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Within a one-dimensional model of off-centre diffusion it is shown that 
the diffusion coefficient depends on the number of off-centre sites and 
on their orientation relative to the host lattice. 
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IT IS WELL KNOWN [l, 21 that substitutional 
impurity ions may occupy off-centered positions in 
an ionic host lattice, as a consequence of the balance 
between the repulsion and the polarization forces. 
These off-centre sites surround the normal lattice 
sites, in a configuration which is dictated mainly by 
the high-symmetry directions of the lattice. On the 
other hand, it is also known [3] that the diffusion 
coefficients of the solute ions in ionic crystals (as, for 
example, alkali halides) may acquire high values, 
sometimes by orders of magnitude higher than the 
self-diffusion coefficients. Recently, it has been sug- 
gested [4] that these vacancy-mediated fast diffusion 
processes are due to the off-centre positions occupied 
by the impurity ions. Indeed, the activation energy is 
considerably lowered in an off-centre configuration, 
thereby enhancing the transfer frequency. 

Another source of variability of the diffusion 
coefficients, although to a lesser extent, is provided 
by the increase in the number of available sites 
brought by the off-centre configurations. A competi- 
tion may appear in this case between the time spent by 
the diffusing particle moving among the various off- 
centre sites around the same normal site and the 
transfer time from one group of off-centre sites to 
another. In addition, geometric restrictions may 
appear on the transfer processes from one site to 
another, depending on the number of the off-centre 
sites and their orientation with respect to the host 
lattice. These questions are addressed in the present 

Note, within a simple one-dimensional model of off- 
centre diffusion. 

To start with, we shall establish first the diffusion 
equation for a one-dimensional chain of sites, equally 
spaced by the distance a. Let n(x, t) be the average 
concentration of diffusing particles at distance x and 
time t. We assume that the diffusion process is 
described by a transfer frequency p of the particles 
between the nearest-neighbouring sites placed at 
x f a. The various representations of the transfer 
frequency p, depending on the particular transfer 
mechanisms, are disregarded here, in particular its 
temperature dependence (which, as it is well known, is 
usually given by an Arrhenius-type law at high 
temperatures). We shall be interested, as usual, in 
variations of n(x, t) over distances much larger than 
a and over time intervals much longer than p-l, such 
that the diffusion proceeds by slight perturbations of 
the initial concentration. We may then write down 

$ = p(n(x + a) - n] - p[n - n(x - a)] 

‘I 

where Do = pa* is the diffusion coefficient. As is well 
known the solution of this equation for an initial 
concentration no(x) = 6(x) is given by 

1 
n(x, t) = -e -x’/4Det 
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Fig. 1. Various off-centre configurations discussed in 
the present diffusion model. 

In many experiments the initial concentration no(x) 
extends uniformly from x = 0 to x = -00; the solu- 
tion is then 

n(x, t) = 4 [l - erf(x/2m)], 

where erf stands for the error function. 

(3) 

Let us now suppose that we have an off-centre 
configuration as that shown in Fig. l(a), where there 
are two off-centre sites around each normal site, 
slightly displaced along a direction perpendicular to 
the chain axis. We shall assume that the motion 
among the off-centre sites belonging to the same 
group is described by a frequency po, while the 
transfer frequency from one group of sites to another 
is p. As has been remarked above, this latter frequency 
is, usually, much higher than the transfer frequency p 
used in equation (1) for describing the on-centre 
diffusion, as a result of the lowering of the activation 
energy barrier. However, we shall not make this 
distinction explicitly, though we shall keep it in 
mind. The equations for the two concentrations 
n1,2(x, t) can readily be written as 

ani 
- = -P0h - n2) +ph (x + 0) - n11 

at 

+h2b + a> - 4 - An1 - nl (x - 41 

- ph - n2b - 41 

s -(PO + @)(nl - n2) +pa2 
a2 

g$n~ +n2h 

and, similarly, 

an2 

at= -(PO +2p)(n2 -nl> +~a ‘$(nl +n2). 

(4) 

(5) 

Introducing s = nl + n2 and d = nl - n2 we get 

as 
37 24$, (6) 

and 

dd 
dt = ~(PO f 2pV. (7) 

Usually, we are interested in the total concen- 
tration s (we may take, for example, h(x) = 0 
whence d(x, t) = 0) which, as one can see from 
equation (6), diffuses twice as fast as in the previous 
on-centre case: the corresponding diffusion coefficient 
D = 2Do is simply multiplied by the number of the 
newly introduced off-centre sites, as expected. 

A more interesting case appears when the two off- 
centre sites are displayed along the chain axis, as 
shown in Fig. l(b). Obviously, the transfer processes 
between nl(x) and nl (x f a), as well as the transfer 
processes between n2(x) and n2(x f a), are forbidden 
in the present nearest-neighbour diffusion model. 
With the same frequencies as above the equations 
for the two concentrations n1,2(x, t) read 

an1 
at = -P0h - n2> -ph - n2b - 41 

s -(PO +p)(n, -n2) -pu$+$pu’g, (8) 

and 

an2 
- = -(PO +p>(n;, - nl> tpuz+$pu2s, 

at 
(9) 

or, using the sum s = nl + n2 and the difference 
d = nl - n2, 

0s 2 

-&=pu~+ipa’~, 

k’d as 2 a2d 
x= -2(po+p)d-pu&pu dx2. 

(10) 

A Fourier decomposition of s and d leads to the 
eigenvalue equation 

( 

(w - $pu2q2)s, + ipugd, = 0, 

- ipaqs, + [W - 2(po +p) + $pu2q2]d, = 0. 
(11) 

Usually p. >> p, and, as we have said above, we are 
interested in the long wavelength limit uq < 1. Within 
these approximations we get the two eigenfrequencies 

f-4 s 2p. and w2 2 (1/2)pu2q2. It is now easy to find 
out that for the initial condition s,-,(x) = 6(x) the 
solution is given by the diffusion law (2) with Do 
replaced by the diffusion coefficient D = ( 1/2)Do. As 
expected, the diffusion is slower in this case due to 
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the fact that the particles spend more time around 
each normal site. 

However, this hindrance process has a rather low 
weight in more realistic off-centre configurations, as, 
for example, that shown in Fig. l(c). In a similar way 
we may write down the equations in this case, 

an1 
dt- - -(Po +P)h - 3) 

- (PO + 2P)h - (n3 +n4)1 

a= 
-pa~+Ipa2~jn2+2(n,+n,)), 

an2 

at- 
- -(Po+P)(nz -h> 

-(Po -+-2P)P2 - (123 -+n4>1 

an1 
+p~;?;;+$W 2&q +2(n3 +n4)], (W 

an3 

dt- 
- -(PO + @)b3 - (h +n2 +n4)1 

a2 
+pa*g-$n, +nz+-n3 +fi4>, 

an4 

-z- 
- -(PO + '&lb4 - (v +n2 +fl3)1 

a2 
+pa'$(n, +n2+&+@4]. 

Introducing si,2 = nt,s + n2,4 and d1,2 = n1,3 - n2.4 

we get from equation (12) in the long-wavelength limit 
and for p. > p the following two main equations 

I 
as1 a=Sj 

dt- 

2d2S2 
---2potsl-s2!+fPu2~+2Pa 7$-p 

3_ a2 
(13) 

at --2Po(s2-sl)+2Pn2~(sl+s2), 

whose dominant diffusion eigenmode is w G 

( 13/4)pa2g2, i.e. a diffusion coefficient I) = 
~13/4~~~. It is easy to see that this is the expected 
result. Indeed, looking on Fig. l(c) we see that there 
are 2 ways for particle 1 to be transferred to the sites 
3 and 4 at x + a, 3 ways for particle 2 to be transferred 
to the sites 1, 3, 4 at x + a and, similarly, 4 ways for 
each of the particles 3 and 4 to be transferred to the 
x $ a-group of off-centre sites; which makes a total 
amount of 2 + 3 + 2 - 4 = 13, which divided by the 
number 4 of the off-centre sites gives the factor found 
above for the diffusion coefficient. If we include 
the other two off-centre sites placed on the second 
transverse axis in Fig. f(c) we find by a similar 
calculation that the diffusion coefficient is increased 
by a factor 3316. 

In conclusion one may say that the off-centre 
diffusion coefficient depends on the number of the 
off-centre sites and on their relative orientation with 
respect to the host lattice. Extension of the present 
one-dimensional model to three-dimensional crystals 
reveals interesting anisotropic properties of the off- 
centre diffusion coeflicient, depending on both the two 
elements mentioned above as well as on the diffusion 
direction. They may serve as a test for the off-centre 
mechanism of diffusion. 
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