FIELD INDUCED SUPERCONDUCTING TRANSISTOR

M Apostol

Magurele-Bucharest

December 2007

FIST Summary

- FIST "Field-Induced Superconducting Transistor"
- FCST "Field-Controlled Superconducting Transistor"
- "Field" means the magnetization field of a ferromagnetic sample
- -ferromagnet-superconductor junction

-Miniaturization; -High resistance; -Potential barriers, tunneling, point contacts, micro-bridges, etc

-Superconductor as a natural tunneling barrier, Andreev reflection

$$R_s = R_n \sqrt{2\Delta/\pi T} e^{\Delta/T} , T/\Delta \ll 1$$

(ballistic transport $R_s = R_b \cdot eU/\sqrt{e^2U^2 - \Delta^2}$, typical in classical tunneling just above the gap barrier; Giaever)

What is the Andreev Reflection?

 ${\bf k}, \alpha\text{-excitation}$ as a ${\bf k}, \alpha\text{-quasi-particle, moving with velocity } {\bf v}$

 \mathbf{k}, α -excitation as a $-\mathbf{k}, -\alpha$ -hole in a superconducting pair, moving backwards in time, therefore with velocity $-\mathbf{v}$

-A reduction factor

$$\mathbf{v}(|arphi|^2 - |\chi|^2) \sim \mathbf{v} rac{\sqrt{\hbar^2 \omega^2 - \Delta^2}}{\hbar \omega}$$

in the current, origin of high resistance

Question: Can the flow be controlled by magnetization? by a spin-polarization?

The answer is No for a diffusive transport in the ferromagnetic sample, because the conductivity

$$\sim k_{F1}^2 \Lambda_1 + k_{F2}^2 \Lambda_2 \sim (1+m)^{2/3} (1+m)^{1/3} + (1-m)^{2/3} (1-m)^{1/3} \sim$$

 $\sim 1+m+1-m=2$

reduced magnetization $m = M/N\mu_B$

However, in the ballistic regime of transport for the ferromagnetic sample the flow can be controlled by \boldsymbol{m}

Ferromagnetic resistance

$$l_f < \Lambda , \ m_t = 1 - (l_f / \Lambda)^3$$
$$R_f = R \frac{2}{(1+m)^{2/3} + (1-m)^{2/3}} , \ m < m_t$$
$$R_f = R \frac{2}{(1+m)^{2/3} + \frac{4}{3} \frac{1-m}{(1-m_t)^{1/3}}} , \ m > m_t$$

$$\begin{split} \wedge < l_f < 2^{1/3} \wedge , \ m_t &= (l_f / \Lambda)^3 - 1 \\ R_f &= \frac{3}{4} R (1 + m_t)^{1/3} \ , \ m < m_t \\ R_f &= \frac{3}{4} R \frac{2(1 + m_t)^{1/3}}{1 - m + \frac{3}{4} (1 + m_t)^{1/3} (1 + m)^{2/3}} \ , \ m > m_t \end{split}$$

5

-negative jump (negative resistance), positive jump; monotonous increase, etc

-control m by slight change in temperature, just below the magnetic critical temperature, but much below the superconducting critical temperature

-the quasi-particles in the ferromagnetic sample behave like two spin-up, spin-down fluids, with (Fermi) velocities $v_{1,2} = v(1 \pm m)^{1/3}$ and density of states $\sim k_{F1,2}^2 = k_F^2 (1 \pm m)^{2/3}$

-crossover from ballistic to diffusive regime, and viceversa, hence the m-dependence and the origin of the jumps

Under what conditions?

For a perfect contact at the junction, as for similar solids, so that the matching conditions be fulfilled (close μ , k_F); problems for $m \rightarrow 1$ with the low density-of-states spin-down fluid

Quasi-particle wavefunctions (solutions of Gorkov equations)

$\sim e^{i\mu t/\hbar} \cdot e^{i\omega t} \cdot e^{-i\mathbf{k}_F\mathbf{r}} \cdot e^{-i\mathbf{k}_F}$

small ω , small \mathbf{k}

-hence, μ - and k_F -values close to each other, respectively (for ferromagnet and superconductor), for continuity (wavefunction and its 1st-order derivative)

$$-\hbar\omega = \sqrt{\Delta^2 + \hbar^2 v^2 k^2}$$
, small vk (superconductor)

 $-\omega = v_{1,2}k = v(1 \pm m)k$ (ferromagnet), hence large k for $m \to 1$ for the spin-down fluid, which violates the continuity conditions; however, small contribution to the junction resistance

Conclusion

-the need for a perfect contact for matching conditions at the junction (as for similar solids)

-an extended contact might do in this respect, but it could be difficult to realize a ballistic regime of transport in the ferromagnetic sample in this case

-a possible additional layer at the junction, like an oxide layer, to stabilize the tendency towards an extended contact, would act as a potential barrier; it satisfies the matching conditions and brings its own contribution to the junction resistance through the transmission coefficient

Field Induced SuperconductingTransistor (FIST)

-Miniaturization

-Tunneling barriers, inversion layers, bridges, point-contacts, etc

-Superconducting gap as a potential barrier (Andreev reflection)

-Spin correlations in superconductor \rightarrow Ferromagnet-Superconductor Junction

Fig 1. Spectrum of Ferromagnetic Quasi-Particles

Ferromagnet

Two spin fluids of quasi-particles

$$v_{1,2} = v(1 \pm m)^{1/3}$$

Density of states

$$\sim k_{F1,2}^2 = k_F^2 (1 \pm m)^{2/3}$$

Magnetic gap

$$\Delta_m \simeq \frac{2}{3} v k_F m$$

Reduced magnetization $m = M/\mu_B N$

Fermi level

$$\mu_m \simeq -\Delta_m/2 + \mu + vk_Fm/3 \simeq \Delta_m/2 + \mu - vk_Fm/3 \simeq \mu$$

Superconductor

Spin-singlet, s-wave

Gorkov equations, quasi-particles $\mathbf{k} \sim \mathbf{k}_F$

$$i\hbar\partial\psi_{\alpha}/\partial t = (-\hbar\mathbf{v}\mathbf{k}_F - i\hbar\mathbf{v}\partial/\partial\mathbf{r})\psi_{\alpha} + i\Delta_{\alpha}\psi_{-\alpha}^+$$

$$-i\hbar\partial\psi_{-\alpha}^{+}/\partial t = (-\hbar\mathbf{v}\mathbf{k}_{F} - i\hbar\mathbf{v}\partial/\partial\mathbf{r})\psi_{-\alpha}^{+} + i\Delta_{\alpha}\psi_{\alpha}$$

Superconducting spectrum ($\Delta_{-\alpha} = -\Delta_{\alpha}$)

$$\varepsilon = \mu \pm \sqrt{\Delta^2 + \hbar^2 v^2 (k - k_F)^2}$$

Fig. 2 Superconducting Quasi-Partciles Spectrum

Fermi level

$$\mu_s = \mu - \Delta/2 \simeq \mu$$

Excitation energy
$$\hbar\omega = \sqrt{\Delta^2 + \hbar^2 v^2 (k - k_F)^2}$$

Andreev Reflection

 $\mathbf{k}, \alpha\text{-excitation}$ as a quasi-particle

$$\varphi_{\alpha} = \langle \mathbf{0} | \psi_{\alpha} | \mathbf{k} \alpha \rangle \quad ,$$

as a $-\mathbf{k}, -\alpha$ -quasi-hole

$$\chi_{\alpha} = \left\langle 0 \left| \psi_{-\alpha}^{+} \right| \mathbf{k} \alpha \right\rangle$$

in a superconducting pair

 φ_{α} moves with velocity v, χ_{α} moves with velocity -v (backwards in time)=Andreev reflection

$$i\hbar\partial\varphi_{\alpha}/\partial t = (-\hbar\mathbf{v}\mathbf{k}_{F} - i\hbar\mathbf{v}\partial/\partial\mathbf{r})\varphi_{\alpha} + i\Delta\chi_{\alpha}$$
$$-i\hbar\partial\chi_{\alpha}/\partial t = (-\hbar\mathbf{v}\mathbf{k}_{F} - i\hbar\mathbf{v}\partial/\partial\mathbf{r})\chi_{\alpha} + i\Delta\varphi_{\alpha}$$

Probability $\sum |\varphi_{\alpha}|^2 + |\chi_{\alpha}|^2$

Current $\sum \mathbf{v}(|\varphi_{\alpha}|^2 - |\chi_{\alpha}|^2)$

 μ -reduced, k_F -reduced $(\exp(-i\mu t/\hbar + i\mathbf{k}_F\mathbf{r}))\exp(-i\omega t)\exp(i\mathbf{k}\mathbf{r})$ $(\omega - \hbar\mathbf{v}\mathbf{k})\varphi_{\alpha} = i\Delta\chi_{\alpha}$ $(\omega + \hbar\mathbf{v}\mathbf{k})\chi_{\alpha} = -i\Delta\varphi_{\alpha}$

Solutions

$$\varphi_{\alpha} = \frac{C_{\alpha}}{\sqrt{2}} \sqrt{1 + \mathbf{v}\mathbf{k}/\omega} e^{i\mathbf{k}\mathbf{r}} , \ \chi_{\alpha} = \frac{-iC_{\alpha}}{\sqrt{2}} \sqrt{1 - \mathbf{v}\mathbf{k}/\omega} e^{i\mathbf{k}\mathbf{r}}$$

where

$$\mathbf{v}\mathbf{k} = \sqrt{\omega^2 - \Delta^2/\hbar^2} \ , \ \hbar\omega > \Delta$$

and small \mathbf{k} ; Current

$$\mathbf{j}_{lpha} = |C_{lpha}|^2 \, \mathbf{v}(\mathbf{v}\mathbf{k}/\omega)$$

Reduction factor

$${f vk}/\omega\simeq\sqrt{2}\sqrt{rac{\hbar\omega-\Delta}{\Delta}}$$

(Andreev reduction in transmission, potential barrier)

Asymptotic Boundary, Matching Solutions

 $\Delta \to 0$, $\chi_{\alpha} \to 0$: $\varphi_{\alpha} \to C_{\alpha} e^{i\mathbf{kr}}$; quasi-particle wavefunction in the non-superconducting conductor

Warning: Reduction conditions (continuity of the 1st-order derivative of the wavefunctions)

-nearly equal Fermi levels μ ; -nearly equal Fermi wavevectors

$$k_{F1} = k_F (1+m)^{1/3} \sim k_F$$
, $k_{F2} = k_F (1-m)^{1/3} \sim k_F$

 \Rightarrow problems for high magnetization $m \sim 1$, very short lifetime at the junction, small contribution to resistance for spin-down quasi-particles

$$-\hbar\omega = \sqrt{\Delta^2 + \hbar^2 v^2 k^2}$$
, small k (superconductor)
 $-\omega = v_{1,2}k = v(1 \pm m)^{1/3}k$ (ferromagnet), problems for $m \to 1$

-Matching conditions fulfilled, transmission coefficient

$$w = \frac{v(|C_1|^2 + |C_2|^2)}{v(1+m)^{1/3}|C_1|^2 + v(1-m)^{1/3}|C_2|^2} (\mathbf{vk}/\omega) =$$

$$=\frac{2}{(1+m)^{1/3}+(1-m)^{1/3}}\cdot\sqrt{2}\sqrt{\frac{\hbar\omega-\Delta}{\Delta}}$$

Note: *m*-dependence

Note: spin-balanced population in superconductor $(|C_1|^2 = |C_2|^2)$ (not to destroy the superconductivity)

Ferromagnet-Superconductor Junction

-Cohesion of the solids, effective charge z^*

-Bottom of the band (s) $-\varphi,\;\varphi\simeq 4\pi ez^*/q^2a^3\sim z^*/a$ (work function)

-Fermi energy μ (Fermi level $-\varphi + \mu$)

Two solids in contact

-potential barrier, width a, height $e^2 z^* \cdot \Delta z^*/a$

-transmission coefficient for atoms

$$T^{2} = \frac{4}{4 + (M/m)z^{*}\Delta z^{*}(a/a_{H})}$$

Free surface

Self-consistent potential

$$\varphi = \sum_{i} \frac{z_i^*}{|\mathbf{r} - \mathbf{R}_i|} e^{-q|\mathbf{r} - \mathbf{R}_i|}$$

-average
$$arphi=4\pi z^*/a^3q^2$$
, $aq\sim 2.73$, $q\simeq 0.77z^{*1/3}$

-free surface

$$\varphi = \frac{4\pi z^*}{a^3 q^2} (1 - \frac{1}{2}e^{qx}) , \ x < 0$$
$$\varphi = \frac{2\pi z^*}{a^3 q^2} e^{-qx}) , \ x > 0$$

-a change $\delta \varphi$ in the potential, spill-over of the electrons, charge double layer at the surface

 $\delta n = q^2 \delta \varphi / 4\pi$, compensating dipole field, work function $W = -\varphi(+\infty) + \varphi(-\infty) = -\int dx \cdot \partial \delta \varphi / \partial x = \varphi$

-surface energy (per unit area)

$$\delta E = -\frac{1}{2} \int dx \cdot \delta \varphi \delta n = -\frac{\pi z^{*2}}{2a^6 q^3}$$

-Additional lifetime:

$$\delta \varepsilon = \pi n^2 / 2q^3 \cdot A / nAd =$$

$$\pi n/2q^3d\sim rac{a}{d}\mu$$

per electron,

$$\hbar/\tau = \frac{a}{d}\mu$$

Casimir boundary-scattering (finite-size) time, d linear, finite, dimension of the sample

-Narrow microstructures, dominated by boundary scattering, same $m\mbox{-}dependence$ of the FIST effect

Extended Contact

$$\varphi = \varphi_1 + \frac{1}{2} \Delta \varphi e^{x/\Lambda_c} , \ x < 0$$
$$\varphi = \varphi_2 - \frac{1}{2} \Delta \varphi e^{-x/\Lambda_c} , \ x > 0$$

Lifetimes

 $\hbar/\tau \simeq (\delta \varepsilon)^2/\mu$, T^2/μ (el-el scattering) $\hbar/\tau \simeq T/F$, $F = (M/m)(\hbar \omega_D/\mu)^2$ (el-ph scattering)

Fig. 4 Two Solids with a Perfect Contact

-distance covered by an atom

$$\Lambda_c \simeq a \frac{M}{m} z^* \Delta z^* (a/a_H)$$

-diffusion (ext fields, temperature for getting the solids into "atomic contact")

Very dissimilar solids, large Δz^*

-extended contacts (if not growth-limited)

-slow spatial variations along such a contact

-matching conditions fulfilled, but

-a "third solid" in-between, with its own contribution to resistance Similar solids, small Δz^* ; typical values $z^* \sim 10^{-1}$, $\Delta z^* \sim 10^{-2}$

-typically, $\Lambda_c \sim 100-1000 A$

-compared to quasi-particle mean-free path $\Lambda \sim 10^3 - 10^4 {\it A}$ at room temperature

-we call this a perfect contact

the "third solid" at the interface

Fig. 5 Two Solids in Contact

Kapitza Resistance

Similar solids, $\Delta \mu$ uncertainty in quasi-particle energy

-lifetime $\hbar/\tau \sim T^2/\mu$, or $\sim T/(M/m)(\hbar\omega_D/\mu)^2$ undergoes a change $\Delta(\hbar/\tau) = \frac{\hbar}{\tau} (\Delta\mu/\mu)^2$

-hence additional (perfect) contact Kapitza resistance $\Delta R/R = (\Delta \mu/\mu)^2,$ etc

Spin-Flip, Damping Gap, etc

-Spin flip length $\Lambda_f \simeq (\Delta \mu / \mu)^2 \Lambda$ at the junction, fraction of mean-free path, typically 10^{-2} , comparable with Λ_c

-Similarly for vanishing the gap at the junction, etc

Fig. 6 A Perfect Contact

Fig. 7 Spin-Flip and Gap Damping at the Interface

Electric conductivity

Diffusive regime, the flux of charge

 $-e(\partial n/\partial \varepsilon) \cdot (-eU) \cdot v_x \tau$

-the flow

$$j = \frac{2 \cdot 2\pi \cdot e^2}{(2\pi\hbar)^3} p_F^2 \int du \cdot \frac{d\varepsilon}{v} \cdot \frac{\partial n}{\partial \varepsilon} v_x^2 \tau \cdot (\partial U/\partial x)$$

-conductivity $j = \sigma(-\partial U/\partial x)$

$$\sigma = \frac{e^2 k_F^2}{3\pi^2 \hbar} \wedge , or \ j = \frac{e^2 k_F^2}{3\pi^2 \hbar} \cdot \frac{\Lambda}{l} U$$

hence the resistance (per unit area)

-note the high increase of the resistance due to the ratio l/Λ

-note the independence of magnetization of a ferromagnetic sample resistance

$$k_{F1}^2 \Lambda_1 = k_F^2 \Lambda (1+m)^{2/3} (1+m)^{1/3} == k_F^2 \Lambda (1+m)$$
$$k_{F2}^2 \Lambda_2 = k_F^2 \Lambda (1-m)$$
$$k_{F1}^2 \Lambda_1 + k_{F2}^2 \Lambda_2 = k_F^2 \Lambda$$

Ballistic regime: -A $\sim l$, 2/3 \rightarrow 1/2 (angle integration)

$$j = \frac{e^2 k_F^2}{4\pi^2 \hbar} \cdot U$$

-low resistance $R=4\pi^2\hbar/e^2k_F^2$, quanta e^2/h of conductivity, dependence on m

Resistance of a Superconductor

Diffusive regime, charge flux

$$-e(\partial n/\partial arepsilon)\cdot(-eU)\cdot(|arphi|^2-|\chi|^2)\cdot v_x au$$

charge flow

$$j = -\frac{2 \cdot 2\pi \cdot e^2}{(2\pi\hbar)^3} p_F^2 \int du \cdot \int_{\Delta} \frac{d\varepsilon}{v} \cdot \frac{1}{T} e^{-\varepsilon/T} \cdot \sqrt{2} \sqrt{\frac{\varepsilon - \Delta}{\Delta}} v_x^2 \tau \cdot (\partial U/\partial x)$$
 conductivity

$$j = \frac{e^2 k_F^2}{3\pi^2 \hbar} \cdot \frac{\Lambda}{l} \cdot \sqrt{\pi T/2\Delta} \cdot e^{-\Delta/T} \cdot U$$

or

$$R_s = R_{normal} \cdot \sqrt{2\Delta/\pi T} \cdot e^{\Delta/T}$$

34

-note high values of R_s for $T/\Delta \ll 1$ due to Andreev reflection

Similarly, in the ballistic regime

$$R_s = R \frac{eU}{\sqrt{e^2 U^2 - \Delta^2}}$$

typical for classical tunneling currents

-However, it is preferable the diffusive regime (except for eU just above Δ the tunneling resistance is low; supercond may be destroyed by spin-polarized ballistic currents)

Junction

$$j = \frac{1}{R_f} (U - U_0)$$
$$j = \frac{1}{R_s} U_0$$

-Ballistic regime for the ferromagnetic sample (perfect contact)

-Suficiently low temperature and thin sample $l_f < \Lambda$

$$-\Lambda_1 = \Lambda(1+m)^{1/3}$$
, ballistic regime

$$-\Lambda_2 = \Lambda(1-m)^{1/3}$$
, crossover

-Threshold magnetization $m_t = 1 - (l_f/\Lambda)^3$

$$R_f = R \frac{2}{(1+m)^{2/3} + (1-m)^{2/3}}, \ m < m_t$$
$$R_f = R \frac{2}{(1+m)^{2/3} + \frac{4}{3} \frac{1-m}{(1-m_t)^{1/3}}}, \ m > m_t$$

-Monotonous increase, negative jump (negative resistance)

Another case
$$\Lambda < l_f < 2^{1/3}\Lambda$$
, $m_t = (l_f/\Lambda)^3 - 1$
 $R_f = \frac{3}{4}R(1+m_t)^{1/3}$, $m < m_t$
 $R_f = \frac{3}{4}R \frac{2(1+m_t)^{1/3}}{1-m+\frac{3}{4}(1+m_t)^{1/3}(1+m)^{2/3}}$, $m > m_t$

-Monotonous increase, positive jump

-Change of m by changing temperature just below the magnetic critical temperature, and well below the superconducting critical temperature

Fig. 9 FIST Resistance vs Magnetization