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SUMMARY

1. Introduction. The main result of this investigation consists in obtaining
the cohesion of the atomic clusters, either free or deposited on solid substrates.
The cohesion of metallic structures is a direct consequence of the partial delocal-
ization of the valence electrons and their screened Coulomb interaction with the
ionic cores. It is shown that the quasi-classical description of these delocalized
charges allows the determination of the self-consistent potential of the electrons.
This potential is a superposition of screened Coulomb potentials, and exhibits
a weak spatial dependence in the inter-ionic regions, where the electrons move
almost (quasi-) freely. By estimating all the energy contributions, viz the ki-
netic energy, electron-electron interaction, electron-ion interaction and ion-ion
interaction, the quasi-classical energy functional is determined. It exhibits a
dependence on the atomic poositions and a variational parameter related to the
mean electron density. By such an estimation, the effective inter-atomic poten-
tials acting in these nanostructures are determined. They are highly repulsive at
small distance, weakly attractive at long distance, and exhibit a negative mini-
mal value in the region of the inter-atomic distances where the metallic binding
occurs. The expression of these inter-atomic potentials is

Φ(Ri −RJ) = −1
2
qz∗i z∗j

(
1− 2

q |Ri −RJ |

)
e−q|Ri−RJ | ,

where Ri and Rj are the positions of the atoms i and, respectively, j , z∗i and
z∗j are the effective valence charges of these atoms, and q is the screening wavevec-
tor determined from the minimization of the quasi-classical energy of the en-
semble of N atoms.

The quasi-classical energy functional is derived within the approximation of the
point-like ionic cores, each ion having an effective valence charge. In principle,
these valence effective charges are input parameters for the present method. For
getting numerical values for the binding energies and inter-atomic distances the
effective valence charges are estimated by making use of the theory of the atomic
screening. For this reason, the numerical results are only valid for heavy atoms,
i.e. atoms with large atomic numbers Z . In addition, because of the quasi-
classical description, the results are affected by errors for clusters consisting of
small number of atoms.

2. Atomic binding energy. For consistency, the quasi-classical decription
is applied to the atomic cohesion of the heavy atoms, so that their empirical
binding energy is reproduced highly satisfactorily, in a more direct manner than
the usual procedure which involves successive corrections to the Thomas-Fermi
result. In addition, effective charges are produced by the present quasi-classical
description for these atoms.
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3. Cohesion of the atomic clusters. The method is applied to the homo-
atomic metallic clusters consisting of up to 160 Fe, Ba or Na atoms. The approx-
imation of the point-like ionic cores simplifies considerably the computations.
The first step in applying the method is the minimization of the potential en-
ergy,

∑
i<j Φ(Ri − RJ), with respect to the reduced ionic positions xi = qRi.

Since for homo-atomic clusters the energy dependence on xi implies the atomic
nature only through a multiplicative factor z∗2, the geometric forms obtained
by this minimization are general, the effect of the atomic species being present
only in the inter-atomic distances, binding energies and vibration spectra. This
universality is a consequence of the point-like approximation for the ionic cores,
so it must be viewed as a prediction only for those atoms classes where this
approximation holds.

Minimization of the potential energy is performed by the gradient method. Orig-
inally, the atoms are distributed randomly in a volume, close in magnitude to
the expected cluster volume. The optimization of this volume is reached by
repeated runs of the minimization computing program, or directly from the
inter-atomic potential Φ. One can see that Φ reaches its minimum value for
x0 ' 2.73, so one expects the equilibrium inter-atomic distances to be close to
this value. Therefore, the original volume wherein the atoms are distributed
randomly is of the order of Nx3

0. For the random positions of the atoms one
computes the force acting on each atom, and, iteratively, displaces the atoms
along these forces, by steps sufficiently small as to get a decrease of the poten-
tial energy every step, untill equilibrium is reached (in the present numerical
computations all forces are smaller than 10−4eV/Å at equilibrium). The equi-
librium positions determined this way may correspond to the ground state or to
isomers, i.e. to clusters with the same number N of atoms, but having differ-
ent shapes and higher energies. In order to differentiate the ground state from
isomers, the minimization program is run a few hundreds times for each atomic
aggregate (for each number N of atoms), in order to get as close as possible to a
statistical ensemble as large as possible. In addition, in order to distinguish the
local minima from the saddle points the vibration spectrum is computed within
the harmonic-oscillator approximation. Finally, the quasi-classical energy Eq

is computed, it is thereafter minimized, the screening wavevector thus deter-
mined, and the exchange energy Eex added. The later is computed by using the
equilibrium value of the screening wavevector q. Finally, the total equilibrium
energy E is thereby obtained. The lowest value of the energy is associated to the
ground-state energy, while higher energy values are attributed to isomers. The
binding energy determined this way exhibits small irregularities with respect to
the atomic size N , which explains the higher stability of some clusters in com-
parison with their neighbours in size (clusters with one more or one less atom).
In order to get such variations the so-called abundance, or mass, spectrum is
computed, given by D = E(N + 1) + E(N − 1) − 2E(N), where E(N) is the
ground-state energy of a cluster consisting of N atoms. On such abundance
spectra magic numbers (local maxima) are identified, some obtained previously,
both experimentally and theoretically, the latter by using model inter-atomic
potentials. Having obtained the equilibrium reduced atomic coordinates xi by
minimizing the potential energy, and the screening wavevector q by minimizing
the quasi-classical energy, the equlibrium inter-atomic distances Rij = xij/q are
obtained; on the average, their values are of the order of 2− 3Å.

5



Usually, the clusters ground-state structures possess a higher symmetry in com-
parison with their isomers. It is worth noting that the homo-atomic clusters
structures agree satisfactorily with structures obtained by other methods, like
the density-functional method. A high peak in abundance spectrum indicates
a highly symmetric ground state and a higher isomers energy (there is usually
a gap in the energy distribution of the isomers in this case, with respect to
the ground state). For instance, the most abundant clusters are those with
an icosahedral symmetry, they consisting of superposed atomic shells, with the
upper-shell atoms placed in the lower-shell faces centres. In addition, special
situations are investigated, like one- and two-dimensional clusters, interaction
of two clusters, or clusters of a very large size (up to 1000 atoms).

The binding energies of the ground states obtained by the present method are
in good agreement with those obtained by other methods, where results are
availbale, as, for instance, density-functional computations for Fe cluster (iron,
Z = 26, z = 2, z∗ = 0.57) with N = 13 (E(N)/N ' −5.2eV); similarly,
the inter-atomic distances, of the order of 2Å are close in value to those re-
ported in other works. Similar results are obtained for other metallic clus-
ters, for instance, the ground-state energy per atom for Na clusters (sodium,
Z = 11, z = 1, z∗ = 0.44) is, on the average, E(N)/N ' −3eV, and, simi-
larly, E(N)/N ' −2eV for Ba clusters (barium, Z = 56, z = 2, z∗ = 0.34).
These numerical estimates are in good qualitative agreement with other numer-
ical results obtained within different theoretical models. In this respect, it is
worth noting the immense amount of work in atomic clusters, making use of
ab-initio wavefunction method, molecular dynamics, density functional or jel-
lium models. The present method offers the advantage of obtaining qualitative
and quantitative results by using relatively low computational resources; in ad-
dition, it offers an adequate starting point for getting more refined results. One
may also note here that the structures, magic numbers and binding energies, as
obtained recently by using a theoretical method based on an embedded-atom
potential for Pd (palladium) clusters of up to N = 20 atoms are very close to
the values obtained by the present method (z∗Pd = 0.40, cohesion energy per
atom ' −2.5eV for N = 20).

4. One-particle properties. Taking into account the slow varying part only of
the self-consistent potential within this approach, the Clemenger-Nilson poten-
tial is derived, a potential which is usually relevant for the electronic properties of
the atomic clusters. The one-particle picture of the Hartre-Fock quasi-particles
is thereby obtained. The main contribution to the ionization potential of the
atomic clusters consisting of a large number of atoms is also derived.

5. The cluster Fe13(C2H2)6. The method is extended to metallic clusters
which contain a small number of non-metallic inclusions, covalent or ionic in-
clusions. This way, the study of the cluster Fe13(C2H2)6, recently synthesized
experimentally, is made possible. Possible structures are obtained, inter-atomic
distances, vibration spectra and the metallic contribution to the binding energy,
the results being in a satisfactory agreement with the experimental ones. A spe-
cial point here is the distinction between the ground state and an isomeric state,
very close in energy.

6. Effective potentials in nanostructures. Another result is the general
form of the effective inter-atomic potentials obtained for a non-point-like charge
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distribution of the ionic cores. Such results represent a first step toward study-
ing the directional chemical bonds, a situation where the spatial distribution
of the ionic-core charges plays an important part, the point-like approximation
not holding anymore. For this general case the multi-particle character is high-
lighted for the general interaction in nanostructures, and the particular way
these interactions are included within the present method.

7. Metallic clusters deposited on surfaces. Another application of the
method is the study of the solid surfaces and clusters deposited on solid sur-
faces. Within the continuum approximation for the solid substrate the po-
tential of a semi-infinite solid is obtained, as well as the description of the
surface-charge double layer. This potential, corresponding to a free surface, is
in perfect agreement with the experimental data related to the work function
of solids. The interaction potential of atoms and solid surfaces is also derived
within the present method, leading to the investigation of the cohesion of metal-
lic clusters deposited on solid substrates. Similarly as for free clusters, geometric
forms, inter-atomic distances, binding energies, abundance spectra and geomet-
ric magic numbers are derived for ground states and isomers of metallic clusters
deposited on surfaces. Typically, there is a competition between the two, hori-
zontal and vertical, growth directions for these clusters. For small clusters the
ground states structures are two-dimensional, consisting of one layer deposited
along the solid substrate, while for larger clusters the growth proceeds along the
two directions, giving rise to multi-layer structures. Mono-layer structures for
large clusters only exist as isomers. An interesting result is getting structures
with part of their atoms underneath the surface, inside the solid substrate, sug-
gesting incipient forms of interfaces and contacts. These structures may also
be viewed as incipient quantum dots, of a very small size. All these results are
encouraging for employing the present theory and method to more complex situ-
ations, particularly for nanostructured interfaces, or nano-aggregates displaying
other dynamical or geometrical particularities.

8. Conclusions. At this stage of development, the present theory and method
may find various relevant applications, for instance, to hetero-atomic clusters,
i.e. clusters consisting of several atomic species, with various dynamic or geo-
metric constraints. Such an instance is provided by clusters under the action of
an external force. The jumps in mechanical tension, observed experimentally in
this case along nanostructured wires, is explained within the present theory.

In addition, there are a few directions the present theory and method can be
extended to. For instance, one expects that giving up the ionic-cores point-like
approximation gives more refined results regarding the inter-atomic distances
and binding energies. On the other side, taking into account the charge-density
variations on small distances (of the order of Bohr radius) cannot be done with-
out estimating the quantum corrections brought about by the abrupt variations
of the self-consistent potential within such regions. A more realistic picture is
thereby obtained for the quasiparticles properties.
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