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A new approach to the quantized electrical conductance
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The quanta of electrical conductance is derived for a one-dimensional electron gas both by making use of
the quasi-classical motion of a quantum fluid and by using arguments related to the uncertainty principle.
The result is extended to a nanowire of finite cross section area and to electrons in magnetic field, and
the quantization of the electrical conductance is shown. An additional application is made to the two-
dimensional electron gas.
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Recently, there is a considerable deal of interest in the quan-
tized electrical conductance of atomic and molecular conductors
like nanowires, narrow atomic constrictions, quantum dots, carbon
nanotubes, etc. [1–11]. The effect was originally predicted by Lan-
dauer [12–14]. We present here a new derivation of the quanta
of electrical conductance for a one-dimensional electron gas, by
making use of two procedures: the quasi-classical approach to
the one-dimensional quantum electron fluid and by using argu-
ments related to the uncertainty principle. We extend the results
to the quantization of the electrical conductance in a quasi one-
dimensional nanowire of finite area of the cross section, where the
electron motion is confined to the transversal directions while the
free longitudinal motion is subjected to the action of the electric
field. An application of this result is made for the two-dimensional
electron gas. Also, we apply the present approach to electrons in a
magnetic field.

We consider first a one-dimensional (free) electron gas in a
conductor of length l and cross section area A. We consider a
purely quantum transport in such a conductor, without scattering
or thermal effects. The electron density is given by n = gkF /π A,
where kF is the Fermi wavevector and g is a degeneracy factor
(e.g. g = 2 for spin 1/2). In the presence of an electric field E
along the conductor the density is modified at the Fermi level
by δn, such that, locally, higher energy levels are occupied for
the electrons moving oppositely the field and Fermi energy lev-
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els are depleted for electrons moving along the field. We take the
field oriented along the negative x-direction, so the net flow of
electrons takes place along the positive x-direction. The electric
field is sufficiently weak and slowly varying such that the elec-
trons acquire a displacement u(x) which obeys the quasi-classical
equation of motion mü = eE , where m is the electron mass and
−e is the electron charge. The change in the electron density is
given by δn = −n∂u/∂x, such that the density of electrons partici-
pating in the electrical flow is −δn. From these two equations we
get straightforwardly

m
d

dt
δn = −enE/v F (1)

for a constant field, where v F is the Fermi velocity. This is the ba-
sic equation for computing the electrical current.1 Indeed, the elec-
trical flow (charge per unit area of the cross section and per unit
time) is given by j = −e(−δ̇n)l = −e2nEl/mv F , hence the well-
known electrical conductivity σ = e2nl/mv F . The electrical flow is
negative, i.e. it is oriented along the electrical field as it should be.
For the one-dimensional gas n = gkF /π A and v F = h̄kF /m, so we
get σ = g(2e2/h)(l/A), where h is Planck’s constant (h̄ = h/2π ).
The electrical conductance is G = σ A/l = g(2e2/h). It can be writ-
ten as G = ∑

s G0, where s is the spin variable (e.g. s = ±1 for spin

1 The quasi-classsical motion of the one-dimensional quantum electron gas was
previously discussed in more detail in Ref. [15].
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1/2) and G0 = 2e2/h. We can see that the electrical conductance
can only vary by quanta G0, according to spin degeneracy.

It is worth noting that the same result can be obtained by
applying the uncertainty principle. Indeed, the equation of mo-
tion m du̇/dt = eE can also be written as mu̇ = eEτ , where τ
is the time of motion. The electrical flow can be written as
j = −eu̇δn, where δn = gδkF /π A is the density of electrons par-
ticipating in conduction. Combining these two equations we get
j = −e2 Eτδn/m and σ = e2τδn/m = ge2τδkF /π Am, which is an-
other representation for the electrical conductivity. Now we use
the uncertainty principle in the form τ = δnF (h/δE), where δnF =
lδkF /2π and the change in energy is given by

δE = h̄2

2m
(kF + δkF )2 + h̄2

2m
(kF − δkF )2 − h̄2

m
k2

F

= h̄2

m
(δkF )2. (2)

The motion time given by the uncertainty principle corresponds
to δnF cycles of quanta of action h. The change in energy given
by (2) is also δE = −eV , where V is the voltage drop, which shows
that the voltage is also quantized. We consider the energy levels
sufficiently dense as to allow a continuous change in the electrical
potential. Combining all these formula given above we arrive again
at the conductance G = gG0.

Within the quasi-classical description by means of the displace-
ment field u the electrical field is given by E = dϕ/du, where
ϕ is the electrical potential, such that the equation of motion
mü = eE ensures the conservation of energy. This equation of mo-
tion can also be written as Π̇ = eE = e dϕ/du, or u̇ = e dϕ/dΠ ,
where Π = mu̇ is the momentum associated to the field u. One
may check indeed that Π = h̄δkF by making use of Eq. (2), so we
may also write u̇ = e dϕ/dpF = e dϕ/h̄ dkF . Now the electrical flow
j = −eu̇δn becomes j = −e2(dϕ/h̄ dkF )δn = −e2(dn/h̄ dkF )V (since
δn = (dn/dϕ)V ), hence the electrical current I = j A = −gG0 V .
This was, in essence, the original argument of Landauer [14]. One
can see that the conductance is proportional to the density of
states.2

We consider next a nanowire of thickness d (A = d2) and a
confined transversal motion of the electrons, such that the energy
levels are given by

ε = h̄2k2

2m
+ π2h̄2

2md2

(
n2

1 + n2
2

)
, (3)

where n1,2 are positive integers.3 We have now multiple branches
of one-dimensional electron gas and the Fermi wavevector de-
pends on the duplex (n1,n2). Therefore, the electron density is
given by

n = (g/π A)
∑

(n1,n2)

kF (n1,n2) (4)

and the electrical conductivity σ = e2nl/mv F becomes

σ = (
e2l/π Am

) ∑
(n1,n2),s

kF (n1,n2)/v F (n1,n2). (5)

By (3), the Fermi velocity is v F = h̄kF /m, such that the above
electrical conductivity becomes σ = G0(l/A)M and the electrical
conductance is quantized according to G = G0M , where

M =
∑

(n1,n2),s

1 (6)

2 See in this respect Ref. [3].
3 We impose fixed-ends boundary conditions for the transversal motion as for

electrons confined in an infinite potential well (see Refs. [1–3]).
is the number of branches in the electron spectrum (number of
channels), spin included. One can see that M is the number of
channel electron states, so the conductance can only change in
steps of quanta G0.

Now we want to compute the number of channels M for this
model. We assume a dense distribution of spectrum branches and
write n2

1 + n2
2 = ρ2 in Eq. (3). The chemical potential μ is estab-

lished by the equalities

μ = h̄2k2
F

2m
+ π2h̄2

2md2
ρ2, (7)

hence the Fermi wavevector kF which is used in Eq. (4). The num-
ber of channels is then given by M = π gN2

t , where Nt is the
highest integer ρ satisfying equation (7). It is given approximately
by N2

t = 2md2μ/π2h̄2. Eq. (4) can then be written as

n = (2g/A)

Nt∫

0

dρ ρ

√
2mμ/h̄2 − π2ρ2/d2. (8)

This equation gives a relationship between Nt and μ, which, to-
gether with the equation N2

t = 2m d2μ/π2h̄2 written above, serve
to determine both the chemical potential μ and the number Nt of
transverse channels, hence the total number of channels M , as a
function of the density of the electron gas. The integral in Eq. (8)
can be performed straightforwardly. We get Nt = (3Nd/π gl)1/3

and M = (π g)1/3(3Nd/l)2/3, where N is the total number of elec-
trons and l is the length of the sample. The electrical conductance
reads G = G0(π g)1/3(3Nd/l)2/3. This is the main result for the
overall continuous behaviour of the quantized conductance of an
ideal nanowire of finite cross sectional area.

A simple application of the above result pertains to a two-
dimensional electron gas with point contacts [10]. In this case
we may consider that the energy spectrum given by Eq. (3) con-
tains only one quantum number, say n1, as corresponding to
the quantized motion along one transverse direction. The num-
ber of channels is now M = gNt , where Nt is given by μ =
π2h̄2N2

t /2md2. The chemical potential μ can be obtained straight-
forwardly from Eq. (4) as μ = 2π h̄2 An/gmd, which leads to M =
gNt = 2

√
gNd/π l. If we take, as usually, N = gW 2k2

F /4π , where
W is the width of the contacts, we get M = gkF W (d/l)1/2/π ,
which is a slight generalization of the classical result verified ex-
perimentally in the quantized conductance G = G0M of a GaAs–
AlGaAs heterostructure with ballistic point contacts [10].

As it is well known, for electrons in a magnetic field H we can
write the energy levels as

ε = h̄2k2

2m
+ h̄ωc(n + 1/2) + μB Hs, (9)

where ωc = eH/mc is the cyclotron frequency, μB = eh̄/2mc is the
Bohr magneton and s = ±1. Eq. (5) gives now G = G0M , where

M =
∑
ns

1. (10)

It is approximately M = 2nl , which is in fact twice the number
of spectrum branches. We have also μ = h̄ωcnl , where μ is the
chemical potential given by

n = 4eH

πch

nl∫

0

dn
√

2mμ/h̄2 − 2mωcn/h̄, (11)

which is similar to Eq. (8). Here it is worth noting the well-known
transversal degeneracy 2eH A/ch (� 1) of the energy levels in
the magnetic field. We get M = (3

√
π/4

√
2 )2/3n2/3ch/eH (which

should be much larger than unity). This main result allows the
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calculation of the quantized conductance G = G0M . It is worth em-
phasizing that the electrical conductance (or magnetoresistance)
can be varied in quantum steps by varying the magnetic field, as
it is well known.

The inclusion in such a treatment of interaction, scattering or
thermal effects (or finite-size boundary effects), as well as other
particularities,4 renders the problem a bit more complicated. Gen-
erally speaking, the starting point in such a treatment is the notion
of elementary excitations and their lifetime. Particularly interesting
is this problem for multi-wall carbon nanotubes, due to their spe-
cific electron energy structure [6].
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