle, the atoms trying to pack to-
gether as tightly as possible, in multiple, closed,
spatial shells.

For numerical values of the energy (and the inter-
ionic distances) one needs the values of the effective
valence z*. As a first approximation, such values
can be estimated from the atomic screening theory
[18-22]. As noted above, the linearized Thomas—
Fermi theory works well for heavy atoms, where one
obtains [26-32] an electron density n=q%Ze 9/
47r = q%/4m and a (variational) screening
wavevector g = 0.77Z/3; the atomic binding energy
obtained within this theory is E= —16.34Z"/3eV
(including the quantum corrections), which is in an
excellent agreement with the empirical atomic bind-
ing energy [26-32] E = —16Z7/3eV. The linearized
Thomas—Fermi theory is valid as long as the varia-
tional Fermi wavevector ke = (37/8)q? derived be-
fore is close to the average Fermi wavevector k
given by

Fav

1 4
= — . = —— . 2
Keny = Zfolr ken=—— [dr @

87 3 ,
?qa\/ ; (7)

- 370y,

hence, one obtains q,, = (64/972)Y/37/3 =
0.97Y/3. The discrepancy with respect to the varia-
tional screening wavevector q = 0.77Z/3 (cca 17%)
originates in the abrupt variation of the self-con-
sistent potential ¢ and the electron density n close
to the atomic nucleus, where quantum corrections are
needed; as one can see, such quantum corrections are
indeed small in comparison with the main quasi-
classical contribution. Similar estimations hold also
for clusters, and one may say that the potentia
energy derived above with the variational screening
wavevector q is affected by an error of cca 17%;
correspondingly, the geometric forms of the clusters
are affected by the same error; however, such an
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Fig. 1. Magic homo-atomic metallic clusters.

error is related to atomic arrangements on a short-
scale length, and it does not affect the overall forms
of the clusters; in addition, the atomic positions on
such short-scale lengths may be corrected by appro-
priately including the quantum contributions. Part of
such contributions may be taken into account in
estimating the effective valence z*, by using a mean
screening wavevector g = (0.77 + 0.9)Z2Y3/2 =

0.84Z%/3 in the atomic screening theory. Indeed, one
may estimate easily the number of outer electrons
N,.: lying outside of a sphere of radius R around the
atomic nucleus; making use of the electron density
n=q%Ze 9" /4mr the number of the outer electrons
is given by N, = Z(1+ gR)e 9%, the effective-va-
lence charge may then be taken as z* =z(1+
gR)e %R where z isthe nominal valence. Taking the
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Fig.2. Ground-state mass-abundance spectrum and geometric
magic numbers.

radius R=1 as for neutral atoms, and using q=
0.847%3, one obtains, for instance, an effective
charge z* = 0.57 for Fe (iron, Z=26, z=2), and
the corresponding ground-state energy per atom
E(N)/N is plotted vs. N in Fig. 3. The energies in
Fig. 3 agree satisfactorily with other calculations, as,
for instance, with the density-functional calculations
corresponding to N=13 (E(N)/N= —5.2 eV), as
well as the inter-atomic distances, which are of the
order of 2A [38] (see dso Refs. [39-41]). Similar
results are obtained for other metallic clusters, with
an appropriate estimation of the effective-valence
charge z*. For instance, the ground-state energy per
atom for Na-clusters (sodium, Z=11,z=1,z" =
0.44) is E(N)/N= —3eV, as an average, and,
similarly, E(N)/N = —2eV for Ba-clusters
(barium, Z=56,z=2, z* = 0.34). Such numerical
estimations agree qualitatively with similar numeri-
cal results obtained by means of other theoretical
approaches. In this respect, it is worth mentioning
the large amount of work devoted to metallic clus-
ters, by employing both ab-initio calculations,
molecular dynamics, density functionals, or jellium-
like models;, numerical data, where available, can be
found in Refs. [42-50] and in the review papers in
Refs. [35-37]. It is worth noting that the estimation
given here for z*, as based on the Thomas—Fermi
atomic screening, underestimates, in general, both
the energies and the inter-atomic distances (the pack-
ing istoo tight); in addition, it introduces rather large
errors for very heavy metallic ions (like Ba, for

instance), where the tail of the outer electrons is
short; and, of course, it is not appropriate for very
light ions (like lithium, Li). One may also note that
such an estimation is very similar, in fact, with a
particular case of Ashcroft’s ionic pseudo-potential
[51,52], and a further investigation in this direction
may lead to better estimations for z*.

The single-particle properties, as well as the
next-order corrections to the energy are given, in
principle, by solving the Schrodinger’s equation for
electrons in the potential ¢ given by (2). According
to the quasi-classical description of the dightly inho-
mogeneous electron liquid [23,24], such corrections,
though small, are of interest for single-electron prop-
erties, like ionization potentials, lowest-energy exci-
tations, response functions, etc. It is worth noting in
this respect the fractional occupancy a=z*/z (on
the average) of the metallic-like single-particle or-
bitals predicted by the quasi-classical description, as
a conseguence of electron interaction with the ionic
cores (leading to a ‘ strongly-renormalized’ Hartree—
Fock quasi-particles) [53]. One can also check easily
that the long-range part of the potential ¢ given by
(2) leads to a quadrupole-deformed potential of a
spatial harmonic oscillator, whose shell-effects have
previously been discussed [54]. Such an investigation
within the framework of the linearized Thomas—
Fermi modéd is left for a forthcoming publication.
We limit ourselves here to note that the potentia
energy (3) has also many local minima with respect
to the ionic positions, which give isomers, i.e. clus-

-5.0
52
= I
2 54}
z
Z 56|
L |
5.8 |
6.0 lewwn T L [P [, [T, [ Lo Lo
0 10 20 30 40 50 60 70 80

N

Fig.3. Ground-state energy per atom E(N)/N for Fe-clusters
(z* =0.57) plotted vs. cluster size N.
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ters of the same size N, but with distinct forms and
higher energies; in principle, the isomers are pro-
duced experimentally, and the abundance spectra are
given in this case by the free energy, instead of the
ground-state energy, thus leading to statistical magic
numbers, which are distinct from the geometric magic
numbers derived here; averages over such statistical
ensembles may correspond, in some cases, to slow-
varying self-consistent potentials, as those including
only the long-wavelength contributions, for instance;
where such potentials apply one obtains another set
of magic numbers, which may be termed electronic
magic numbers, as due to the electronic-shell effects;
usualy, they are given, for instance, by the well-
known quadrupole-deformed potential of the spatial
harmonic oscillator, as remarked above.

In conclusion, one may say that geometric forms
and magic numbers are derived herein for homo-
atomic metallic clusters within the quasi-classica
description and the linearized Thomas—Fermi theory.
The results are valid for large clusters consisting of
heavy atoms, and the numerical results for energies
and inter-atomic distances depend on the input pa
rameters z* of the effective-valence charges. The
present theory can straightforwardly be applied to
hetero-atomic metallic clusters, and it may aso be
extended to metallic clusters containing a small num-
ber of non-metallic inclusions, like a few ionic, or
even covalent, bonds, or a few number of light
metallic ions. Moreover, the theory can aso be
extended to include spatially-extended charge distri-
butions around the ions, allowing thereby for direc-
tional and local effects in the chemical bond.
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