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The coupling of the electromagnetic field to matter polarization (dipole interaction) is examined in
order to assess the possibility of setting up a coherent state as envisaged by Preparata and coworkers
[G. Preparata, QED Coherence in Matter, World Scientific, 1995, and references therein]. It is found
that coherence domains may set up in matter, their phases being arranged in a periodic lattice, as a
consequence of, basically, a two-level interaction, which leads to a long-range ordered state, governed
by a macroscopic occupation of both the photon state and the two levels. The non-linear equations of
motion are solved for the new, non-perturbative ground-state, which is energetically favourable, provided
the coupling strength exceeds a critical value. The elementary excitations with respect to this ground-
state are derived, their energy being non-trivially affected by interaction. The “thermodynamics” of the
coherent phase is computed and the super-radiant phase transition is re-derived in this context. Except
for the general suggestion of coherence, the present results differ appreciably from Preparata’s, loc cit.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

We investigate herein the possibility of setting up coherence
domains in matter interacting with electromagnetic radiation. This
idea was originally suggested by Preparata [1], who presented sev-
eral speculations about possible consequences of such a state on
various physical phenomena, and further developed by his cowork-
ers [2,3]. The idea was also related to the lasing mechanism and
the super-radiance phenomenon [4–11].

We show herein that the coupling between electromagnetic ra-
diation and matter polarization (dipole interaction) may lead to
coherence domains, whose phases are arranged in a periodic lat-
tice, involving a two-level state of matter, provided the coupling
exceeds a certain critical value. The coherent state is characterized
by a macroscopic occupation of both the photon state and the two
levels. The ground-state and the elementary excitations are derived
for such coherent domains. The solution has a non-perturbative
character. The energy of the ground-state is negative, as for a
bound state, involving a formation enthalpy for the coherence do-
main. The elementary excitations are affected in a non-trivial way
by interaction, thus providing a most direct way of probing the ex-
istence of such a coherent state in matter. The “thermodynamics”
of the coherent phase is computed and the super-radiant phase
transition is re-derived in this context.
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0375-9601/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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2. Radiation field

As it is well known, the electromagnetic field is described by
the vector potential

A(r) =
∑
αk

√
2π h̄c2

V ωk

[
eα(k)aαkeikr + e∗

α(k)a∗
αke−ikr], (1)

in the standard Fourier representation, with the transverse gauge
div A = 0, where h̄ is Planck’s constant, c is the velocity of light,
V is the volume, ωk = ck is the frequency and eα(k) are the
polarization vectors, eα(k)k = 0, eα(k)e∗

β(k) = δαβ (α,β = ±1),
e−α(−k) = e∗

α(k). The charge density and the scalar potential are
set equal to zero. The electric and magnetic field are given by
E = −(1/c)∂A/∂t and, respectively, H = curl A, and three Maxwell’s
equations are satisfied: curl E = − 1

c ∂H/∂t , div H = 0, div E = 0. The
classical Lagrangian of the radiation field reads

L f = 1

8π

∫
dr

(
E2 − H2)

=
∑
αk

h̄

4ωk
(ȧαkȧ−α−k + ȧ∗

αkȧ∗
−α−k + ȧαkȧ∗

αk + ȧ∗
αkȧαk)

−
∑
αk

h̄ωk

4
(aαka−α−k + a∗

αka∗
−α−k + aαka∗

αk + a∗
αkaαk). (2)

The interaction Lagrangian is given by
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Lint = 1

c

∫
dr · jA

=
∑
αk

√
2π h̄

ωk

[
eα(k)j∗(k)aαk + e∗

α(k)j(k)a∗
αk

]
, (3)

where j(k) is the Fourier transform of the current density,

j(r) = 1√
V

∑
k

j(k)eikr, (4)

with div j = 0 (continuity equation). The Euler–Lagrange equations
for the Lagrangian L f + Lint lead to the wave equation with sources

äαk + ä∗
−α−k + ω2

k (aαk + a∗
−α−k) =

√
8πωk

h̄
e∗
α(k)j(k), (5)

which is the fourth Maxwell’s equation curl H = (1/c)∂E/∂t +
4π j/c.

As it is well known, the classical Hamiltonian formalism can be
established according to the usual rules, leading to the Hamilto-
nian H = H f + H int, where H f = (1/8π)

∫
dr(E2 + H2) and H int =

−Lint. Similarly, the quantization scheme proceeds as usually,
with aαk , a∗

αk annihilation and creation operators, [aαk,a∗
βk′ ] =

δαβδkk′ , [aαk,aβk′ ] = 0, and aαk ∼ e−iωkt .

3. Interacting matter and radiation

We consider a set of N independent, non-relativistic, identical
particles (atoms or molecules) labelled by i = 1, . . . , N , and write
the Hamiltonian corresponding to their internal degrees of free-
dom as

Hs =
∑

i

Hs(i). (6)

We make no assumption about their positions, nor about their
centre-of-mass motion. We introduce a set of orthonomal eigen-
functions ϕn(i), such as

Hs(i)ϕn( j) = εnδi j,

∫
drϕ∗

n (i)ϕm( j) = δi jδnm, (7)

where εn is the energy level of the n-state. We construct also a set
of normalized eigenfunctions

ψn =
∑

i

cniϕn(i) (8)

for the whole ensemble,

Hsψn = εnψn, (9)

where the coefficients cni are such as to satisfy the normalization
condition,∑

i

|cni |2 = 1. (10)

Since the particles are identical the coefficients cni are of the form
cni = eiθni /

√
N , where θni are some undetermined phases, so we

may write the wavefunctions as

ψn = 1√
N

∑
i

eiθni ϕn(i). (11)

We notice that any n-state with wavefunction ψn can be occu-
pied by any number of particles, up to N . Therefore, we introduce
the field operator

Ψ =
∑

bnψn (12)

n

and assume boson-like commutation relations for the operators bn ,
[bn,b∗

m] = δnm , [bn,bm] = 0, for large, macroscopic values of the
number of particles

N =
∑

n

b∗
nbn. (13)

The Lagrangian of this ensemble of particles can be represented
as

Ls = 1

2

∫
dr (Ψ ∗ · ih̄∂Ψ/∂t − ih̄∂Ψ ∗/∂t · Ψ ) −

∫
drΨ ∗HsΨ, (14)

or

Ls = 1

2

∑
n

ih̄[b∗
nḃn − ḃ∗

nbn] −
∑

n

εnb∗
nbn, (15)

and the Hamiltonian is given by

Hs =
∑

n

εnb∗
nbn. (16)

The corresponding equation of motion ih̄ḃn = εnbn is Schröding-
er’s equation. It is worth noting that the same equation is obtained
for bn viewed as classical variables.

The current density associated with this ensemble of particles
can be written as

j(r) =
∑

i

J(i)δ(r − ri)

= 1

V

∑
ik

J(i)e−ikri eikr = 1√
V

∑
k

j(k)eikr, (17)

where ri is the position of the ith particle and J(i) is the current
density of this particle. Now, making use of Eqs. (11) and (12), it is
easy to see that the interaction Lagrangian given by Eq. (3) can be
written as

Lint =
∑

nmαk

√
2π h̄

V ωk

[
eα(k)I∗mn(k)aαk + e∗

α(k)Inm(k)a∗
αk

]
b∗

nbm, (18)

where

Inm(k) = 1

N

∑
i

Jnm(i)e−i(θni−θmi)e−ikri (19)

and Jnm(i) are the matrix elements of the ith particle current den-
sity. These vectors have the same magnitude, since the particles
are identical, but their directions depend in general on particle.
The equation of motion (Schrodinger’s equation) is given now by

ih̄ḃn = εnbn −
∑
mαk

√
2π h̄

V ωk

[
eα(k)I∗mn(k)aαk + e∗

α(k)Inm(k)a∗
αk

]
bm,

(20)

while the wave equation (5) (Maxwell’s equation) for the electro-
magnetic field becomes

äαk + ä∗
−α−k + ω2

k (aαk + a∗
−α−k) =

∑
nm

√
8πωk

V h̄
e∗
α(k)Inm(k)b∗

nbm.

(21)

It is convenient to write down also the interaction Hamilto-
nian H int = −Lint in the interaction representation bn → bne−iεnt/h̄ ,
aαk → aαke−iωkt ; it reads

H int = −
∑

nmαk

√
2π h̄

V ωk

[
eα(k)I∗mn(k)aαke

i
h̄ (εn−εm−h̄ωk)

+ e∗
α(k)Inm(k)a∗

αke
i
h̄ (εn−εm+h̄ωk)

]
b∗

nbm. (22)
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One can easily recognize in Eq. (22) the excitation and dis-
excitation processes with absorption or emission of photons, and
the well-known form of the interaction Hamiltonian suitable for
perturbation calculations.

4. Coherence. Coherence domains

Making use of Eq. (19) the interaction Lagrangian given by
Eq. (18) can be written as

Lint =
∑

nmαk

√
2π h̄

V ωk
Fnm(αk)(aαk + a∗

−α−k)b∗
nbm, (23)

where

Fnm(αk) = 1

N

∑
i

eα(k)Jnm(i)eikri−i(θni−θmi). (24)

For any pair (nm) of energy levels, we represent the position ri
of any particle i as ri = Rp +rpi , where the vectors Rp define a spa-
tial lattice characterized by the set of integers p = (p1, p2, p3) and
rpi are restricted to the first Wigner–Seitz cell of such a lattice.
The lattice Rp is chosen such that the magnitudes of its short-
est reciprocal vectors kr , r = 1,2,3, are equal with the magnitude
of the relevant wavevectors k, i.e. those wavevectors which sat-
isfy h̄ωk = εn − εm > 0. It is easy to see that only a cubic and a
trigonal (rhombohedral) symmetry is thus allowed. For instance, a
cubic lattice is characterized in this case by a periodicity length
λ = 2π/k, where k is the magnitude of the relevant wavevec-
tor. A similar periodicity length (different from λ) occurs for the
rhombohedral lattice. We limit the relevant wavevectors k to this
finite set of basic reciprocal vectors, for which krRp = 2π × integer.
Eq. (24) becomes then

Fnm(αkr) = 1

N

∑
pi

eα(kr)Jnm(i)eikr rpi−i(θni−θmi), (25)

where the summation over p stands for all the elementary cells in
the spatial lattice.

The summation of the phase factors in Eq. (25), over label i in
the Wigner–Seitz cell, is in general vanishing, in view of the ran-
domness of such phase factors. We note that there is both a spatial
phase krrpi in Eq. (25) and an internal phase θni − θmi , leaving
aside the various orientations of the current density Jnm(i) with
respect to the polarization vector eα(k). However, we can define a
subset of Nnm(αkr) particles such that their phases θni fulfill the
condition

krrpi − (θni − θmi) = K , (26)

where K is a constant. We can see that these sub-sets of par-
ticles are disjoint, i.e. if a particle satisfies condition (26) for a
given kr it does not satisfy it for a different kr . In addition, any
particle belongs to a well-determined pair (nm). It is also rea-
sonable to assume that all the particles Nnm(αkr) have their cur-
rent density Jnm(i) aligned with the polarization vector eα(kr), i.e.
eα(kr)Jnm(i) = Jnm . Under these circumstances, up to a phase fac-
tor exp(iK ), Eq. (25) gives Fnm(αkr) = Jnm Nnm(αkr)/N . It is rea-
sonable to assume in addition the completeness of the partition
operated by condition (26), i.e.

∑
(nm)αkr

Nnm(αkr) = N .
Condition (26) tells that the phase of the internal motion of

the ith particle is correlated to the position of that particle. It im-
plies a long-range order in a cooperative phenomenon, where the
phase of the internal motion “feels” the particle position. Eq. (26)
may be taken as the basic condition for coherence. We call such an
ensemble of particles which satisfies condition (26) a lattice of co-
herence domains. Since, typically, the wavelength λr = 2π/kr � a,
where a is the mean inter-particle distance, we can see that for
particles located near the centre of the Wigner–Seitz cell we may
take θni − θmi � 0 and K = 0, while for particles located near the
boundaries of the Wigner–Seitz cell the phases are such as θni −θmi
get non-vanishing values, such as to preserve the constant value
K = 0.

It is easy to see that for various pairs (nm) we have a super-
position of such lattices of coherence domains. Similarly, these
lattices can also be one- or two-dimensional. For instance, a
one-dimensional lattice of coherence domains looks like a set of
parallel sheets (layered structure), with the relevant periodicity
length λ. A two-dimensional lattice of coherence domains looks
like a set of parallel threads, with a corresponding periodicity.

Here we restrict ourselves to the ground-state of the ensem-
ble of particles, labelled by n = 0, and the first excited state n = 1,
i.e. to only one pair (01). We assume a macroscopic occupation for
these states, which means to use c-numbers β0,1 for their opera-
tors b0,1. As it is well known, the occupation number has not def-
inite values anymore in this case, while its conjugate phase is well
defined. These are coherent states defined by b0,1|β0,1〉 = β0,1|β0,1〉
[12]. Under these circumstances the interaction reduces to the con-
tribution arising from those photons which satisfy the conservation
of energy ε1 − ε0 = h̄ω0, where ω0 = ck0. As it was said above, we
limit these wavevectors to the basic reciprocal vectors kr of the
coherence lattice, of magnitude kr = k0 = 2π/λ0. Their operators
aαkr , kr = k0, are then replaced by c-numbers α, the same for any
polarization α and any kr . There is no particular reason to have an
anisotropy or a polarization dependence for these photon modes.
It is easy to see that the interaction Lagrangian given by Eq. (23)
becomes then

Lint =
√

2π h̄

V ω0
J01(α + α∗)(β∗

1 β0 + β1β
∗
0 ), (27)

where we have taken J01 = J10. A similar replacement of the field
operators by c-numbers is made in the field Lagrangian given by
Eq. (2) and in the particles Lagrangian given by Eq. (15). The sum-
mation over αkr , kr = k0, in the field Lagrangian L f gives a fac-
tor 12, for a three-dimensional lattice. This factor can be absorbed
in the photon operators, so we can write down the “classical” La-
grangian

L f = h̄

4ω0

(
α̇2 + α̇∗2 + 2|α̇|2) − h̄ω0

4

(
α2 + α∗2 + 2|α|2),

Ls = 1

2
ih̄(β∗

0 β̇0 − β̇∗
0β0 + β∗

1 β̇1 − β̇∗
1 β1) − (

ε0|β0|2 + ε1|β1|2
)
,

Lint = g√
N

(α + α∗)(β0β
∗
1 + β1β

∗
0 ), (28)

where the coupling constant is given by

g =
√

π h̄/6a3ω0 J01. (29)

It is worth noting that while the field Lagrangian L f in Eq. (28) is
the classical Lagrangian, the particles Lagrangian Ls and the inter-
action Lagrangian Lint in Eq. (28) are “classical” only with respect
to the second-quantization (field operators), while they preserve
their quantum character with respect to the “first quantization”.

In order to have some numerical estimates, we may take as
a typical value for the energy difference ε1 − ε0 = h̄ω0 = 10 eV,
which corresponds to a photon wavelength λ0 = 103 Å. This wave-
length is much longer than the typical inter-particle distance a.
We can obtain an estimate of the coupling constant g by repre-
senting the matrix element J01 of the current density as J01 ∼
qv ∼ qa0ω0 = dω0, where q denotes a charge moving with velocity
v inside each particle with a characteristic radius a0, d being the
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corresponding dipole moment.1 Taking q = e (the electron charge)
we get

g =
√

π h̄ω0
(
e2/6a0

)
(a0/a)3/2, (30)

which gives g ∼ 0.8 eV for h̄ω0 = 10 eV, a0 = 0.53 Å (the Bohr
radius) and a ∼ 3 Å. For one- and two-dimensional coherence lat-
tices this coupling constant increases by factors

√
3 and respec-

tively
√

3/2, as a result of the factor
∑

αkr
in front of the field

Lagrangian L f (this factor is 8 for a two-dimensional lattice and 4
for a one-dimensional lattice).

5. Equations of motion

Making use of the Lagrangian given by Eq. (28) we get the
equations of motion

Ä + ω2
0 A = 2ω0 g

h̄
√

N
(β0β

∗
1 + β1β

∗
0 ),

ih̄β̇0 = ε0β0 − g√
N

Aβ1,

ih̄β̇1 = ε1β1 − g√
N

Aβ0, (31)

where A = α + α∗ . The corresponding Hamiltonian reads

H f = h̄

4ω0
Ȧ2 + h̄ω0

4
A2,

Hs = ε0|β0|2 + ε1|β1|2,
H int = − g√

N
A(β0β

∗
1 + β1β

∗
0 ). (32)

It is easy to see, by making use of the equations of motion (31),
that it is conserved,

H f + Hs + H int = E, (33)

where E is the energy. The number of particles is also conserved:
from Eq. (31) we get easily

|β0|2 + |β1|2 = N, (34)

corresponding to Eq. (13). Similarly, by making use of Eq. (31) we
get straightforwardly another conservation law, given by

h̄

4ω0

(
Ȧ2 + ω2

0 A2) − g√
N

A(β0β
∗
1 + β1β

∗
0 )

+ (ε1 − ε0)

2

(|β1|2 − |β0|2
) = Q , (35)

where Q is a constant energy; it can be checked out without diffi-
culty that this is not an independent conservation law; it amounts
to E − N(ε1 + ε0)/2 = Q .

The stationary solutions of Eq. (31) are obtained by putting
β0,1 = B0,1eiθ ; the equations of motion become

Ä + ω2
0 A = 4ω0 g

h̄
√

N
B0 B1,

ih̄ Ḃ0 − h̄θ̇ B0 = ε0 B0 − g√
N

AB1,

ih̄ Ḃ1 − h̄θ̇ B1 = ε1 B1 − g√
N

AB0. (36)

1 This corresponds to the dipole approximation, which, in the non-relativistic
limit leaves aside the spin and the so-called diamagnetic contributions to the cur-
rent density.
The last two equations tell that B0,1 and θ̇ = Ω are constant in
time and the particular solution of the first equation (36) is

A = 4g

h̄ω0
√

N
B0 B1. (37)

Now it is easy to find out the solutions:

A = 2g

h̄ω0

√
N

[
1 − (h̄ω0/2g)4]1/2

,

B2
0 = 1

2
N

[
1 + (h̄ω0/2g)2],

B2
1 = 1

2
N

[
1 − (h̄ω0/2g)2], (38)

and frequency

Ω = ω0

[
−1

2
+ 2g2

h̄2ω2
0

]
, (39)

where ε1 − ε0 = h̄ω0 has been used and ε0 was put equal to zero.
We can see that the ensemble of atomic particles and the as-

sociated electromagnetic field can be put into a coherent state, the
occupation amplitudes oscillating with frequency Ω , provided the
critical condition

g > gcr = h̄ω0/2 (40)

is fulfilled. Making use of Eq. (30), this condition reads a <

a0(e2/h̄ω0a0)
1/3, which is rather a strong condition. For realistic

values of a it requires much lower values of the excitation en-
ergy h̄ω0 than those assumed here for the sake of a numerical
example.

The total energy of the coherence domain is given by

E = − g2

h̄ω0
N

[
1 − (h̄ω0/2g)2]2 = −h̄ΩB2

1. (41)

It is lower than the non-interacting ground-state energy Nε0 = 0.
It may be viewed as the formation enthalpy of the coherence do-
mains. It must be emphasized that this effect of setting up a coher-
ence in matter is different from the lasing effect, precisely by this
formation enthalpy. Rather, the picture emerging from the solution
given here resembles to some extent a quantum phase transition.
The coupled ensemble of matter and radiation is unstable for a
macroscopic occupation of the atomic quantum states and the as-
sociated photon states.

Obviously, the coherence solutions obtained here are non-
perturbative; they are not analytic in the coupling constant g . It
is worth noting that the stationary solutions given by Eqs. (38)
and (39) can also be obtained by minimizing the Hamiltonian (32)
with the constraint B2

0 + B2
1 = N given by Eq. (34).

It is also worth noting that the electromagnetic potential given
by Eq. (1) for aαkr = α, kr = k0, does not depend on the time. Con-
sequently, the electric field is vanishing in the coherence domains.
The magnetic field is not vanishing, in general. The vector potential
A(r) given by Eq. (1) exhibits spatial oscillations according to the
reciprocal vectors kr . The magnetic field may attain high values,
depending on the coupling strength g . Typically, the magnitude of
the magnetic field is of the order of

√
h̄ω0/a3. For h̄ω0 = 10 eV

and a ∼ 3 Å this field may be as high as ∼ 106 Gs. Following
Preparata [1], we may speculate that such a magnetic field might
be a good candidate for the Weiss’ molecular field of ferromag-
netism.

The polarization

P = 1

V

∑
i

p(i) (42)

of the coherence domains, where p(i) is the dipole momentum of
the ith particle, can easily be calculated by using Eqs. (11), (12)
and (38); we get
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P = 1

V N

∑
i

p(i)
[
β∗

0 β1e−i(θ0i−θ1i) + β∗
1β0ei(θ0i−θ1i)

]

= 1

V

∑
i

p(i) cos(θ1i − θ0i)
[
1 − (h̄ω0/2g)4]1/2

, (43)

where p(i) = p01(i) = p10(i). In general, without particular as-
sumptions about p(i), the phase summation in Eq. (43) vanishes
and the polarization is zero. It is easy to see for instance that an
external field which would modulate the distribution of the dipole
momenta p(i) with a periodicity corresponding to the reciprocal
vectors kr may give rise to a non-vanishing polarization, in view
of the coherence condition (26).

6. Elementary excitations of the coherence domain

We change the coordinates in the Lagrangian given by Eq. (28)
according to A → A + δA, β0,1 → β0,1 + δβ0,1, where δβ0,1 =
(δB0,1 + iB0,1δθ0,1)eiΩt . The first-order variation of the Lagrangian
gives the equations of motion (31), so we are left with the second-
order variation of the Lagrangian, where δA, δβ0,1 are viewed as
the new coordinates. In addition, we impose the conservation of
the number of particles B0δB0 + B1δB1 = 0. With this constraint
we get the variation of the Lagrangian

δL f = h̄

4ω0
δ Ȧ2 − h̄ω0

4
δA2,

δLs = h̄B1
[
δB1(δθ̇0 − δθ̇1) − δ Ḃ1(δθ0 − δθ1)

]
− (

h̄ΩN/B2
0 + h̄ω0

)
δB2

1 − h̄ΩB2
0δθ

2
0 − h̄(Ω + ω0)B2

1δθ
2
1 ,

δLint = 2g√
N

B2
0 − B2

1

B0
δAδB1 − 2g√

N

AB1

B0
δB2

1

+ 2g√
N

AB0 B1δθ0δθ1. (44)

The Hamiltonian can readily be obtained from Eq. (44). It is conve-
nient to introduce the coupling strength λ = 2g/h̄ω0 (λ > 1) and
to make use of Eqs. (38) and (39). The Hamiltonian can then be
expressed as

δH = h̄

4ω0
δ Ȧ2 + h̄ω0

4

(
δA − 2

√
N

λB0
δB1

)2

+ 2h̄ω0
(
λ2 − 1

)
δB2

1 + h̄ω0N
λ4 − 1

4λ2
(δθ0 − δθ1)

2, (45)

which tells, first, that the relevant phase coordinate is δϕ = δθ0 −
δθ1 and, second, that the coordinates δA, δB1 and δϕ are associ-
ated with the elementary excitations (excited states).

The equations of motions corresponding to the Lagrangian given
by Eq. (44) can be written as

B0
(
δ Ä + ω2

0δA
) − 2ω2

0

√
N

λ
δB1 = 0,

ω0Nλ2δB1 − B2
0 B1δϕ̇ − ω0

√
N

2λ
B0δA = 0,

ω0N
λ4 − 1

4λ2
δϕ + B1δ Ḃ1 = 0. (46)

Their solutions are of the form (δA, δB1, δϕ)eiωt , where the fre-
quencies ω are given by

ω2
1,2 = 1

2
ω2

0

[
λ4 + 1 ±

√(
λ4 − 1

)2 + 4
]
. (47)

The excitations energies correspond to the frequencies Ω1,2 =
Ω ± ω1,2. In the weak coupling limit these frequencies behave as
ω1 � √

2ω0 and ω2 � √
λ2 − 1ω0 (Ω1,2 � ω1,2). In this limit the

solution corresponding to the former frequency is δA � −2δB1 �
−i
√

N(λ2 − 1)δϕ , while the one corresponding to the second fre-
quency is δA � 2δB1 � i

√
2Nδϕ . Since for the former solution δA

and δB1 vanish in the limit λ → 1, while δϕ is non-vanishing, we
may call this elementary excitation “phason”. As for the second so-
lution, since all coordinates are non-vanishing, we may call it “am-
plitudon”. Although this terminology is reminiscent of the well-
known dynamics of the charge-density waves [13,14], the analogy
is insubstantial to a large extent.

7. “Thermodynamics” of the coherent phase

In the limit of low temperatures the thermodynamics is con-
trolled by the coherent ground-state energy given by Eq. (41);
the elementary excitations derived above bring no thermodynam-
ical contribution. We can compute directly the partition function
Z = tr exp[β(μN − H)], where β = 1/T is the inverse of the tem-
perature, μ is the chemical potential and the Hamiltonian H is
given by Eq. (32) with |β0|2 + |β1|2 = N . The trace is computed by∫

dβ0x dβ0y · · · , where β0 = β0x + iβ0y , etc. In the thermodynamical
limit we get

Z �
∫

dρ · eβNμρ√
h̄ω0(h̄ω0 − μ) − 4g2�

� eβNμh̄ω0(h̄ω0−μ)/4g2
(48)

for μ < 0. The thermodynamic potential is given by Ω =
Nμh̄ω0(h̄ω0 −μ)/4g2. We can see that the coherent phase is per-
fectly ordered, with a vanishing entropy. The chemical potential
μ = h̄ω0/2 − 2g2/h̄ω0 < 0 implies g > h̄ω0/2, which is the crit-
ical condition given by Eq. (40). The energy (and free energy) is
given by E = Ω + μN = −Nh̄ω0(h̄ω0/4g − g/h̄ω0)

2, which coin-
cides with the ground-state energy given by Eq. (41).

8. Super-radiant phase transition

The coherent state described herein is characterized by a
macroscopic occupation of the photon state and the two levels.
It is indeed known that matter coupled to radiation may suffer an
instability toward a super-radiant state at some critical tempera-
ture, depending on the coupling constant [8–11].

We start with the quantum Hamiltonian written as

H f = h̄ω0

∑
μ

(a∗
μaμ + 1/2), Hs = h̄ω0b∗

1b1,

H int = − 1√
N

(Gb∗
1b0 + G∗b∗

0b1), (49)

where μ stands for the pair αkr , G = ∑
μ gμaμ and gμ =√

2π h̄/V ω0 J01N(μ)/
√

N . This is known as the Dicke–Preparata
Hamiltonian [9–11]. Here we follow closely the analysis given in
Ref. [8].

First we introduce the spin operators

Sz = b∗
0b0 − b∗

1b1 =
∑

i

(b∗
0ib0i − b∗

1ib1i) =
∑

i

szi,

S+ = b∗
0b1 =

∑
i

b∗
0ib1i =

∑
i

s+i,

S− = b∗
1b0 =

∑
i

b∗
1ib0i =

∑
i

s−i, (50)

where s’s are Pauli matrices. The trace over b’s in the partition
function Z = tr exp(−βH), where H = H f + Hs + H int, can then be
represented as

trb exp(−βHs − βH int) = e−βh̄ω0 N/2(tr ehs)N
, (51)
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where

hx = β

2
√

N
(G∗ + G), hy = iβ

2
√

N
(G∗ − G),

hz = βh̄ω0/2. (52)

It is easy to establish the equality tr ehs = 2 cosh h, where h =
β(G∗G/N + h̄2ω2

0/4)1/2. The partition function can now be writ-
ten as

Z = e−βh̄ω0(N+s)/2

· tr
{

e−βh̄ω0
∑

μ a∗
μaμ

[
2 cosh β

(
G∗G/N + h̄2ω2

0/4
)1/2]N}

, (53)

where s = ∑
μ . We can see easily that there exists a unitary

transformation A, aμ = Aμνcν , which diagonalizes the quadratic
form G∗G = ∑

μν gμgνa∗
μaν , while preserving the diagonal form∑

μ a∗
μaμ . It has only one non-vanishing eigenvalue

G2
0 =

∑
μ

g2
μ = 2π h̄

V ω0
J 2

01

∑
μ

N2(μ)/N, (54)

corresponding to one photon mode denoted by c. We take N(μ) =
N/s, and get G2

0 = g2, where g is given by Eq. (29) (for s = 12). We
keep now in the partition function only the contributions which
are relevant in the thermodynamical limit, and get

Z � e−βh̄ω0 N/2 tr
{

e−βh̄ω0c∗c+N ln[2 coshβ(g2c∗c/N+h̄2ω2
0/4)1/2]}. (55)

The trace in this equation is computed in the classical limit, where
the temperature is much higher than all the relevant energy scales
(e.g., βh̄ω0 
 1). We get

Z � e−βh̄ω0 N/2

∞∫
0

dx · e−Nφ(x), (56)

where

φ(x) = βh̄ω0x − ln
[
2 cosh β

(
g2x + h̄2ω2

0/4
)1/2]

. (57)

The main contribution to the integral in Eq. (56) comes from
the minimum value of the function φ(x) (Laplace’s method), lo-
cated at x0 given by

2h̄ω0

g2

√
g2x0 + h̄2ω2

0/4 = tanh β

√
g2x0 + h̄2ω2

0/4. (58)

This equation has no solution for g < h̄ω0, at any temperature
(x0 = 0). For g > h̄ω0, there exists a critical temperature Tc given
by h̄2ω2

0/g2 = tanh βch̄ω0/2 (or βc � 2h̄ω0/g2), such that for tem-
peratures higher than Tc Eq. (58) has no solution (x0 = 0), while
for T < Tc it has a non-vanishing solution. In the former case the
ensemble of particles is in the normal state, with a free energy per
particle given by

f0 = h̄ω0/2 − β−1 ln[2 cosh βh̄ω0/2] (59)

(interaction-free ensemble). For T slightly below Tc we expand

Eq. (58) in powers of
√

g2x0 + h̄2ω2
0/4 − h̄ω0/2 and get

x0 � 1

2
(1 − T /Tc)

1/2. (60)

Now it is easy to get the free energy per particle
f � f0 − h̄ω0

4
(1 − T /Tc)

2. (61)

As one can see, the entropy is continuous at the critical tempera-
ture, while the specific heat has a discontinuity, C = C0 + h̄ω0/2Tc .
The transition is of the second kind, with the order parameter the
photon occupation number. Indeed, it is easy to compute the mean
occupation number for photons, which vanishes for T > Tc and is
proportional to x0 given by Eq. (60) for T < Tc . It is worth not-
ing that the super-radiant transition is described by a quantum
Hamiltonian, while the coherent phase obeys a classical dynamics.
This accounts also for the difference in the two critical conditions
g > h̄ω0/2 and g > h̄ω0.

9. Conclusion

In conclusion we may say that the interaction of matter with
electromagnetic interaction may lead to coherence domains, whose
phases are arranged in a periodic lattice, governed basically by a
two-level state, provided the coupling constant is greater than a
critical value. The coherence domains are made possible by a spa-
tial arrangement in a regular lattice of the phases of the internal
motion of the particles, according to the coherence condition (26).
These coherence domains are characterized by a macroscopic occu-
pation of the quantum states. The non-linear equations of motion
have been solved for the coherent ground state and the elementary
excitations have been identified. The solution is a non-perturbative
one, the radiation frequency being renormalized in an appreciable
way. Perhaps the most direct experimental proof for the existence
of such a coherent state is the identification of such elementary ex-
citations which are non-trivially renormalized in comparison with
the radiation frequencies. The “thermodynamics” of the coherent
phase is computed and the super-radiant transition is re-derived
in this context.

A non-trivial generalization of the present approach should ad-
dress the issue of several level pairs (nm). The equations of mo-
tion (31) become then matricial equations, and getting their solu-
tion is a more difficult task.
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