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A twodimensional model for planar channeling is given by means of a transfer matrix technique. Critical 

energies and angles are calculated and the influence of the temperature is also discussed. 

As is well known, when energetic charged particles 

enter a monocrystalline target within a certain critical 
angle of either a low-index plane or a low-index direc- 
tion they show anomalous large penetration and small 
energy losses. These steering effects are called planar 
and axial channeling, respectively. The aim of this 
letter is to give a simple model for the planar channel- 
ing. 

Lindhard [l] has considered that in the planar chan- 
neling the motion of a particle is due to the collective 
collision of this particle with all the atoms in a plane. 
This image holds especially when the energy of the 
particle is very large. But, we shall consider instead, 
that the motion of a particle of lower energy (but ob- 
viously large in comparison with the diffraction ener- 
gy) rather proceeds by individual collisions with the 

atoms or with the groups of atoms. With this conjec- 

ture we solve the problem of planar channeling in 
terms of classical collisions of the moving particle with 
its neighbouring atoms located in both the layers 
which ensure the channeling. We notice that the planar 
channeled particle is to be oscillating less parallel to 
the channeling layers than perpendicular to these lay- 
ers and one knows indeed that planar channeling is 
more frequent in lamellar structures. We shall be con- 

cerned with these latter oscillations and we shall con- 
sider the former ones as negligible. We are mostly in- 
terested to know at a given moment of time the total 
length of the projection of the moving particle path in 
the plane parallel to the two channel layers at an equal 
distance with respect to these layers, and to know also 
the distance of the moving particle to this median 
plane. By characterizing the motion with these two 
coordinates it is easy to describe it as a two-dimen- 
sional motion, and to imagine a two-dimensional 
model of planar channeling. 

Fig. 1. The twodimensional channel. M M’ M” denote the 

particle trajectory. 

We suppose that the moving particle interacts with 
its nearest neighbours only. This interaction varies 

periodically and we shall approximate it by a periodic 
succession of average potentials. The sources of these 
potentials will be considered to be located in the two 
layers along two parallel lines. We obtain thus a two- 
dimensional channel shown in fig. 1. 

It may happen that for certain planar channeling 
directions the particle neighbours can be located 

along lines situated in a planar channel layer. For this 
case we can use an average line potential which is 
taken for numerical evaluations as a logarithmic 
Lindhard potential [ 1 j 

In elastic collisions (within the frame of the momen- 
tum approximation the energy loss is a second-order ef. 

feet which can be neglected) the mechanical state of 
the moving particle is determined by its position x, 
and direction (Y,, in channel. The basic assumption is 
that the scattering angles are small, and thus the mo- 
mentum approximation is valid. This assumption is 
consistent with our calculations only for repulsive 
potentials. We obtain the following equations (see 
fig. 1): 

I- du 
(Y, = - s 2 {+(-&x,)cosa,l] 

E, (u~-I)‘/~ du 

(1) 
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-v,, = X,! , + P tan a,, I 

where E IS the energy and V the absolute value of the 

potential. (The collision with the crystal electrons ;IIC 
neglected). 

As the scattering angles UC assumed to be small. 
eqs. ( I ) may be lincarixd to give: 

L 
II 

= A”% 
0 

whcl-c 

-he 2 x 2 matrix A i> 

A = I a8 ( 4v 
I I ) 

with 

The tz th power of the 3 X 2 matrix A IS easily ob- 

tained 

A with tanlF = ‘(~~ s’ ‘I” 
1 ‘Q 

(3) 

For 0 < Q < 1 the trigonometric functions in (4) 

prove the stability of the trajectory within the channel 
For 00 < Q < 0, 1 f Q < + 00 the trajectory is un- 
stable. Putting Q = 1 we obtain the stability condition 
and, therefore, the critical energy for channeling. 

From the condition max,,(~,~l = T P/3. where 7 is 
a factor so that r P/2r is the channel halfwidth ovel 
which the momentum approximation and the linearila- 
tion are satisfactory valid. we obtain the critical angle 

ac = $ sin ,q =? (Q_-Q2)t/2, 
r 

The influence of the temperature is taken into a~‘- 
count by averaging the particle motion equations over 
thermal vibrations of the channel points. It results 
that instead of (2 we must use 

where the averaging is taken witll respcc~r 10 lhc i co- 
ordinate which is pcrpcndicular to the channel a\~\. 

It is eas!’ to sc‘c thal with the al’l”olilrlatiun given 
hcrc. the thermal vibration> which arc parallei tc) the 

channeling planes do 1101 contribute to the averaging. 
Since we have taken into account the thermal vibt a- 
lions for the calculatioii 01‘ the critical angle. the 11311‘- 
width of the channel has to be taken as 

It is inipoi-(ant to note that oui model is valid 1‘01 

Cnergy largei- Iliaii the critical enei-gy. the value ot 
which is in the domain of diffraction energies. Another 
important consequence of the present model ib the L‘OI- 

Iectivc tc’l-m Q’ in ~1. (5) to ihe well known dcpe~l- 
dencc of the critical angle. a7 ’ Q1/2 - f:‘ l/C For 

large enci-gy this correc‘tion is negligible and eq. (5) 

has the same form as the Lindhard one. It must be 
pointed out that ~1. (5) breaks down for low energies 
where the IineaCation of nlotion equations does not 
holds. 

For numerical evaluation3 we use the logarithmic 
Lindhard potential; WC take the charge number ot 
c‘rystal ions Z2 = IO and the energies of the light ions 
t‘- I ~7 MeV: then WC have Q * 10-~5. At the usual 
temperatures the stability condition is satisfied and 

the critical angle obtained from (5) is in good agree- 
ment with the experimental values ] 21. It decreases as 
the temperature increases. 

Further discussions on this model will be published 
in a forthcoming paper in Rev. Roum. Phys. 

11 1 .I. Lindhard. Kgl. Dnnskc Videnskab. Selskab. Mat-l:y\. 
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