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A recently established equivalence between the ideal Bose and Fermi[lyasds Lee, Phys. Rev. B5,
1518(1997] is further analyzed with emphasis on the dimensionality effects. The equivalence is shown to be
a peculiarity of the bosonlike correlations in two dimensidi®l063-651X97)03710-0

PACS numbdps): 05.30—d

Recently[1], Lee established a remarkable equivalencds precisely Euler's transform betweepand —z; . We note
between the ideal Bose and Fermi gases in two dimensionthat z,=1—exp(—v,) and z;=exp()—1. The energies of
The equivalence is based on a certain invariance of the polythe two gases are given by
logarithms[2] (see also Ref.3]) under Euler’s transform of

the fugacities of the two gases, an invariance found many BrpEp/Np=Lix(zp),
years ago by Landefd]. The result might have been ex- _
pected since a nonrelativistic two-dimensional gas is equiva- BriEsINg= —Lix(—2zy), ()]

lent to a relativistic gas in one dimension. We further analyze . . . .

in this paper the underlying aspects of this equivalence Witp{vhere Lh(z) is the d.'log ofz. A useful integral representa-
respect to the dimensionality effects and show that the reasdiPn ©f the polylogs iq2]

for this remarkable particularity in two dimensions resides in

1 z z\" 1
the combined effect of the bosonlike correlationespon- Lin.1(2)= F—J du(ln—) i (4)
sible for the Bose-Einstein condensadia@nd dimensional- (n+1)Jo u/ 1-u
ity.

for Rez<<1. Under Euler’'s transform betweery and — z

We begin with a brief review of Lee’s result. The basic .
given above, the dilog becomes

object is the number of “thermal states”

1
N_)\z 1) Liz(zp)=—Lia(—2z1)— gLif(—Zf), (5)
gA’

v=

which is precisely Landen’s relatidd,4]. Using Eq.(5), we

whereN is the number of particleg) is the area occupied by obtain straightforwardly

the gasg is a kinematic factor of degeneracy, and

Zﬁﬁz 1/2
mT )

1
Eb/Nb:Ef/Nf_ESF' (6)

vy

. ) . which is Lee’s main result. In addition, it follows froti)
is the thermal wavelength; in E() 7 is Planck’s constant, that the specific heats of the two gases are equal, a result
m is the mass of a particle, affd(= 1/p) is the temperature. previously establishefb]. SinceQ)= —E in two dimensions
Introducing the inter-particle spacing=(A/N)"? and the [g], where the thermodynamic potential
characteristic energyo=2w4%/gma’, we get v=eo/T, (O =—(1/8)InQ=—pA Q being the grand-partition function
which justifies the designation “number of thermal states”; andp being the pressure, we have also
for a Fermi gagy=2¢g, whereeg is the Fermi energy. The
number of thermal states is given by=—In(1-z) for
bosons andv;=In(1+z) for fermions, wherez, ; are the Po/Mp=Ps/Ni— S eF (@)
fugacities. Forv,=v¢=v we get 1+ z,=(1—2z,) "1, which
and the equality of the entropi€} /N,=S;/N;. These re-
lations establish a perfect equivalence between the ideal
*Electronic address: apoma@theorl.ifa.ro Bose and Fermi gases in two dimensions.
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We now investigate the possibility of such an equivalence 1 2 T2
in one or three dimensions. Naturally, we shall be interested Ef/Nf:§sF 1+ 7 — Tt (15
in high values of the number of thermal statesy>1, i.e., EF

in temperatures much lower than the degeneracy tempera- . .
ture. In three dimensions we have=(s,/T)¥? and From Eq.(15) we obtain the well-known specific heat of an

£0=(4/9)Y3 . for the Fermi gas. For an ideal Fermi gas the!deal Fermi gas
number of thermal states is given by

2
] T
vi=—T(3/2)Ligx — ), (8) cf=% - (16)
F
and making use of the well-known integrals with the Fermi- ] . . .
Dirac distribution we gef7] For an ideal Bose gas in one dimension we have
2(I )34 1+ LA 9 S %
vi=5(Inz - R i b
et 8 (Inz)? =T (12)Lidz) =7 2 —= (17)

we see that;>1 for v;>1. Similarly, for an ideal Bose gas . . .
we have f v y g and the series given by E(L7) diverges forz,—1. There-

fore, we could have a relationship betwerpnand z; for
. v,= vi=v>1. However, the energy of the Bose gas is given
vp,=1"(3/2)Liz(z,). (10 by

However, in contrast to the two-dimensional case, an inter-

esting phenomenon occurs in three dimensions as a result of . c oz

the bosonlike correlations, a phenomenon that is in fact the BrpEp/N,=T (3/2Liz(2,)=T(3/2 >, —> (18)
Bose-Einstein condensati¢B]. Indeed, a simple change of n=in

variable in Eq.(4) leads to and we see again that the energy per particle is now bounded,

in contrast to the Fermi case. Moreover, fgr—1 we get

|-|3/2(Z|o):n:l e 1y

1 |=
Ep/Np= 7R / 8—{(3/2)T3’2; (19
For 0<z,<1 this series is bounded by 44(1)=(3/2), F

where { is Riemann's zeta function. Therefore;, is  comparing this equation with E4L5), we see that there can
bounded byl"(3/2){(3/2), which means that the bosons con-pe no equivalence in one dimension of the type established
dense on the zero-energy level. Consequentlycannot be  py |ee in two dimensions.

equal tovy and the two gases are not equivalent. The arguments presented above can be summarized as

A similar situation appears in one dimension, though nofollows. The number of thermal states for fermions in dimen-
for the number of thermal states, but for the energy. Theijond is given by

number of thermal states in one dimensionvis(eq/T)Y?,
whereeg,=4¢e for the Fermi gas. For an ideal Fermi gas in

one dimension we have o z
yd~ f dxx2 1 (20)
0 e+ z;
vp=—T(U2)Liy ~2) (12 . o .
and in the asymptotic regime>1, z;— o, we obtain
and

9~ (Inz;) 972, (22)

vi=2(Inzs) 2 (13 For an ideal gas of bosong>1 corresponds ta,— 1 and

the bosonlike correlations expressed by the singularity of the

Bose-Einstein distribution at vanishing energy determine dis-

tinct asymptotic behaviors af, with dimensiond. In three

dimensionsv{®) is finite for z,— 1, indicating Bose-Einstein

condensation; thus there cannot be any equivalence between

BviE¢ INg=—T'(3/2)Lig — ) bosons and fermions in this case. In one dimensigh di-
verges forzy—1, like v~ (1—2,) "', and a relationship

| g with Y given by Eq.(21) might be possible; however, the

' energy per particle in this case goes ligg/N,~ T2 for

bosons, whileE /N~ const+ T2 for fermions, according to

whence Egs.(15 and( 19), and we see again that there could not be

2
1— — + ...
24 (Inzs)?

in the asymptotic regime; ,z;>1. Similarly the energy is
given by

1+ +
8 (Inzs)?

2
= 3(Inz)*?
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any equivalence. In two dimensiomﬁz):—ln(l—zb); com- E;/N;~const-T? in this case, which makes this equiva-
paring this equation with Eq(21), we see that such an lence even more likely. However, its precise demonstration,
equivalence might be possible via Euler’s transform betweems given by Led1], remains a remarkable property of the
the two fugacities; in addition, E,/N,~T? and ideal Bose and Fermi gases in two dimensions.
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