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PART I: The MESSAGE



Fields Today

1) Gauge&Symmetries —-Imitation of QElectrodyn

2) Geometrization

The Third Way

Principle of Equivalence, Non-Inertial Motion

A "New Deal"” In Fields



PART II : MOTION DEPENDS ON OBSERVER



Curved Space

Newton’s Law

d'Ua
m —— =
dt Ja
Equivalent with a free motion in a curved space
du?

Du'/ds = -+ I_;kujuk =0

ds

Metric tensor

ds® = (1 + h)c2dt? + 2cdtgadz® — dxdx®
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Basic equation
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2(t), h(r)

(gravitational potential)



For the first time Einstein "suspected the time" (1905)

Curved Spaces: Gauss (~ 1830)

Riemann: Uber die Hypothesen welche der Geometrie
zugrunde liegen, 1854

Grassman, Christoffel, Ricci, Levi-Civita

Klein: Programm zum Eintritt in die philosophische
Fakultat in Erlangen, 1872

Einstein, Poincare, Minkowski, Sommerfeld, Kottler,
Weyl, Hilbert



Motion depends on subjectivity, though a "universal
subjectivity" ("inter-subjectivity'"?)

Pauli 1921

Covariance; Dirac



Non-Uniform Translation

r=r +R{), t=1¢

dv’

Inertial force

g=—-V/c

Equivalent with a curved space (Principle of equiva-
lence)



Coordinate Transformations

From a flat space to a curved space

dz’ = aé-da:’j, dz't = b;-dxj, dr; = b‘gdw; a}’;b‘]f = b};a‘;‘? = 5;-
ds? = nijdmida?j = nija}%a{da?’kdm’l

gij = mmaial’, g = n'"™bibl,, where
N = Ny (= = =)

_ (4h)d 4 (g4 BA)da' e cB(L+ h)d + (Bg + A)da’

dt 9
JAFR)((1-82) JA+R)((1 - 82)
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B =dx/cdt, & =\/14+h+ g2
Two frames, relative velociy 3, one flat, the other curved
-For h, g = 0 - Lorentz transformations

-We put 8 = V/c = —g as before (to give a sense to
our curved space)

-We put hA(r) and g(t)

-We use h, g < 1, to get corrections to the relativistic
motion

-We get
dt = (1 + h/2)dt' , de = dz’ — cgdt’ = da’ + Vdt’
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Life in a curved space

Proper time dr = +/1 + hdt

Distance ds? = ¢2(1 + h)[dt + gdr/c(1 + h)]? — [dr? +
(gdr)?/(1 + h)]

or

ds? = c2dt’? — dlI?

Light propagates along curved geodesics (ds = 0) with
velocity ¢

Time is indefinite, dr and dt/, depends on path
12



PART III : MOTION as a COORDINATE
TRANSFORM; EINSTEIN’s VIEW

A GENERALIZED HAMILTON-JACOBI
EQUATION

13



General Theory of Motion
-Free motion t — x: Motion under forces t — z’

-Had we know = — 2/, i.e. a global coordinate transf,
we solve the motion

-Einstein’s line of thought
-We have not that global coordinate transformation

(cannot get the 10 g;; with four functions; local flat
spaces, but axes are different from point to point)

- Our transformations are Locall! (xz = (et,r), ' =
(ct'x"), dx +—— dz’)
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One Exception: Special Theory of Relativity

From rest to motion (principle of inertia, ds? =

r=cBr/\J1-08%, t=1/\y1—3°

A vector: momentum p = 9S5/0r, energy pg =

—0S5/cot

Apply these transf to this vector

psz/CQ, E:Eo/\/l—HQ, EO:mC2

Eqgs of motion
dp/dt = f

const)

E/c =

15



Additional "relativistic" forces (~ v?)

Hamilton-Jacobi equation E? — ¢?p?2 = m?2c?

(85/8t)% — ¢?(8S/0r)? = m?c*

This is the entire theory of special relativity
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Hamilton-Jacobi Equation in Curved Space
Motion in curved space

Let (Py = Eg/c,—P) be the (cov) momentum of a free
motion in the flat space, constant, P5 — P? = m?2c?

Apply the coord transf for our curved space

po=(1+mp° +gpt = VIFh 9L

— .0 _ 1 _ (g+B8A)P—(g8+A)P
PL=9p =P A+ (1-52)

An integral of motion, already (by using p; = mecdu;/ds)?

NO! Different x and z’!
17



Use P§ — P? =m?c? for g = -3

Hamilton-Jacobi Equation in curved space

(E —cgp)? — 21 +h+g2)(p°+m3c?) =0
or

(85/8t+cgdS/0r)° —c?(1+h+g2)[(8S/0r)° +m?c?] =0
Euler-Lagrange Motion

The action

su:-4ng/ds::—an/}ﬁ(L+h+ngﬁym2ﬁ9yV2:5/dtL

mdp/dt = F
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. Oh/Or
(1+h+2gv/c—0v2/c2)1/2

F = 0L/0r = —(mc?/2)

. mc2(1 + h) + mevg
(L4 h+ 2gv/c —v2/c2)1/2

E=pv—-L

We get again the Hamilton-Jacobi equation given be-
fore

(E — cgp)? — 2L+ h+ g2 (P2 +m2c?) =0

Lagrange Motion
S = —mc/ds
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§ds® = 2dsdds = 5(gijdwid:cj) = Qgijd:cid&cj—l-dwidazj(8gij/8xk)5:ck

p; = —95/0x" = mcu; , p; = (pg, —P)

Hamilton: E = —05/0t; it follows pg = —E/c

Since p;pt = m2c?, i.e. g9pip; = m2c¢? we get again the
) J

Hamilton-Jacobi equation in curved space

(85/8t+cgdS/0r)° —c?(1+h+g2)[(8S/0r)° +m?c?] = 0
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Contravariant metric

(1 g1 g2 93 \
g = 1 g1 —A%+gf 9192 9193
A2 g2 9192 —A%+g5 9203

\ 93 9391 9392 —A%+g5 )

Eikonal Equation

-Waves go by k;dz'* = —d®, the eikonal (phase); flat
space k; = (kg = w/c,—k), frequency and wavevector,
kikt = (w/c)? — k? = 0; straight line, ® = —wt + kr;

geometric optics

-Since k;k' = gYk;k; = 0 we get the eikonal equation in
curved space
21



(0P /0t + cgdd /Or)2 — ?(1 + h+ ¢g°) (8P /r)° =0

-Solve it!
-neglect g2

-first term does not depend on the time ¢ (the second
doesnt!)

0P /cot + goP/0r = —wg/c

where wg the frequency in the flat space; in addition
1 1
Ob/or)2 =k? =~ . 2—_~ k2
(0P /0r) T+ (wo/c) L
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-It follows

0P /cot = —wq/c — gko

-What we measure? We measure the local, proper-time
frequency

1 1

-Therefore a shift in frequency

Aw/wg= —h/2 4+ cgko/wg

First term - the red shift; second term - Doppler ef-
fect (long)
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-Time-dependent part of the eikonal: ®4(t) = —wot +
koR(t): a translation, as expected

-The path? (09/0r)? = (1 — h)kg

-Write it in spherical coordinates; separate variables by
b = b, (r) + My, M a constant; O0P/OM = const gives
the equation of the trajectory (M is a generalized co-
ordinate, its momentum is constant)

The deflection angle (distance M /kg)

h- M/r?
2 M2/r2)3/2

Ap = —(k2/2) /OZ dr - z

(4 times smaller than in grav field of a point mass; our
metric is not that metric!)
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PART IV : QUANTIZATION

BASIC CHANGES
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Quantization
What are we doing?

Nothing Good (though NEW), even WORSE
than before

Because it is bad to solve for a non-inertial motion; we
just solve for an inertial frame and do the translation
(for instance, the Ham-Jac eq is solved with h for Mer-
cury’s perihelia precession; then apply the translation,
etc)

This is perfectly true for classical motion with trajectory
Things Change Fundamentally for the Quantal

Motion
26



Quantization

S = —ihiny; E — tho/0t, p — —ihd/0r

No trajectory, wavefunction

No determined physical quantities (E, p) (operators)
Means and deviations: statistical meaning

[|°density of probability (conservation)

Apply this procedure to the Ham-Jac eq E?2 — ¢?p? =

m2c?

27



Get the Klein-Gordon equation

821/ 0t° — 282 /0r? + (m?c* /)y = 0

Troubles: the conserved quantity is ¥*(9vy/0t)—(9y* /o),
both positive and negative (due to negative energies

E = —\/p202 + m2c¢*)- nonsense

Dirac: ihdy /0t = (acp + Bme2), matrices a and 3; get
a probability, but 9 is a spinor; so, the question remains
for the Klein-Gordon eq
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Approximate Klein-Gordon equation

Apply the quantization to the Ham-Jac eq in curved
space

(E — cgp)? — (1 + h)(p? + m?c?) =0

(neglecting g2)

Troubles: 1 + h does not commute with p2 + m2c?,
ambiguities

We may transfer it to the /hs as 1/(1+ h), and neglect
the gh-commutator
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Get then an approx Klein-Gordon eq in curved space

(ihd /0t — cgp)?yh — c*(1 + h)(p® + m?c?)p = 0

Still troubles, since we do not know where to put 1+ A
with respect to p2 + m2c?

However, in the non-relativistic limit this ambiguity does
not matter, and we get the Schrodinger equation (recall
h = 2¢p/mc?)

ihdy /0t = Hyp = (mc® + p2/2m + o) + cgpyp
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T he Fundamental Fact

The eigenstates are no more conserved due to
the non-uniform translation

We get quantal transition

An observer in a non-uniform translation sees
quantal transitions

Esssential thing: do not conserve the
momentum; the presence of the external
potential o(i.e. h) is essential

31



The approximate Klein-Gordon eq can be solved
by pert theory

(ihd/dt — cgp)?h — c2(1 4+ h) (p* + m?c)yp =0

Define H? = ¢2(1 4+ h)(p? + m2c?), solve in the first
order, get E2 = (1+h)(p2c?+m2c*), the wavefunctions
o(p)-plane waves plus a weak admixture of plane waves
(due to h); then we have (ihd/0t — cgp)y = Ey

Get the transition amplitude

—(i/h) / dt - e—i[E(p)—E(p’)]t/thpp,p

Conclusion: we do have quantal transitions!
32



Restricting to the first-order of the perturbation theory
we get also a Dirac equation

(ihd /8t — cgp)y = (acp + Bme?)1p

with leads to the same conclusion
A "profound" argument

LLet our eq be

(8/0t+cgd/or) % —c?(1+h)[0%¢/0r° — (m2c? /h2)y] = 0

like above
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Fourier transform; a homogeneous matricial equations
in labels (w,k); solve it by zeroing the determinant;
get the eigenvalues; they are labelled by points (w, k)
conveniently ordered; consequently, the eigenvalues are
useless, they do not provide an algebraic relationship
between w and k

That means that for an w we have many k and for a k
we have many w

That means that the plane waves scatter both in w and
in k
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That means that the quantization with plane waves is
the only way to understand such solutions of the 2nd
order diff eqs, and more, we have for them a statistical
meaning; this is The Quantal Fields Theory!
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PART V : FIELDS; HOW THEY ARE and What
THEY DO in a CURVED SPACE
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Fields

Cannot forget that the above Klein-Gordon or Dirac
equations in curved space are only approximate

Way out: The Fields!
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Real Scalar Field (general note: covariant derivative)

§ = [ daldry=g- [(0.)(0') + (m?c?/h?)?|

Eqgs of motion

(ihd/9t—cgp)*pp—c®(1+h) (p°+m?c?)p+(ihc® /2) (Oh/Or)pyp = O
This is the real Klein-Gordon equation in curved space

Note the additional interacting term (0h/Or)p

Supports a similar treatment with the perturbation the-

ory; same conclusion: quantal transitions
38



(Note: compare it with the KG eq in an electromagnetic
field

(tho/ot — ep)2eh — 02[(1'?18/81‘ + eA/c)2 + m2c?] =0

Quite different! (Gauge fields!))
The Hamiltonian of the Real Scalar Field

Quantization by N = 9L/0(0vy/0t), Hamiltonian by M(9y/0t)—
L, the Lagrangian in S = [dt- L

H:HO_I'th—I_ng
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Ho = [dr-[c®N2/4 + (99 /0r)? + (m2c /12)?] =

= Zp(a/Q)(apag_ + af,l_ap)
Hyp = [ dr-(V1+h=1) [2N2/4+ (89/0r) + (m2e2 /12)y?

Hyiy = —(c/2) [dr - [[1(g0y/Or) + (gdy/Or)MN] =
= —(¢/2) ¥p(gp)(apag + aff ap)

Systematic perturbation theory; scattering in the hg-
order (e = \/p202 + m2c*)
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Electromagnetic Field. Photons
S = —(1/16mc) /da;Odr . /=gF;;FY

Fzy = &LAJ—@AZ, 8ZFJk—|—8JFm+8ka =0 (free Maxwell
eqs)

Interacting Maxwell egs 8,;(v/—gF¥) =0
div[(E + g x B)/A] = divD = 0

%[(E + g xB)/A]l = curl[AB + g x E/A]

Perturbation theory; scattering, both in k and w
41



The Hamiltonian of the Photons

S = (1/8x) [dtdr - A(D? — B?) =

= (1/8x) [dtdr - (1/A)(E2 + 2E(g x B) — A2B?)

H = Hg + Hyp + Hyg

Hy = /dr (®N2/4 4 B?) = 3 (¢/2)(af,aap + aapaly,)
ap

Hyp = /dr (VIFh—1)(PN2/4 + B?)

42



Hi, = - (gp/2)(adpaap + aapady,)
ap

Systematic theory of perturbations (¢ = cp = chk)

Photons are scatterred in frequency, as a consequence
of a non-uniform translation, when in an external field
(like a static grav field)
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Other Fields. Quantum Gravity

Similar for other fields (spin-1/2 Dirac field) (technically
more cumbersome; vierbeins)

Gravitons; quantized (with troubles); moving in a curved
space S = fd:r;odr-\/——gR; g = go + dg, background and
gravitons; scattering of gravitons, i.e. of the space-
time, on space-time, ji.e. on matter or on the non-
inertial motion
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PART VI : OTHER non-INERTIAL MOTIONS
and MISCELLANEA; CONCLUSIONS
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Rotations

dr' =dr 4+ (2 x r) dt

dv =dv+ (2 x1)dt+2(2x v)dt + [Q x (Q x r)] dt
Non-uniform rotation, Coriolis, centrifugal

H=mv2/2 —m(Q2x1)2/24+¢o=p2/2m—Qrxp)+¢=

= p2/2m — QL + ¢

No Coriolis, no centrifugal; just L. we may neglect Q2
46



The above coordinate transformation gives the metric

14+h g1 92 93
g1 —1 0 O

9= g 0 -1 0
g3 O 0 -1

with

g=-Qxr/c
as before
Two distinctions: ¢g(¢,r)

Qr/cek 1

Coupling through the angular momentum L
47



Conclusions

Non-inertial motion (for instance of the observer) pro-
duces quantal transitions in the presence of an external
field

The coupling is through momentum p for translations
or through the angular momentum L for rotations; so,
the external field must not conserve these quantities

For instance, photons in a static gravitational field are
scattered toward the blue (the blue shift) while seen
from a non-uniform translation (or rotation)

Relation to the Unruh effect - quite distinct (the ob-
server in the U effect sees its own motion as a bath of
photons)
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Another more practical Conclusion:

The quantization in curved spaces has no
meaning or it has the meaning given here
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