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It is shown that the semiclassical approximation may apply to the interacting electron gas in one di-
mension, in which case the zero-sound oscillations may give rise to classical solitons. They appear as
kink solutions of the backward-scattering and the umklapp-scattering sine-Gordon equation.

The momentum distribution of the interacting electrons
in one dimension is continuous at the Fermi wave vector
kr.'”3 One can easily check that the Fermi distribution
in one dimension is a slowly decreasing function at the
chemical potential for any finite temperature in the high-
density limit. This implies a great uncertainty in the elec-
tron momentum near hkr and an appreciable tendency
toward localization for the electrons in one dimension.
The density-response function exhibits a singularity near
2kr in one dimension,* indicating the instability of the
system (overscreening). This is a consequence of the ex-
tent to which the system distributes the energy among the
one-electron states near the Fermi wave vector de/dn
=nh*kr/2m (reciprocal of the Fermi density of states),
which increases indefinitely in the high-density limit, in
contrast, for example, to the three-dimensional case,
where it vanishes (de/dn =n*h%/mkr). All this may con-
stitute evidence that the Fermi-liquid theory breaks down
in one dimension. In fact, the boson representation of the
fermion fields in one dimension>® shows that the one-
dimensional electron gas possesses a Bose-type spectrum.
It is shown in this paper that the semiclassical approach
applies to the interacting electrons in one dimension, lead-
ing to classical (kink) solitons associated with the zero-
sound disturbances of the backward-scattering and the
umklapp-scattering interactions.

The electrons with mass m and spin o= % are divided,
as is usual in one dimension, into right-moving (j =1) and
left-moving (j =2) electrons, with the density nj,=n/4
=kr/2n and energy E;,=h’kp/12zm. Suppose that the
electrons are subjected to a displacement field u;.(x,?),
slowly varying in space (|8,u4j,| <1) and much larger
than the average interelectron distance a ~1/kr, |u,~a| >a
(collective motion). This displacement field yields a den-
sity variation énj,= — (n/4)d,u;; (much lower than the
average density n/4), whose time variation is related to
the velocity u;, of the displacement field by the continuity

4

equation 9,6nj,+(n/4)dx1;,=0. The kinetic energy of
the displacement field (nm/8)(8,u;,)* and the variation
of the Fermi energy OE;,=(nm/8)vAl(8 ujs)?— dyujs)
provide the noninteracting Hamiltonian

Ho=3 [ dx(um/8)1(8,u;0) >+ 0Al@,u;0) >~ 8,1} ,
jo
)

which describes the zero-sound oscillations &kfr
= —(7n/2)d,uj, propagating with the Fermi velocity vr.

The wave vectors of the electron states affected by
the displacement field are, therefore, kpjs=(—1)/*'kg
—(zn/2)dxujo. In the semiclassical approximation these
electrons are described by wave functions built up with
the mechanical action

X .
B, dx kegole'st) = (= D7+ kpx = Gan/Dujox,0)
)
where u5(0,7) is set equal to zero. One gets

vie={(n/4e) 2explikpx — (inn/2)u,,] ,
3)
v20=(ne/4) "2 expl —ikpx — (inn/2)us.) ,

where we have chosen to compute the electron density by
vie(x+ia/2)yjo(x —ia/2) =(n/4)exp(—8xuj,)
=n/4+dn;,. @)

(Recall that akr =1 and |8,u;,| < 1.) This is nothing but
the classical counterpart of the boson representation of
the fermion fields in one dimension.” It holds as long as
the relative variation of the wave vector is small, i.e.,
|8xxujo| < kr (geometrical-optics condition).

The local two-body interaction reads

Hin=WID'E [ dx vt payty—ox), ()
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where the electron amplitude of probability y, =y ,+ v2,
and the parallel-spin contribution disappears by the Pauli
exclusion principle. According to (4) the density of the
electrons with spin o acquires the usual charge-density-
wave (CDW) form

va () (x)=n/2—(n/4)0, (u\c+u2s)
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vectors near = 2kg, due to the interference of the * kp
states. These states may interfere constructively in the in-
teraction processes, bringing nontrivial contributions to
the Hamiltonian. Passing to the normal-mode coordinates

U+ =) s turstu—+ur_),

u+—=(£—)(u|++u2+—u|——u2—) s
+ (n/2)cos2kpx — (an/2) (w16 —u2,)1, @)

u—+=(5—)(u|+—u2++u|——uz—) 5

6) |
=t —urs —ur—+us-
which contains, beside the slowly varying components " e —uze —u uz-),
9y (u 1o+ u2,), the rapidly varying contribution with wave the Hamiltonian given by (1) and (5) reads
H=(nm/8)fdx[(6,u++)2+v2+(axu++)2—2(v,?+Un/m)(6xu++)+(6,u+_)2+uz_ (axu+_)2+(61u _+)2

F0A@u - +)2+@u- )+ 0@ u—- )2+ Un/m)cos(znu — —)+2Un/m] , ®)

where v+ - =vp(1 £ U/nhop) 2. This is the classical
counterpart of the quantum phase Hamiltonian,® which,
apart from the zero-sound oscillations propagating with
the velocities v+, — and vg, contains classical sine-Gordon
solitons of the uw- - coordinate corresponding to the
backward-scattering interaction lytowaocWi—yi—c in
(51

With the notation ¢ =nnu — — the backward-scattering
part of (8) becomes

Hy = (h/160p) [ dx[(3,0)?+07(3,9)?
+ Qn/h)Uvpn>cosgl , 9)

which describes the well-known kinks propagating with
the velocity u. The phase ¢ is given by ¢ =260+r for
|u| < vr where

0=2tan " 'expl(s —s0)/!1, (10)

s=x—ut, the characteristic length [=(zgyn) ™',
y=0—u?/v?) "2 g=(U/rhvr)'? being the interac-
tion parameter (the interaction is assumed repulsive,
U >0). The kinks extend over As ~x/ around s¢ and in-
volve a phase slip Ap=2x (solutions with / changed for-
mally into —/ have a phase slip Agp= —2r and are de-
scribed as antikinks). A kink soliton of the backward
scattering implies an imbalance of the spin density of
one-half. Indeed, according to (7),

1
7fdx(5n|+—6n2+—6n|-+6n2-)

=—(n/8)Au—--=/4n)Ao=—% . (11)

The soliton energy is readily obtained from (9) and (10)
as

e=hvr/nl=Avy, (12)

where A=huvrgn is the soliton energy gap. For |u| <vp,
the soliton energy (12) is e=A(1+u2/2v#) and the soli-
ton mass may be defined as u =A/v# =Qg/n)m.

The condition for slowly varying density disturbance
la,u,o|<<1 implies |8,¢] <27n, while the condition for
the validity of the semiclassical approximation |8xxuj.,|
< kr reads |9.x¢| < 7%n2. Both are ensured by nin>1,

r

i.e., yg<1. First, one notices that backward-scattering
kinks propagating with velocity near the Fermi velocity vg
do not exist in the interacting electron gas in one dimen-
sion. Indeed, in this case both the semiclassical approach
and the collective-mode conditions break down, the classi-
cal soliton crumbling away into quantum solitons.® This
corresponds to the Landau damping of the collective
modes by the one-particle excitations. The standard
quantization scheme '®'" may be applied in this u ~ v re-
gion. In this connection we remark that other nonlinear
solutions of the sine-Gordon equation (like breathers or
kinks propagating with velocity greater than vr) are disre-
garded as being unstable in real quasi-one-dimensional
materials. Second, one can see from gy<1thatg<lisa
necessary condition for the existence of the zero-sound
solitons. For the quasi-one-dimensional materials the
electronic bandwidth E, ~rnhuvgrn/4, and nU may be taken
as the Hubbard repulsion Uy plus the intersite Coulomb
repulsion V. The interaction parameter g may therefore
be expressed as g2~ (Uy+V)/4E,. For organic materi-
als, like the charge-transfer salts of the tetrathioful-
valene-tetracyanoquinodimethane (TTF-TCNQ), Uy
~V/2~2Ey~1 eV,'” so that g?~3. Backward-
scattering solitons hardly may exist in these compounds.
In addition, one notices that the zero-sound oscillations of
the u+— coordinate are unstable for g>1 (02 <0),
which implies that inhomogeneities of the spin density
may be built up in the highly interacting electron gas in
one dimension. A similar situation seems to occur in the
blue bronzes. A possible exception could be the inorganic
one-dimensional conductors, where the screening effects
may reduce considerably the Coulomb interaction. In the
highly interacting case g—~1 one may say that the
backward-scattering solitons are very energetic (A~E}),
narrow (/~a), and heavy (u~m). They contribute an
extremely low exponentially activated specific heat in the
limit of low temperatures, and require an extremely high
magnetic field to be seen in the magnetic susceptibility.
The situation may be different in the case of the
umklapp-scattering solitons. For electrons moving on a
latticial, rigid background the semiclassical wave func-
tions (3) must be multiplied by the Bloch functions w(x)
corresponding to % kr (and normalized to unity). In this
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case the interaction (5) may contain an additional contri-
bution of the sine-Gordon type, coming from the G com-
ponent of w*(x), providing the reciprocal vector G =4kr
(half-filling case). This is the umklapp-scattering Hamil-
tonian [corresponding to wiwa.¥i—oW2—o in (5)], which
can be obtained formally from (9) by replacing ¢ by
w=nnu_+ and U by W=U(w*)g. For weak electron-
lattice interaction w(x)~1+2wgcosGx, where wg<1
(it is of the order of the ratio of the electron-lattice in-
teraction to the Fermi energy), so that W ~4Uwg <U.
The interaction parameter g may be much lesser than uni-
ty in this case, which means that the umklapp-scattering
solitons may well exist. They are much lower in energy,
more shallow, and lighter than the backward-scattering
solitons. The umklapp-scattering solitons correspond to
an electric charge imbalance equal to an electron charge
(CDW commensurability index M =G/2kr=2). Ac-
cording to the classical dynamics'® they may contribute
an appreciable conductivity o~W ~'/2 to the current-
voltage characteristic. On the other hand, their charac-
teristic length /~W ~'? being large, they are more
difficult to be seen in the nearly commensurate case where
the soliton lattice with the spacing 27/|G —4kr| estab-
lishes.

For a nonlocal interaction extended over the interelect-
ron distance a the interacting Hamiltonian (5) contains
an additional spin-independent coupling constant V
(which may simulate the intersite Coulomb repulsion). In
this case the coupling constant U in the backward-

scattering and the umklapp-scattering Hamiltonians is re-
placed by U+V, the zero-sound velocity v+ becomes
v+ =vpll+(U+2V)/xhor] /2, while v— remains un-
changed. The phase Hamiltonian (8) corresponds in this
case to the g-ology model'® with the identifications gay
=gn—gu=V, gi=gu=—g =V+U, and 2g;
=W. 15

Finally, it is worth noting that the semiclassical ap-
proach can be used to describe the coupling of the classi-
cal electronic solitons derived in this paper to the phasons
and the amplitudons of the Peierls-Frohlich lattice distor-
tion. A classical dynamics is thereby obtained for the
electron-lattice coupling in one dimension, in agreement
with the adiabatic hypothesis.® Similarly, the interaction
of the classical electronic solitons with impurities, either
randomly or regularly distributed, can be treated along
the same lines, with nontrivial consequences regarding the
electronic transport and localization in one dimension. '®
The semiclassical representation of the wave functions in
terms of the classical-mechanical action, though not re-
stricted, in principle, to one dimension, comes upon cer-
tain difficulties in higher dimensions. All these issues will
be discussed elsewhere.
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