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Abstract

The ground-state energy and geometric magic numbers are derived for large homo-atomic clusters consisting of heavy
metallic ions, within the quasi-classical description and the linearized Thomas–Fermi theory. q 2000 Published by Elsevier
Science B.V.

PACS: 61.46.qw; 36.40.-c; 05.30.Fk; 03.65.Sq

Recently, there was an increasing interest in ap-
plying the Thomas–Fermi model to large metallic

w x1clusters consisting of heavy ions 1–12 . By em-
ploying the quasi-classical description we derive here
the linearized Thomas–Fermi theory for such clus-
ters, and present the corresponding variational treat-
ment. Within the framework of this theoretical
approach we obtain the inter-ionic potentials, and
compute the ground-state energy of large metallic
clusters and geometric magic numbers.

) Corresponding author. Tel.: q40-1-7807040r3213; fax: q40-
1-4231701.
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1 w xFor the Thomas–Fermi model see, for instance 13 ; the

Thomas–Fermi model has previously been applied to molecules
w xby N.H. March 14

The highly-elaborate theoretical methods em-
ployed nowadays for treating the chemical bond can
be conventionally classified as ab initio wavefunc-
tions methods and, respectively, density-functionals

Ž w x.methods see, for instance, Refs. 15,16 . Both share
a certain interplay between atomic-like orbitals and
molecular-like orbitals, which can be traced back to
the origins of the chemical bond theories. The
quasi-classical description offers the advantageous

Ž .starting point of the quasi- plane waves as the
appropriate form for the molecular-like orbitals, and,
in addition, it leads to the linearized Thomas–Fermi
theory as a convenient way of getting the main
contribution as the zeroth-order approximation, and
to treat the quantum corrections as the next-order
approximation. The theory we present here provides
a clear-cut distinction between the main contribu-
tions obtained within the quasi-classical description
and the quantum corrections to the metallic bond
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Ž .and the chemical bond in general ; its validity re-
sides in the large number of heavy ions, each con-
tributing a small effective number of electrons to the
metallic bond, in comparison with their atomic num-
bers. The present theoretical approach may also be
viewed as a contribution towards bridging the gap
between the ab-initio wavefunctions theories and the
density-functionals theories.

It is well-known that the electronic single-particle
wavefunctions of an atomic aggregate have a partial
atomic character; accordingly, not all of the nominal
valence electrons z participate in the chemical bond,
but only a fraction z ) of effective valence electrons
w x17 . For heavy metallic ions, i.e. for ions with large
atomic numbers Z41, the effective valence charge
z ) is comparatively small, as a consequence of the

Žeffectiveness of the atomic screening see, for in-
w x.stance, Refs. 18–22 . Under this circumstance, the

electrons participating in the metallic bond of a
cluster consisting of a large number N41 of heavy
atoms may be viewed as a slightly inhomogeneous

w xliquid of electrons 23,24 moving in a background
of point-like ions; such an interacting electron liquid
is suitable for a quasi-classical description.

According to the quasi-classical description the
electrons in a metallic cluster move in a self-con-
sistent potential w, which varies slowly in space,
except for the neighbourhood of the ionic cores; the
equilibrium condition implies the vanishing of the
Ž . 2local chemical potential, which leads to k r2ywF

Žs0, where k is the Fermi wavevector the atomicF

units are used, i.e. the Bohr radius a s"
2rme2 s0

˚ 20.53 Afor lengths and e ra s27.2 eV for energy,0

where m is the electron mass, ye is the electron
.charge, and " denotes the Planck’s constant . Since

the Fermi wavevector k has a slow spatial varia-F
2tion, one may substitute k k for k , and view kF F F F

as a variational parameter, constant in space, while
transferring all the spatial variation upon the new k ;F

such a linearization is valid for those spatial regions
Žwhere k is close to k and to the average valueF F

.k of k , see below ; this is the case for theFav F

electrons participating in the metallic bond in a
slightly inhomogeneous electron liquid. Similarly,

2 2one may substitute k k r3p for the electron den-F F
3 2sity nsk r3p , and making use of k s2wrk ,F F F

one obtains the self-consistency equation n s
q2wr4p , where the screening wavevector q is intro-

2duced through q s8k r3p . Then, the Poisson’sF

equation reads
N

) 2Dwsy4p z d ryr qq w , 1Ž . Ž .Ý i i
is1

where z ) is the effective-valence charge of the i-thi
Ž .metallic ion located at r . The solution to Eq. 1 is ai

superposition
N

) yq < r yr <i jws z r ryr e 2Ž .Ž .Ý i i
is1

of screened Coulomb potentials, as expected. The
potential energy E of the electrons in the potentialpot

Žw can easily be computed now the intervening
.integrals are two-centre integrals ; adding the

) )Ž .Coulomb repulsion 1r2 Ý z z r r yr be-i/ j i j i j

tween the ionic cores one obtains
N

1 ) 2E sy q 3 z qÝpot i4
is1

N
) ) yq < r yr <i j< <q z z 1y2rq r yr e ;Ž .Ý i j i j

i/js1

3Ž .
it is worth noting that this potential energy corre-
sponds to effective inter-ionic potentials

1 ) ) yq < r yr <i j< <F sy z z q 1y2rq r yr e , 4Ž .Ž .i j i j i j2

which depend on the ions positions through the
dimensionless variables x yx , where x sqr .i j i i

These potentials have a close resemblance to Buck-
w xingham potentials 25 ; they are slightly attractive at

Ž .infinite, repulsive at the origin, and have a negative
minimum value at distances of the order of 1rq; in
addition, they exhibit a slow spatial variation for
small q-values, as required by the quasi-classical
description of the slightly inhomogeneous electron
liquid. The kinetic energy E sVk 5r10p 2 of ankin F

electron gas enclosed in a volume V is written as
1

4E s k drPkHkin F F210p
N

2 4 )s 27p r640 q z 5Ž .Ž . Ý i
is1

for a slightly inhomogeneous electron liquid, and one
can see that it does not depend on the inter-atomic
distances; it follows that the equilibrium geometric
forms of the metallic clusters are obtained by mini-



( )L.C. Cune, M. ApostolrPhysics Letters A 273 2000 117–124 119

Ž .mizing the potential energy 3 with respect to the
dimensionless variables x . For homo-atomic clus-i

Ž .ters this amounts to minimizing yÝ f x yx ,i/ j i j
Ž . Ž . yxwhere f x s 1y2rx e ; this function does not

depend on the effective-valence charges z ) , i.e. iti

does not depend on the nature of the chemical
species. Once the geometric structures determined
for certain equilibrium values X of the parametersi

x , the equilibrium energy is obtained as the mini-i

mum value of the quasi-classical energy functional
E s E q E with respect to the variationalq kin pot

Thomas–Fermi screening wavevector q; thereafter,
the inter-atomic distances are derived from
q R yR s X yX ; in addition, the vibrationi j i j

Žspectra of the clusters can be derived as another test,
.for instance, for the stability of the geometric forms .

One can see easily that the equilibrium screening
wavevector q is small for small values of the effec-
tive valence charges z ) , as required by the presenti

quasi-classical description; indeed, the quasi-classi-
cal energy functional can be written as E sq
Ž 4 . ŽN Aq r4yBq , where the coefficients A and B B

. Ž .depending on N are determined from 5 and, re-
Ž .spectively, 3 , and the minimum value E sq

Ž .1r3y3BNqr4 is reached for qs BrA ; for homo-
Ž ) ) . ) ) 2atomic clusters z sz A;z , B;z , and thei

Ž .1r3screening wavevector qs BrA goes like q;

z )1r3, which acquires small values for small values
) Ž ) .of z z F1 ; consequently, one can say that

under such circumstances the quasi-classical descrip-
tion of a slightly inhomogeneous electron liquid is
consistent. It is worth noting here that for large
values of N the coefficient B, as determined from
Ž .3 , has a weak dependence on the number N of
atoms in the cluster, as required by the thermody-
namic limit. The equations presented above describe
the linearized Thomas–Fermi theory and its varia-
tional treatment. The linearized Thomas–Fermi the-
ory has also been applied to atoms, where it gives
satisfactory results; in particular, it reproduces the
leading term y16Z 7r3 eV to the empirical binding
energy of the heavy atoms, when quantum correc-

w x2tions are included 26,27 . In addition, it is worth

2 For comparison, see, for instance, the asymptotic series ex-
w xpansion for the atomic binding energy in Refs. 28–32

noting that the virial theorem is not satisfied by the
Žpresent linearized Thomas–Fermi model E skin

.yE r4 instead of E syE r2 ; consequently,pot kin pot

both the kinetic energy and the potential energy
separately are affected by errors, but the quasi-classi-
cal energy is correctly given, as a consequence of the
quasi-classical description and the variational proce-
dure3.

Within the quasi-classical description the total
energy E is obtained by adding the exchange energy
E to the quasi-classical energy E ; for a slightlyex q

inhomogeneous electron liquid the exchange energy
w xis given by 23,24

N1
93 2 )E sy k drPk sy q z , 6Ž .ÝHex F F i3234p is1

Ž .1r3where qs BrA is the equilibrium value of the
Žscreening wavevector as it is well-known, it corre-

Ž 3. 4sponds to the exchange energy E sy 1r4p Vkex F
.of an electron gas confined to a volume V . It is

Ž .worth noting that the exchange energy given by 6
is not included in the minimization procedure of the

Ž . Ž .quasi-classical energy E given by 3 and 5 , sinceq

the exchange energy is left unchanged for local
variations of the electron density within the quasi-
classical description, as a consequence of its non-lo-

Ž .cal quantum character; however, its value at equi-
Žlibrium is added to the quasi-classical energy as a

.purely quantum contribution ; consequently, the total
4 Ž .energy can be written as EsE qE sy 3r4q ex

2r32r3 2Ž .= NA BrA BrA q20r9p . Moreover,Ž .
since the electronic single-particle states participat-

3 This may be viewed as another indication of the fact that the
linearized Thomas–Fermi theory allows for a proper account of
the quantum corrections; in this respect, it is distinct from the
so-called quasi-classical limit of the non-linear ‘3r2’-Thomas–

Ž 3r2 .Fermi model where n;w ; in this connection, the reader is
w xreferred to the discussion in the second part of the paper by 33

Ž w x.given in Refs. 26–32 ; it seems that the linearized Thomas–
Fermi theory is the answer to the low density region that is the

Ž .domain of chemistry, in Schwinger’s terms loc cit .
4 Leaving aside the small contribution of the ionic interaction to

Ž Ž ..the potential energy the inter-ionic potentials F in 3 onei j

obtains B s 3 z ) 2r4, q s 0.77z )1r3 and the energy E s
Ž ) 7r3 ) 5r3. Ž ) 7r3 ) 5r3.y N 0.43 z q0.17z sy N 11.78 z q4.53 z eV

for homo-atomic clusters.
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ing in the metallic bond within the quasi-classical
description have a vanishing energy in the atoms
separated at infinite, the total energy E given above
represents also the binding energy of the cluster. It is
worth stressing here that this is so, in spite of the fact
that the total energy E obtained here has a formal
appearance of a sum of independent contributions of
atoms indefinitely separated; yet, one should notice

Žthat while such independent-atom contributions like
Ž . Ž .the kinetic energy 5 , or the exchange energy 6 , or

the ionic ‘self-energy’ part included in the potential
Ž ..energy 3 are valid for clusters, they are irrelevant

for independent atoms, since the quasi-classical de-
scription and the Thomas–Fermi theory are not valid
when applied to atoms with small ‘atomic numbers’

) Ž ) .z z ;1 ; in this respect the inter-atomic potentiali i
Ž .F given by 4 are, in fact, pseudo-potentials.i j

The minimization of the potential energy given by
Ž .3 for homo-atomic metallic clusters is carried out
by the usual gradient-method up to Ns80, with an

y3 Žerror of 10 % at most equilibrium forces less than
y4 ˚ .10 eVrA ; various geometric forms are obtained

for every value of N, which are independent of z ) ;
their energy is computed as described above, for a
physically reasonable range of the effective-valence
charge 0-z ) -3; the lowest energy is assigned to
the ground-state, while the higher energies are asso-
ciated with the isomers. It is found that for this range
of z )-values the most stable clusters are those shown
in Fig. 1. They correspond to 13 magic numbers
Ns6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61
shown in Fig. 2, as obtained from the usual mass-

Ž 2 .abundance spectrum D s ln I rI I sN Nq 1 Ny 1
Ž . Ž . Ž .E Nq1 qE Ny1 y2 E N , where I is theN

Ž .Boltzmann statistical weight and E N is the
ground-state energy of the cluster consisting of N

Žatoms beyond Ns80 the peaks in the mass-abun-
dance spectrum diminish gradually, as the clusters

.approach the bulk behaviour ; it is found that these
magic numbers do not depend on z ) for 0-z ) -3.
Similar results have also been obtained recently by

w xusing model-parameters Morse potentials 34 . Some
of the magic numbers in the sequence shown in Fig.
2 have been identified previously, both experimen-
tally and theoretically, and sometimes they are re-

Žferred to as geometric, or icosahedral, numbers see,
w xfor instance, Refs. 35,36 and references therein, and

w xalso Ref. 37 ; indeed, the centered icosahedron Ns

13 is an outstanding structure, according to its sym-
metry and stability, and several intertwinned icosahe-
dra may also be identified in other highly-symmetric
structures shown in Fig. 1, as, for instance, in the
remarkable body corresponding to Ns45; the ‘per-
fection’ of these bodies seems to reside in a ‘space
economy’ principle, the atoms trying to pack to-
gether as tightly as possible, in multiple, closed,
spatial shells.

ŽFor numerical values of the energy and the inter-
.ionic distances one needs the values of the effective

valence z ). As a first approximation, such values
can be estimated from the atomic screening theory
w x18–22 . As noted above, the linearized Thomas–
Fermi theory works well for heavy atoms, where one

w x 2 yqrobtains 26–32 an electron density nsq Ze r
2 Ž .4p r s q wr4p and a variational screening

wavevector qs0.77Z1r3; the atomic binding energy
obtained within this theory is Esy16.34Z 7r3 eV
Ž .including the quantum corrections , which is in an
excellent agreement with the empirical atomic bind-

w x 7r3ing energy 26–32 E,y16Z eV. The linearized
Thomas–Fermi theory is valid as long as the varia-

2Ž .tional Fermi wavevector k s 3pr8 q derived be-F

fore is close to the average Fermi wavevector kFav

given by

1 4
2k s drPk ns drPwH HFav F 2Z 3p Z

8Z 3p
2s s q ; 7Ž .av3p q 8av

Ž 2 .1r3 1r3hence, one obtains q s 64r9p Z ,av

0.9Z1r3. The discrepancy with respect to the varia-
1r3 Ž .tional screening wavevector qs0.77Z cca 17%

originates in the abrupt variation of the self-con-
sistent potential w and the electron density n close
to the atomic nucleus, where quantum corrections are
needed; as one can see, such quantum corrections are
indeed small in comparison with the main quasi-
classical contribution. Similar estimations hold also
for clusters, and one may say that the potential
energy derived above with the variational screening
wavevector q is affected by an error of cca 17%;
correspondingly, the geometric forms of the clusters
are affected by the same error; however, such an
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Fig. 1. Magic homo-atomic metallic clusters.

error is related to atomic arrangements on a short-
scale length, and it does not affect the overall forms
of the clusters; in addition, the atomic positions on
such short-scale lengths may be corrected by appro-
priately including the quantum contributions. Part of
such contributions may be taken into account in
estimating the effective valence z ) , by using a mean

Ž . 1r3screening wavevector q s 0.77 q 0.9 Z r2 s

0.84Z1r3 in the atomic screening theory. Indeed, one
may estimate easily the number of outer electrons
N lying outside of a sphere of radius R around theout

atomic nucleus; making use of the electron density
nsq2Zeyq rr4p r the number of the outer electrons

Ž . yq Ris given by N sZ 1qqR e ; the effective-va-out
) Žlence charge may then be taken as z sz 1q

. yq RqR e , where z is the nominal valence. Taking the
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Fig. 2. Ground-state mass-abundance spectrum and geometric
magic numbers.

radius Rs1 as for neutral atoms, and using qs
0.84Z1r3, one obtains, for instance, an effective

) Ž .charge z s0.57 for Fe iron, Zs26, zs2 , and
the corresponding ground-state energy per atom
Ž .E N rN is plotted vs. N in Fig. 3. The energies in

Fig. 3 agree satisfactorily with other calculations, as,
for instance, with the density-functional calculations

Ž Ž . .corresponding to Ns13 E N rN,y5.2 eV , as
well as the inter-atomic distances, which are of the

˚ w x Ž w x.order of 2 A 38 see also Refs. 39–41 . Similar
results are obtained for other metallic clusters, with
an appropriate estimation of the effective-valence
charge z ). For instance, the ground-state energy per

Ž )atom for Na-clusters sodium, Zs11, zs1, z s
. Ž .0.44 is E N rN,y3 eV, as an average, and,

Ž .similarly, E N rN , y2 eV for Ba-clusters
Ž ) .barium, Zs56, zs2, z s0.34 . Such numerical
estimations agree qualitatively with similar numeri-
cal results obtained by means of other theoretical
approaches. In this respect, it is worth mentioning
the large amount of work devoted to metallic clus-
ters, by employing both ab-initio calculations,
molecular dynamics, density functionals, or jellium-
like models; numerical data, where available, can be

w xfound in Refs. 42–50 and in the review papers in
w xRefs. 35–37 . It is worth noting that the estimation

given here for z ) , as based on the Thomas–Fermi
atomic screening, underestimates, in general, both

Žthe energies and the inter-atomic distances the pack-
.ing is too tight ; in addition, it introduces rather large

Žerrors for very heavy metallic ions like Ba, for

.instance , where the tail of the outer electrons is
short; and, of course, it is not appropriate for very

Ž .light ions like lithium, Li . One may also note that
such an estimation is very similar, in fact, with a
particular case of Ashcroft’s ionic pseudo-potential
w x51,52 , and a further investigation in this direction
may lead to better estimations for z ).

The single-particle properties, as well as the
next-order corrections to the energy are given, in
principle, by solving the Schrodinger’s equation for¨

Ž .electrons in the potential w given by 2 . According
to the quasi-classical description of the slightly inho-

w xmogeneous electron liquid 23,24 , such corrections,
though small, are of interest for single-electron prop-
erties, like ionization potentials, lowest-energy exci-
tations, response functions, etc. It is worth noting in

) Žthis respect the fractional occupancy asz rz on
.the average of the metallic-like single-particle or-

bitals predicted by the quasi-classical description, as
a consequence of electron interaction with the ionic

Žcores leading to a ‘strongly-renormalized’ Hartree–
. w xFock quasi-particles 53 . One can also check easily

that the long-range part of the potential w given by
Ž .2 leads to a quadrupole-deformed potential of a
spatial harmonic oscillator, whose shell-effects have

w xpreviously been discussed 54 . Such an investigation
within the framework of the linearized Thomas–
Fermi model is left for a forthcoming publication.
We limit ourselves here to note that the potential

Ž .energy 3 has also many local minima with respect
to the ionic positions, which give isomers, i.e. clus-

Ž .Fig. 3. Ground-state energy per atom E N rN for Fe-clusters
Ž ) .z s0.57 plotted vs. cluster size N.
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ters of the same size N, but with distinct forms and
higher energies; in principle, the isomers are pro-
duced experimentally, and the abundance spectra are
given in this case by the free energy, instead of the
ground-state energy, thus leading to statistical magic
numbers, which are distinct from the geometric magic
numbers derived here; averages over such statistical
ensembles may correspond, in some cases, to slow-
varying self-consistent potentials, as those including
only the long-wavelength contributions, for instance;
where such potentials apply one obtains another set
of magic numbers, which may be termed electronic
magic numbers, as due to the electronic-shell effects;
usually, they are given, for instance, by the well-
known quadrupole-deformed potential of the spatial
harmonic oscillator, as remarked above.

In conclusion, one may say that geometric forms
and magic numbers are derived herein for homo-
atomic metallic clusters within the quasi-classical
description and the linearized Thomas–Fermi theory.
The results are valid for large clusters consisting of
heavy atoms, and the numerical results for energies
and inter-atomic distances depend on the input pa-
rameters z ) of the effective-valence charges. Thei

present theory can straightforwardly be applied to
hetero-atomic metallic clusters, and it may also be
extended to metallic clusters containing a small num-
ber of non-metallic inclusions, like a few ionic, or
even covalent, bonds, or a few number of light
metallic ions. Moreover, the theory can also be
extended to include spatially-extended charge distri-
butions around the ions, allowing thereby for direc-
tional and local effects in the chemical bond.
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