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I A New Method for Kepler’'s Problem
E =mr?/2 +mr’¢?/2 —a/r = mi?/2 + L?/2mr® — a/r

L = mfr2<,b

(Kepler's second law)

U= L?/2mr? — a/r

Trajectory: r1 = a(l —e) to o = a(l 4+ e), semi-major axis
a=«a/2|FE]

Eccentricity e = \/1 — 2L2 |E| /ma?



Upin for ro = L2 /ma = a(1 — €2) and |E| = (1—6 )

Oscillator: Power expansion around the minimum value r—rg =
Au, A/’I“O — ¢

2
e’ = 62 (u2/2 —|—w2u2/2 —ew?uS 4+ ..)

w? = a/mrg’

(Kepler’'s third law)



Solutions ¢ = e(1 — e) (small eccentricities)

2
r =rgll —ecoswt + %(3 — Ccos2wt)]

: e? S5 .
@ = wt 4+ 2esinwt — 5(3Wt — Esm 2wt)]

r=ro(l —ecosy+e?cos?y+..) =rg/(1+ ecosyp)

Ellipse: semi-major axis a = rg/(1 — €2), semi-minor axis b =
ro/(1 — €2)1/2 origin displaced by ae = rge + ... in the focus ae
(Kepler's first law)



Technical Note: Resonant (secular) terms, anharmonic correc-
tions

Frequency shift (Poincare-Lindstedt method, 1882-1892)

Q = w(l -3e?/2) = (a/ma*)!/?

(second-order cubic, first-order quartic)

Automatically included by the present method



Other central-force fields

Be?
r =ro[l —eCOSwt + 7(3 — COS 2wt)]

2
2[3;— 3 sin 2wt}

P = \/’01/(3?11 ~+ rovo){wt+2esin wt—%[3(26—1)wt—

mw? = 3v1/rg + v, B = (2v1 — rdv3/6)/(3v1 + ToV2)

r =1l —ecosx + (2 — B)e? cos? x] , ro = o[l —2(1 — B)e?]

p = \/’01/(3’01 + rov2)Xx



Closed orbits. First sign of "chaos"

\/Ul/(?wl + rov2) =p/q

Gravitational potential: 6 =1, p/g=1

Spatial oscillator (v(r) = const + ar?): 8 = 1/2, p/q = 1/2,
X = 2¢ (ellipse centered on the origin)

Only two potentials close exactly the orbits (Bertrand’'s
theorem, 1873)

p/a=(1/m) [ “dr-(L/r2) N 2m(E )~ 1217

(closure integral)
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Many other fields close the orbits to any finite-order of pertur-
bation theory

But not in the limit

To the extent to which an irrational number is
approximated by rational numbers

Infinitely (and densely) quasi-closed orbits: first sign of "chaos"

- Sensitive and arbitrary dependence on initial conditions (L,
E)

- Change slightly 1/r; compute closure integral; would never
know whether it is rational or irrational

- Unprovability, Undecidability
11



I Moon’s problem: a three-body problem

E = m1if/2+moi5/2—Gmomy /r1 —Gmoma/ro—Gmima/ |r1 — 12|

mgo ~ 2 x 1039Kg (Sun), my1 ~ 6 x 1024Kg (Earth), mo ~ 7 X
10%2Kg (Moon)

G~6.7x10"Mm3/Kg- s?

r1 ~ 150 x 108 K'm (Sun-Earth), » ~ 380 000Km (Earth-Moon)

Liot = mqrq X I"l + moro X f’2
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Center of mass E = MR?/2 + mi?/2—

—Gmgmq/ |R — mor/M| — Gmgmo/ |R + mir/M| — Gmimo/r
Quadrupolar perturbation: r/R~ 3 x 1073((r/R)? ~ 1072)
E = MR?/2 +mi?/2 — a/R — 3/r —v[3(rR)?/R? — ?]/R>

a= GmoM, B=GmM and v = Gmgm/2

Two coupled Kepler's problems E = FE1 + E> + v

E1 = MR?/2—a/R , E> =mi?/2—8/r, v=—r>(3cos®xy—1)/R>
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Another three-body problem: Jupiter-Saturn Couple

E = m1i{/24+moi5/2—Gmomy /r1 —Gmoma/ro—Gmimy/ [r1 — 13

Perturbation:

Gmimy/|r; — 1o

m1, mo < mg and ri; not too close to ro
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The "Four Moons": four periodicities; the Greeks
Sideral year: 365.25 days
Sideral Moon: 27.32 days (rotation about the fixed stars)

Synodal Moon: (29.53 days) (combining the year and the sideral
Moon; Moon's phases)

Nodal Moon: 27.21 days (up and down about the ecliptic)

Anomalous Moon: 27.55 days (the acceleration toward perigee,
dec to apogee)

"Second" accuracy: five decimals; The Greeks !
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Polar coordinates:

b= FEy + E + v

E1 = MR?/2 4+ MR?(&? 4 $?sin’®)/2 — a/R

Ey = mi?/2 +mr2 (02 + $%sin?0) /2 — 3/r

v = —r2(3 cos? X—l)/R3 , COSx = sin®sinfcos(P—p)+cosO cosd
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First order of the perturbation theory

Eccentricity series: Ry = L(92/Ma, Q2 = o/MR3 (Earth pe-
riod ~ 365days) and e; = (1—2Rg |E1|/a)1/2 (Earth eccentricity
e; = 0.017)

2
RO = Rp[1 — eq cos 2t + 651(3 — Ccos20t) + ...]

2
5
»(0) = Ot + 2eq sin Ut — %1(3975 ~ sin2%)..]

e0) — /2
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Relative motion: rg = 1(02/m3, w2 = B/mrg (w > Q2; Moon'’s
period ~ 27 days), eccentricity eo = (1 — 2rqg|E>| /8)1/2 (Moon'’s
orbit eccentricity e» ~ 0.055)
Tilted frame:

9(0) = /2 4+ Opsinwt + ..., go(o) = wt + ...

Another perturbation parameter: tilting angle
g = 5° = n/36

Another frequency

w’zw\/l—Hg
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Perturbation theory: Six coordinates R, ©, P, r, 0, ¢

Triple series expansion: eccentricities (e 2), inclination (6g) and
~v- interaction (Weierstrass, Sweden’s King contest)

Zeroth order: RO = Ry, 00 = 7/2, o0 = ¢, O =
ro, 0(0) ~ /2, 0(0) = wt

First-order correction:
b = Qt—’y(3r8/4Mw2R8) Sin 2wt+... , p = wt—|—7(3/4mw2R8) sin 2wt—-...

The fourth frequency ~ 3v/2mwR3 = 3Gmg/4wR3 = 322 /4w
appearing in ¢

Q/w~1/13.5
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Newton (d’Alembert, Clairaut, Delauney)
Correction 3v/2mwR3 = 322 /4w known to Newton!

Applied to ¢ leads to 4w/30Q2 ~ 18 years of Moon's retrograde
motion period (earthquakes?)

Sideral Moon: ' = w,/1 — 03 (27.32 days)
Nodal Moon: w (27.21 days)

Anomalous Moon: correction 39Q2/4w? ~ 0.004 applied to '’
(27.55 days; factor 2 by d’Alembert and Clairaut, ~1750)

Synodal Moon: correction w — 2 (27.32 4+ 27 x (1/13.5) = 29.5
days)
20



Pushing up through higher orders of the perturbation the-
ory

Delauney ~1860 up to ~ 500 terms! (~ 2000 print pages)
Hill ~1880 (rotating frame)

Poincare ~1890; Sweden’s King contest; stability of the Plane-
tary System

Pertractors of Newton
Poincare-Mittag-Leffler 4 years mistake ~1900
Modern computers: 1950-1970 (aselenization)

Gutzwiller et al ~1980; quasi-failure; Slow convergence, weak
accuracy, algorithims
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Poincare and the "weak" chaos
Solution as Fourier series
4 fundamental frequencies (2, ', w and 3y/2mwR3 = 3Q?/4w)

Combined-frequency phenomenon (non-linearities), higher-order
harmonics

Solution looks quite erratic (main pattern plus infinitely small,
fine laceworking!)

Poincare "Weak'" Chaos

Small contributions are important: a small error on Earth, a
big failure on Moon!

(1km on Moon, 3", 10° accuracy!)
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Missing integrals, instabilities, Gutzwiller and the
"strong" chaos

6 degrees of freedom in 3-body problem and only 4 integrals (E,
Ltot)

Are there other integrals?
No !(Bruns-Poincare theorem) (algebraic in parameters)

Non-anayticity: ¢ very high over the pole (§ = 0), sudden change
of the trajectory along a longitudinal circle

Instabilities, "strong" chaos

Rather strange external perturbations
23



Not only Chaos (weak or strong)

In addition:
- a great deal of proliferating contributions

-  time-consuming just for keeping track of them (parallel com-
puting?)

- more computing time than the real, natural process (more
program bites than number of bits produced - Chaitin)

- Uncomputability, Computational Irreducibility, Intractability
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IIT A new route to quantizing the Hydrogen atom

A special classical motion: passing through the centre

E =mr?/2 + L?/2mr? — a/r
L=0, E=—a/rg

Oscillations between 0 and rg around rg/2

wHw?(u—1)/(u+1) =0, r =rg(14u)/2 , w? = 80¢/mr8 = 8|E|° /ma?

Solution 2 arcsin \/(1 —u)/24+ V1 —u?2=wt, —1 <u< 1, period-
icity, w/2
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Quantization

mp? /2 + mw?p?/2 + ... —a/rg = 0

Harmonic oscillator
hw(n+1/2)/2 = a/rg, hwén/2 = |E|, , dn=n

ma2

Fl =——-
| |q 2h2n2

Variation equation, anharmonic corrections, etc
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Case L #0

2

ro = L?/ma , mw? = 04/7“8

E = mf2/2—|—(a/2r8)(fr—ro)z—l—...—oz/Qro , hw(n+1/2)/2 = a/2rg+FE

L2 /2] = L2/2mr8 = «/2rg = Energy

hw(Energy)on/2 = Energy

’I’I’LO&2

2h2n2

Energy =

27



A general central-field potential v(r)

—Lz/mrg +v1 =0, Energy = L2/2mr(2) = v1T0/2

ro(Energy)

w? = 3vy/mrg + vo/m

hw(Energy)on/2 = Energy

h? [3v1(Energy)/mro(Energy) + UQ(Energy)/m]n2/4 = Energy2
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A few comments on Chaos
1 Endless orbits never repeating

2 Sensitive dependence on initial conditions (Lyapunov expo-
nents)

3 Non-linearities

4 Logistic maps, bifurcation and Feigenbaum number (~ 4.16;
Tn+4+1 = Laxn(a — xn), ratio of two successive L's )

5 Fractal dimension (r=3" N=4": N=rP D=1In4/In3 =
1.26; Koch's curve)

6 Cellular automata
29



what have we seen?

Chaos (open orbits, great variability in small things with huge
consequences)

Unprovability, undecidability (closing orbits)

Intractability, uncomputability and computational irreduciblility
(3-body problem)

Universality (Nature is a Universal Machine, emulating every-
thing)
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Questions
1 What about friction? (Earth, loses 1 second per century)

2 What about the effect of the other Planets on Moons’ mo-
tion? (time-space stochastic perturbation)?

3 What about the couple Jupiter-Saturn? (Laplace 2 : 5 reso-
nance, Jupiter 12 years, Saturn 30 years)?

4 Another resonance, Moon's ever-staring side (Lagrange, dis-
torted Moon, the coupling, pin-down the motion; Gauss and the

blocking of the phase)
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5 The great analogy with CDW'’s (or SDW'’s); pinning, com-
mensurate, incommensurate, order parameter, symmetry break-
ing, Goldstone modes, etc, etc

6 Dipolar (and multipolar) coupling

7 What about relativistic corrections? (v/c ~ 107°)



A New Research Program

Investigations into Intractability and Uncomputability of
the 3-Body Problem
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