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A recently established equivalence between the ideal Bose and Fermi gases@M. H. Lee, Phys. Rev. E55,
1518~1997!# is further analyzed with emphasis on the dimensionality effects. The equivalence is shown to be
a peculiarity of the bosonlike correlations in two dimensions.@S1063-651X~97!03710-0#
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Recently @1#, Lee established a remarkable equivalen
between the ideal Bose and Fermi gases in two dimensi
The equivalence is based on a certain invariance of the p
logarithms@2# ~see also Ref.@3#! under Euler’s transform o
the fugacities of the two gases, an invariance found m
years ago by Landen@4#. The result might have been ex
pected since a nonrelativistic two-dimensional gas is equ
lent to a relativistic gas in one dimension. We further analy
in this paper the underlying aspects of this equivalence w
respect to the dimensionality effects and show that the rea
for this remarkable particularity in two dimensions resides
the combined effect of the bosonlike correlations~respon-
sible for the Bose-Einstein condensation! and dimensional-
ity.

We begin with a brief review of Lee’s result. The bas
object is the number of ‘‘thermal states’’

n5
Nl2

gA
, ~1!

whereN is the number of particles,A is the area occupied b
the gas,g is a kinematic factor of degeneracy, and

l5S 2p\2

mT D 1/2

~2!

is the thermal wavelength; in Eq.~2! \ is Planck’s constant
m is the mass of a particle, andT (51/b) is the temperature
Introducing the inter-particle spacinga5(A/N)1/2 and the
characteristic energy«052p\2/gma2, we get n5«0 /T,
which justifies the designation ‘‘number of thermal states
for a Fermi gas«052«F , where«F is the Fermi energy. The
number of thermal states is given bynb52 ln(12zb) for
bosons andn f5 ln(11zf) for fermions, wherezb, f are the
fugacities. Fornb5n f5n we get 11zf5(12zb)21, which
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is precisely Euler’s transform betweenzb and2zf . We note
that zb512exp(2nb) and zf5exp(nf)21. The energies of
the two gases are given by

bnbEb /Nb5Li2~zb!,

bn fEf /Nf52Li2~2zf !, ~3!

where Li2(z) is the dilog ofz. A useful integral representa
tion of the polylogs is@2#

Lin11~z!5
1

G~n11!
E

0

z

duS ln
z

uD n 1

12u
~4!

for Rez,1. Under Euler’s transform betweenzb and 2zf
given above, the dilog becomes

Li2~zb!52Li2~2zf !2
1

2
Li1

2~2zf !, ~5!

which is precisely Landen’s relation@1,4#. Using Eq.~5!, we
obtain straightforwardly

Eb /Nb5Ef /Nf2
1

2
«F , ~6!

which is Lee’s main result. In addition, it follows from~6!
that the specific heats of the two gases are equal, a re
previously established@5#. SinceV52E in two dimensions
@6#, where the thermodynamic potentia
V52(1/b)lnQ52pA, Q being the grand-partition function
andp being the pressure, we have also

pb /nb5pf /nf2
1

2
«F ~7!

and the equality of the entropiesSb /Nb5Sf /Nf . These re-
lations establish a perfect equivalence between the id
Bose and Fermi gases in two dimensions.
4854 © 1997 The American Physical Society
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We now investigate the possibility of such an equivalen
in one or three dimensions. Naturally, we shall be interes
in high values of the number of thermal statesn, n@1, i.e.,
in temperatures much lower than the degeneracy temp
ture. In three dimensions we haven5(«0 /T)3/2 and
«05(4/9)1/3«F for the Fermi gas. For an ideal Fermi gas t
number of thermal states is given by

n f52G~3/2!Li3/2~2zf !, ~8!

and making use of the well-known integrals with the Ferm
Dirac distribution we get@7#

n f5
2

3
~ lnzf !

3/2F11
p2

8

1

~ lnzf !
2

1•••G ; ~9!

we see thatzf@1 for n f@1. Similarly, for an ideal Bose ga
we have

nb5G~3/2!Li3/2~zb!. ~10!

However, in contrast to the two-dimensional case, an in
esting phenomenon occurs in three dimensions as a resu
the bosonlike correlations, a phenomenon that is in fact
Bose-Einstein condensation@8#. Indeed, a simple change o
variable in Eq.~4! leads to

Li3/2~zb!5 (
n51

` zb
n

n3/2
. ~11!

For 0,zb,1 this series is bounded by Li3/2(1)5z(3/2),
where z is Riemann’s zeta function. Therefore,nb is
bounded byG(3/2)z(3/2), which means that the bosons co
dense on the zero-energy level. Consequently,nb cannot be
equal ton f and the two gases are not equivalent.

A similar situation appears in one dimension, though
for the number of thermal states, but for the energy. T
number of thermal states in one dimension isn5(«0 /T)1/2,
where«054«F for the Fermi gas. For an ideal Fermi gas
one dimension we have

n f52G~1/2!Li1/2~2zf ! ~12!

and

n f52~ lnzf !
1/2F12

p2

24

1

~ lnzf !
2

1•••G ~13!

in the asymptotic regimen f ,zf@1. Similarly the energy is
given by

bn fEf /Nf52G~3/2!Li3/2~2zf !

5
2

3
~ lnzf !

3/2F11
p2

8

1

~ lnzf !
2

1•••G , ~14!

whence
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Ef /Nf5
1

3
«FS 11

p2

4

T2

«F
2

1••• D . ~15!

From Eq.~15! we obtain the well-known specific heat of a
ideal Fermi gas

cf5
p2

6

T

«F
. ~16!

For an ideal Bose gas in one dimension we have

nb5G~1/2!Li1/2~zb!5Ap (
n51

` zb
n

An
~17!

and the series given by Eq.~17! diverges forzb→1. There-
fore, we could have a relationship betweenzb and zf for
nb5n f5n@1. However, the energy of the Bose gas is giv
by

bnbEb /Nb5G~3/2!Li3/2~zb!5G~3/2! (
n51

` zb
n

n3/2
~18!

and we see again that the energy per particle is now boun
in contrast to the Fermi case. Moreover, forzb→1 we get

Eb /Nb>
1

4
Ap

«F
z~3/2!T3/2; ~19!

comparing this equation with Eq.~15!, we see that there ca
be no equivalence in one dimension of the type establis
by Lee in two dimensions.

The arguments presented above can be summarize
follows. The number of thermal states for fermions in dime
sion d is given by

n f
~d!;E

0

`

dx xd/221
zf

ex1zf

, ~20!

and in the asymptotic regimen f@1, zf→`, we obtain

n f
~d!;~ lnzf !

d/2. ~21!

For an ideal gas of bosonsnb@1 corresponds tozb→1 and
the bosonlike correlations expressed by the singularity of
Bose-Einstein distribution at vanishing energy determine d
tinct asymptotic behaviors ofnb with dimensiond. In three
dimensionsnb

(3) is finite for zb→1, indicating Bose-Einstein
condensation; thus there cannot be any equivalence betw
bosons and fermions in this case. In one dimensionnb

(1) di-
verges forzb→1, like nb

(1);(12zb)21/2, and a relationship
with n f

(1) given by Eq.~21! might be possible; however, th
energy per particle in this case goes likeEb /Nb;T3/2 for
bosons, whileEf /Nf;const1T2 for fermions, according to
Eqs.~15! and~ 19!, and we see again that there could not
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any equivalence. In two dimensionsnb
(2)52 ln(12zb); com-

paring this equation with Eq.~21!, we see that such a
equivalence might be possible via Euler’s transform betw
the two fugacities; in addition, Eb /Nb;T2 and
la
n

Ef /Nf;const1T2 in this case, which makes this equiva
lence even more likely. However, its precise demonstrati
as given by Lee@1#, remains a remarkable property of th
ideal Bose and Fermi gases in two dimensions.
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@6# Making use of Eq.~3! and expressing the potentialV directly
with the dilog, we obtain also the addition formu
Li2(12z)1Li2(z)5Li2(1)2Li1(z)Li 1(12z).
@7# By the same method we can obtain the asymptotic formula

Lin11~2z!52
1

~n11!G~n11!
~ lnz!n11

3F11
p2

6
n~n11!

1

~lnz!2
1•••G

for z@1
@8# As is well known, there is no superfluid transition in two d

mensions; see, for example, M. F. M. Osborne, Phys. Rev.76,
396 ~1949!.


