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What should we know about lasers:

1) Theory of the laser (discovery, 1960, ...)

2) Electron acceleration in plasma: Tajima, Dawson, 1979; desktop

accelerators

3) Chirped pulse ampli�cation: Mourou, Strickland, 1985 (see also

Cook, 1960)

4) Short pulses, high power; ELI initiative (1-10-100Pw?)
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State of the art lasers:

1) Radiation wavelength 1µm (infrared, frequency 2×1015s−1, photon
energy 1eV )

2) Energy per pulse 50J (1kg, 5m)

3) Pulse duration τ = 50fs = 5× 10−14s (rep rate ' 1s)

4) Power 1015w (1Pw)

5) Pulse length 15µm (15 wavelengths) (Intensity ' 1020w/cm2)

6) Electric �elds ' 106statvolt/cm (1010V/m), Magnetic �eld ' 106Gs
(102Ts)

7) Comparable with atomic �elds (!) (non-linearities)
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What else should we know?

Pulsed polariton (polaritonic pulse) - convenient way

(introduced in 2010)

Main limitation: materials - Gw/cm2 - typical laser described above
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A serious di�culty:

Maxwell equations in matter

divD = 4πρ , divB = 0 ,

curlE = −1
c

∂B
∂t , curlH = 1

c
∂D
∂t + 4π

c j

(plus cont eq)

Two equations and Four unknowns:→semi-phenomenology, semi-
empirical (ε and µ)

5



Electromagnetic Theory in Matter

Displacement �eld: u(r, t) ; δn = −ndivu, ρ = −nqdivu, j = nqu̇;
P = nqu; Maxwell equations

divE = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H
∂t , curlH = 1

c
∂E
∂t + 4π

c nqu̇

Two eqs - Three unknowns (non-magnetizable matter)

Newton's law

mü = q(E0 + E)−mγu̇

The third missing eq! (introduced in 2009)
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Solution: (in�nite matter)

Longitudinal

E1(k, ω) = −4πnqu1(k, ω) =
ω2

p

ω2 − ω2
p + iωγ

E01(k, ω)

Transverse

u2(k, ω) = −
q

m

(ω2 − c2k2)E02(k, ω)

ω2
(
ω2 − ω2

p − c2k2
)
+ isgnω · 0+

E2(k, ω) =
ω2

p

ω2−ω2
p−c2k2+isgnω·0+E02(k, ω)

and magnetic �eld H3(k, ω) = ck
ω E2(k, ω)
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Eigenmodes

Plasmon ω = ωp =
√

4πnq2/m (non-propagating)

Polariton ω = Ω(k) =
√

ω2
p + c2k2 (dispersive)

Drude-Lorentz model of polarizable matter (1900); dielectric function

ε(ω)
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Refraction

Ω(k) =
√

ω2
p + c2k2 = ck′ (in vacuum)

Snell law (Huygens, phase velocity)

sin r

sin i
=

k′

k
=

Ω√
Ω2 − ω2

p

=
1√

ε(Ω)
=

1

n(Ω)

(n < 1; conductors)

For bound charges (dielectrics) n < 1 (X- or gamma rays) and n > 1;
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Since there is another branch Ω(k) = ωcck/(ωL + ck),ωL =
√

ω2
p + ω2

c

Snell law

sin r

sin i
=

k′

k
=

ωc −Ω

ωL
=

1

n(Ω)

(n > 1) (no 1/
√

ε-law)

φ

ωC ωL ω

g

g
φ

1

ωC

ωL

ωL

ωC

Vφ/C,C/Vg

sin r
sin i
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Extinction theorem

(Ewald, Oseen, 1915): ω = ck (free �eld)

u2(k, ω) = −
q

m

(ω2 − c2k2)E02(k, ω)

ω2
(
ω2 − ω2

p − c2k2
)
+ isgnω · 0+

→ 0

E2(k, ω) =
ω2

p

ω2−ω2
p−c2k2+isgnω·0+E02(k, ω)→ −E02(k, ω)

Etot = 0 !

Free �elds do not propagate in matter! Presence of surface change
things, to some extent! (Refraction)
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Wavepackets

(Huygens, 1700)

ˆ
drte

iktrt =
2sin kydt/2

ky
·
2 sin kzdt/2

kz
→ 2πδ(kt)

ˆ
dkte

iktrt =
2sin y∆ky/2

y
·
2 sin z∆kz/2

z
→ 2πδ(rt)

´
dtdxE0 cos(ω0t− k0xx)eiωte−ikxx =

= 1
2E0

2 sin(ω−ω0)τ/2
ω−ω0

· 2 sin(kx−k0x)d/2
kx−k0x

+ (ω0 → −ω0)
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Pulsed Polariton

New (approximate and useful) solution of Maxwell eqs in matter
(plasma)

External agents (perturbation)

[ω2−Ω2(k)]u(k, ω) = 0 , E(k, ω) = −
m

q
ω2u(k, ω) , H(k, ω) =

ck

ω
E(k, ω)

Solution:

u(k, ω) = 2πu(k)[δ(ω −Ω(k)) + δ(ω + Ω(k)]

u(r, t) =
1

(2π)3

ˆ
dku(k)e−iΩ(k)t+ikr + c.c.
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Sommerfeld, Brillouin, 1914: Stationary phase (method of the
saddle point or steepest descent)

−iΩ(k)t+ikr = −iΩ(k0)t+ik0r+(− i
∂Ω

∂k

∣∣∣∣
k0

t+ir)q−
it

2

∂2Ω

∂ki∂kj

∣∣∣∣∣
k0

qiqj+..,

Group velocity

v =
∂Ω

∂k

∣∣∣∣
k0

Choose k0 = (k0x, k0y = 0, k0z = 0)

Transverse wavepacket of extension dt,ˆ
dqte

iqtrt =
2sin y/2dt

y
·
2 sin z/2dt

z
→ (2π)2δ(rt)
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We are left, for instance, with

E(r, t) ' −
m

q
Ω2

0u0δ(rt) · e−iΩ0t+ik0xx 1

2π

ˆ
dqxe−i(vt−x)qx−it

2Ω
′′
0q2x + c.c. ,

(u0 = u(k0))

v =
cω0

Ω0
, Ω

′′
0 =

c2ω2
p

Ω3
0

, ω0 = ckx0 , Ω0 =
√

ω2
p + ω2

0

The integral

1

2π

ˆ
dqxe−i(vt−x)qx−it

2Ω
′′
0q2x '

1√
2πitΩ

′′
0

e
i(x−vt)2

2tΩ
′′
0 →

tΩ
′′
0→0

δ(x− vt)
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Lifetime and extension

At t = 0 the pulse is δ(x), δ(x) ' 1/d

After time ∆t the pulse has a height ' 1/
√

∆tΩ
′′
0←→ 1/d

width ∆x '
√

∆tΩ
′′
0

Lifetime:
1√

∆tΩ
′′
0

=
1

df
, ∆x =

√
∆tΩ

′′
0 = fd

where f is an arbitrary, small, higher-than-unity number
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Limiting case f = 1, we get ∆t ' d2/Ω
′′
0, or, since d = vτ , we have

∆t = v2τ2/Ω
′′
0; i.e.

∆t = τ2ω2
0Ω0

ω2
p

A limiting value for the duration of the pulse

τ = ∆t =
ω2

p

Ω0ω2
0

and a limiting value of the pulse extension

d = vτ = c
ω2

p

Ω2
0ω0
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During its lifetime ∆t the pulse �ies the distance l = v∆t = cτ2ω3
0/ω2

p ,

which is a pretty long distance for ωp � ω0 (l ' dτω3
0/ω2

p)

It follows that we can write the Polaritonic Pulse as

u(r, t) ' − q
mΩ2

0
E0 · dδ(x− vt) · d2

t δ(rt) ,

E(r, t) ' H(r, t) ' E0 · dδ(x− vt) · d2
t δ(rt) ;

it has an electromagnetic energy U = E2
0dd2

t /4π, which is transported

with velocity v = cω0/Ω0 during a lifetime ∆t ' d2Ω3
0/c2ω2

p over a

distance l ' v∆t ' d2Ω3
0/cω2

p .

(There is also a small pulsation with frequency ω2
p/Ω0)
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Comments on Fresnel and Fraunhofer di�raction: vanishing shadow,

fringes in the shadow

�precursors�: high frequencies contribute; propagating with group

velocity=c; far away - non-local
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Rest frame and equilibrium

d→ d′ = γd� d (γ = (1− v2/c2)−1/2 = Ω0/ωp � 1)

Hz = (ω0/Ω0)E = βE → H
′
z = 0: static �eld

Ey = E→ E
′
y = E/γ = (ωp/Ω0)E ' (ωp/Ω0)E0

Polarization P = nqu = −(ω2
p/4πΩ2

0)E, longitudinal �eld

Ely = 4πP = −(ω2
p/Ω2

0)E → E
′
ly = −γ(ω2

p/Ω2
0)E = −(ωp/Ω0)E :

cancellation
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Emergent Physics

Whats new?

1) Pulse refraction (?)

sin r

sin i
=

c

vg

Sometimes the same (vΦvg = c2), sometimes not!
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φ

ωC ωL ω

g

g
φ

1

ωC

ωL

ωL

ωC

Vφ/C,C/Vg

sin r
sin i

Comment upon γ-ray refraction!
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2) Transported (accelerated) charge

δn = −ndivu =
nq

mΩ2
0dt

E0

δN =
nq

mΩ2
0

ddtE0 , δQ =
ω2

p

4πΩ2
0

ddtE0

(δN/N = qE0dt/mv2
0)
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3) Energy, �ows

E =
mc2√

1− v2/c2
= mc2

Ω0

ωp
� mc2

ΦN = vδn = c
nqω0

mΩ3
0dt

E0 , Φ = ΦNE = c3
nqω0

Ω2
0ωpdt

E0

compared with the energy �ow Φ0 ' vE2
0/4π(intensity)

Φ

Φ0
= c2

nq

ωpΩ0dt

√
4πcω0

Ω0Φ0
= c2

√
mn

Ω0dt

√
cω0

Ω0Φ0

(Rather negative result, 1/
√

Φ0!; EΦ ' const!)

24



4) Coherent X- or gamma rays by Compton (Thomson) backscat-

tering on the pol pulse
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Numerical Estimates

Energy

n = 1018cm−3 (electrons), ωp = 3× 10−2eV (' 5× 1013s−1)

Main frequency Ω0 = 1eV (2× 1015s−1, wavelength 1µm)

Ultra-relativistic velocity of the pulse and a particle energy E ' 20MeV
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Pulse

Pulse size d = dt = 15µm (τ = 50fs = 5 × 10−14s), energy 50J

(E0 ' 106statvolt/cm), intensity Φ0 = 4× 1020w/cm2

δN ' 3× 105 particles (electrons) (i.e. 6TeV ):

Meaning ' 1024 particles per cm2 · s and a large amount of energy,

Φ ' 1025MeV/cm2 ·s (the only problem is that it is too thin, too short

and too brief!)

Displacement: u ' 10Å; comments with respect to Nuclear Polariza-

tion
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New Results

1) Polaritonic eigenmodes, their motion

2) Refraction, in particular pulse refraction (?)

3) Lifetime and spread of the Pulsed Polariton

4) Stability, equilibrium (rest frame) of the PP
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New Ways

The Way of Thinking Physics Nowadays

�Available optical laser intensities exceeding 1022W/cm2�

Wishful thinking - talking the Unreal

�Push the fundamental light-electron interaction to the extreme limit�

Extremist standpoint
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�where radiation-reaction e�ects dominate the electron dynamics�

For single particle, Reaction is compensated by the other

particles, cannot construct a useful World from One Particle,

or Singular Events

This may explain Everything, which is Bigotry, not Useful

Positive Science

�can shed light on the structure of the quantum vacuum�

This is long-, well-known, established knowledge: The Great

Fall in Derisory and Triviality
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�can trigger the creation of particles such as electrons, muons, and
pions and their corresponding antiparticles�

So what?

�novel sources of intense coherent high-energy photons and laser-
based particle colliders can pave the way to nuclear quantum optics�

Yes, the Atomic Nucleus may act as lens, prism, di�raction

grating, resonant cavity, laser for sharp and intense gamma

rays

The only problem is that the e�ects are extremely weak -

since the nuclear polarization is extremely weak

31



�may even allow for the potential discovery of new particles beyond

the standard model�

This is Childish: we need much, much higher energy and

luminosity

The Problem lies in Quantity, not in Quality
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Future Avenues

1) Charges in Strong Laser Fields: ionization, X-rays, non-linearities,
multiphoton scattering, radiation reaction

2) Vacuum Polarization: photon-photon scatt, refractive index, el-
pos pairs, µ− µ, π − π, non-linear QED

3) Nuclear Physics: Th: 7.6eV = 1.55 × fifth − harm; laser+acc
els=X-, γ-sources (keVs); photoreactions; dipole transitions; β− and
α-decay

4) Laser accelerators (colliders): pulse; in-phase acceleration; etc

5) Beyond Standard Model: electroweak; axion; etc
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Patru situatii experimentale:

1) Disturbante localizate in interiorul plasmei: puls polaritonic

2) Unda plana libera cade pe suprafata; raza, optica geom, beam;

propagare polaritonica, cu refractie

3) Focalizare unde in plasma: puls polaritonic, dincolo de opt geom

4) Puls foarte strins, creat in vid si trimis pe suprafata: isi pastreaza

destul de bine individ
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