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SUMMARY

1. A model of seismic focus.[1] It is widely agreed that the seismic energy
E released in an earthquake is related to the earthquake’s magnitude M by the
Gutenberg-Richter-type relationship

lnE = a+ bM . (1)

Statistical analysis of moderate and strong earthquakes (5.8 < M < 7), which
are probably most prone to represent a statistical ensemble, indicates values a '
10 and b ' 3.5 (in decimal logarithms a ' 4.4 and b ' 1.5) for energy measured
in J. (The error in seismic energy may be up to a factor of 10). These numerical
values may be adopted for the present purpose, although the considerations
made herein do not depend critically on such numerical values. Parameter a in
(1) indicates the existence of a threshold energy E0 = ea (E0 ' 4.4 · 104J), so
that equation (1) can be recast as E/E0 = ebM .

It is customary to assign a region of characteristic length R to the seismic energy
E, through E ∼ R3, and, similarly, a characteristic threshold length R0 can be
associated to the threshold energy E0 ∼ R3

0, leading to

ln(R/R0) = βM , (2)

where β = b/3 = 1.17. The two characteristic lengths R and R0 have a double
meaning, at least: on one side, they may be associated with the central core of
the critical focal zone where the seismic energy accumulates, and, on the other,
R may correspond to the characteristic length of the seismic region disrupted
by the earthquake, R0 being in this case a scale length. The empirical evidence
in the latter case seems to support an equation of the type (2).

It is assumed that the characteristic lengths R and R0correspond to a localized
critical focal region where the seismic energy builds up by mechanical tension.
It is also reasonable to assume that the process of accumulating energy in the
seismic focus exhibits a uniform velocity v, so that the accumulation of the
seismic energy in focus obeys the continuity equation

∂E/∂t = −vgradE , (3)

where t denotes the accumulation time. Further on, the same value v of the
velocity may be assumed along all three spatial coordinates, and the spatial
variation of energy along each coordinate is represented as (E +E0)/(R+R0).
By such assumptions equation (3) becomes

dE/dt = (1/r)v
E +E0

R +R0
, (4)

where r = 1/3. The factor 1/r = 3 in front of (4) arises, therefore, from pure
geometric reasons. Since for other, more special, geometries of the critical focal

3



zone this factor may differ from 3, notation r is preferred in the interest of the
generality of the treatment. For the present purpose the value of this parameter
is taken as r = 1/3. Equation (4) leads also to consider the accumulation time
t = R/v as well as the threshold time t0 = R0/v, so it becomes

dE/dt = (1/r)
E +E0

t+ t0
. (5)

The solution of (5) is obtained straightforwardly as

1 + t/t0 = (1 +E/E0)
r . (6)

For large values of energy E (E � E0) solution (6) reads t/t0 ' (E/E0)
r =

R/R0, or
t ' t0(E/E0)

r = t0e
βM , (7)

where the Gutenberg-Richter law (1) is used, and β = br = b/3 = 1.17. Equa-
tions (6) and (7) are the basic equations of the present model of seismic focus.
According to equation (5), such a model looks like a growth model, with a
typical power-law as given by (6).

2. Earthquake Statistical Distributions.[2] Let N0 be the number of
earthquakes during a long time T , characterized by the average threshold time
t0 = T/N0, where N0 is very large. The cutoff parameter t0 may be viewed as
the seismicity rate. Similarly, the frequency of N earthquakes characterized by
time t can be written asN/N0 = 1/(1+t/t0). Hence, it follows straightforwardly
the temporal probability distribution

P (t)dt = −d( 1

1 + t/t0
) =

1

(1 + t/t0)2
dt/t0 , (8)

or, making use of (6), the probability distribution in energy

P (E)dE =
r

(1 +E/E0)1+r
dE/E0 . (9)

Similar power-law distributions in energy have been derived recently by em-
ploying Tsalis entropy for the fragmentation of a dynamical fault-planes model.
Such distributions are sometimes called Omori-type distributions, where r is an
Omori parameter.

Making use of the energy distribution (9) and the Gutenberg-Richter law (1)
the magnitude distribution

P (M)dM = βe−βMdM (10)

is obtained straightforwardly, for large energies E � E0. The number ∆N of
seisms with magnitude between M and M + ∆M is given by ∆N/N0∆M =
P (M), or

lg(∆N/T ) = A−BM , (11)

where A = lg(β∆M/t0) and B = β/2.3. Such a linear relationship has been
checked for a large amount of earthquakes, and A ' 4.6 and B ' 0.6 were
obtained, for instance, for 5.8 < M < 7.3 (and ∆M = 0.1). These values
may be adopted here for the present purpose, though the numerical values of
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such quantities do not affect the results presented herein. Making use of the
value for the parameterB, it is obtained β ' 1.38, in fair agreement with the
value β = 1.17 given here. Similarly, a global rate of seismicity 1/t0 ∼ 105.5

per year is obtained from the value of the parameter A, which is consistent
with estimations of cca 105 − 106earthquakes per year, on the average. There
are appreciable deviations from the Gutenberg-Richter linear relationship (11)
for extreme values of the magnitude. For low values of M such deviations are
consistent with the exact relationship P (M) = bebM/(1+ ebM )1+r derived from
the distribution given by (9) and the Gutenberg-Richter law, but for large values
of the magnitude these deviations may indicate that either large seismic events
are not statistical events, or the deviations may be ascribed to a magnitude
saturation phenomenon.

It is also convenient to introduce the so-called recurrence law, or the excedence
rate, which gives the number N>of earthquakes with magnitude higher than M .
The corresponding probability is readily obtained from (10) as P> = e−βM , so
the excedence rate reads

ln(N>/T ) = − ln t0 − βM . (12)

This relationship is currently employed for analyzing the earthquake statisti-
cal distributions in magnitude. A recent analysis seems to indicate a certain
universality in the value of the β slope (B = β/2.3 ' 0.6).

It is worth noting that equation (7) may be viewed as providing the mean
recurrence time tr = t0e

βM for the occurrence of earthquakes of magnitude
M (energy E � E0). In fact, the mean recurrence time of earthquakes with
magnitude in the range M to M + ∆M is of interest. According to (10) the
rate of such earthquakes is given by ∆N/T = (β∆M/t0)e

−βM , so the mean
recurrence time can be obtained as

tr = (t0/β∆M)eβM . (13)

If the seismicity rate t0 is known, this equation may be used to predict the
mean recurrence times. However, it must be noted that the accuracy of such
predictions is, in fact, very low. Indeed, imposing a mean recurrence time tr, the
temporal distribution (1/tr)e

−t/tr is obtained immediately from the maximum
of the entropy. The deviation in the recurrence time defined as ¯(t2)1/2 − t̄
is (

√
2 − 1)tr for such distributions, which amounts to cca 41% of the mean

recurrence time tr. It is a very large deviation to be of practical use.

3. Accompanying seismic activity.[3] The description of the seismic activ-
ity accompanying a major seismic shock, both as foreshocks and aftershocks,
is relegated to forthcoming publications. A generalized Omori’s law is shown
to arise by a self-replication process underwent by a generating probability dis-
tribution. The latter is a self-generating distribution and thus described by an
exponential law, which leads to the original Omori’s law. Time dependence of
the released energy in accompanying seismic activity is given, as wel as generat-
ing exponential distributions in time, magnitude and inverse of energy, and the
corresponding Omori’s laws. The average deviation in magnitude in accompany-
ing seismic activity is associated to Bath law. The seismic activity is, in general,
much more complex than the simplified distinction between regular earthquakes,
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characterized by a mean recurrence time, and accompanying seisms, described
by Omori’s law. A more appropriate tool of describing the correlations between
seisms is provided by the pair distribution, which is shown to obey a universal
power law-exponential law, as derived from scaling arguments. The analysis of
this type of distribution, as well as its application to Vrancea region is left to
forthcoming publications.

4. Critical-point theory of foreshock regime.[4] Making use of the tem-
poral distribution

dP = h(τ)dτ =
1 −m

τ0
(τ/τ0)

−mdτ (14)

assumed by the critical-point theory for the accompanying seismic activity,
where the critical expoennt m 6= 1 (thus accounting for possible deviations
from Omori’s classical law), the time-dependence of the energy

ln(E/E0) ∼= −1 −m

r
ln(τ/τ0) (15)

is obtained, as well as of the magnitude

M = −1 −m

β
ln(τ/τ0) , (16)

bu using (9) and the Gutenberg-Richter relationship. Time τ > 0 is measured
with respect to the main seismic shock, and τ0 is a characteristic time, as re-
quired by this theory. However, the time-energy dependence for accomanying
seismic activity is distinct from the one predicted by the focus model described
above, which applies to main, regular earthquakes only. It is worth noting that
(1 − m)/r = 2 in (15), such that m = 1/3 for r = 1/3, providing the rate of
released energy obeys E ∼ −1/τ 2, as suggested by empirical data (in agreement
with theoretical results regarding the accompanying seismic activity).

5. Amplification factors.[5] For a linear harmonic oscillator of mass m, fre-
quency ω0 and friction coefficient α, such as the damping coefficient is λ =
α/2mω0, subjected to an external periodic force of amplitide f0, the amplifica-
tion factor of the displacement xmax is given by

Fd = |x|max /dmax
∼= 1

4λ
(1 − e−λ(2k+1)π/2) , (17)

at resonance, where dmax = 2f0/mω
2 and k denotes any integer. For small val-

ues of the damping coefficient λ the amplification factor may attain considerably
higher-than-unity values. Indeed, for λ(2k + 1)π/2 � 1 we get

Fd
∼= (2k + 1)π/8 (18)

from (17). Typical values for λ allows the integer k go up to k = 1, 2, 3, 4, where
the amplification factor reaches the values 1.18, 1.96, 2.75 and 3.53, respectively,
for times t = (2k + 1)T/4, where T is the period of the oscillations. For higher
values of the damping ( λ > 0.25, for instance) the amplification factor is less
than unity.

A similar analysis holds for the velocity, whose amplification factor is given by

Fv = |ẋ|max /vmax
∼= 1

2λ
(1 − e−λkπ) , (19)
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at resonance, where vmax = f0/mω0. For small values of the damping coefficient
the amplification factor is given by

Fv
∼= kπ/2 , (20)

and it may attain higher values than the amplification factor for displacement
(up to 2π for instance, corresponding to k = 4). Similarly, the amplification
factor for acceleration is given by

Fa = |ẍ|max /acmax =
1

2
|ωt sinωt− 2 cosωt|max . , (21)

where acmax = f0/m. Its maximum values are (slightly less than) Fa
∼= (2k +

1)π/4.

This theory is extended to external shocks of very short duration, leading to
amplification factors for displacement

Fd = 1/
√

2πe (22)

(where e ' 2.72), amplification factors Fv = 1 for velocity and Fa = 2.28 for ac-
celeration. As one can see, the amplification is less than unity for displacement,
equal to unity for velocity and higher than unity for acceleration for shocks of
very short duration

6. Elasticity of a uniaxial solid.[6] The wave propagation in elastic bodies,
and the associated phenomena, such as the attenuation of the elastic motion, or
the energy diffusion, under circumstances of anisotropy, complex structure (for
instance granular or fragmentary structure), inhomogeneities, anharmonicities,
etc, may be grouped under the generic term of non-linear elasticity.

Bodies with complex structures may exhibit anisotropies at macroscopic scale,
which affects profoundly their elastic properties. Wave propagation in such a
continuous body with axial anisotropy involves new elastic modes, associated
with distinct elastic motions in the plane transversal to the anisotropy axis and
along the anisotropy axis, like dilatations and compressions, shear modes, and
a new mode which is termed a pinch mode. The dispersion of the elastic waves
in such a body is appreciable, produced by the non-linearities induced by the
anisotropy in the eigenfrequencies. The method employed here may be extended
to other bodies exhibiting other types of anisotropies, or limited symmetries and
dimensions, special geometries, the non-linearities playing an important role in
all these situations. Such situations may be relevant for elastic discontinuities
in Earth’s inner zone (boundary of the inner core, cca 5000km depth), where a
new manganese-iron-silicate crystalline phase was recently discovered, akin to
the layered perovskite structures, only of much higher anistropy.

According to its symmetry, the elastic energy density of a uniaxial solid is gov-
erned by five elastic moduli,

εel = λu2
ii + µu2

ij + τu2
i3 + σu2

33 + νu33uii , (23)

where uij is the in-plane deformation tensor (i, j = 1, 2), ui3 is the deformation
vector defined by the anisotropy axis (label 3), and u33is a scalar.

7



This elastic energy gives rise to higly-dispersive waves, with highly non-linear
contributions to dispersion relations quartic in wavevectors,

ω2
1 (q) =

1

2ρ

(

2µq2⊥ + τq23
)

, (24)

and

ω2
2,3 (q) = 1

4ρ{[4 (λ+ µ) + τ ] q2
⊥

+ (τ + 4σ) q23±

±
[

[

[4 (λ+ µ) − τ ] q2
⊥

+ (τ − 4σ) q23
]2

+ 4 (τ + 2ν)
2
q23q

2
⊥

]
1

2

)} ,

(25)

originating in multiple mode-couplings. The notations above refer to the wavevec-
tor component q3 along the anisotropy axis, and to the wavevector projection
q⊥ in the basal plane. The waves in such a solid body exhibit also combined
polarizations.

7. Non-linear diffusion.[7, 8] The diffusion phenomena in complex structures
exhibit non-linearities that may lead to self-organized spatio-temporal patterns.
A generalized model of statistical fluid is applied to non-linear diffusion per-
formed by microscopic collisions in a non-equlibrium kinetic gas, leading to both
non-stochastic part of the Kardar-Parisi-Zhang equation and to a new diffusion
equation. The former is applicable to crystal growth on solid substrates, or to
water vapours ascending in atmosphere, while the latter exhibit more complex
self-organized spatial patterns. These equations are solved for two dimensions,
and extension to one- and three-dimensions is indicated. In plane, the radially-
symmetric solutions of these equations do not conserve the diffusion, and exhibit
singularities either at origin or at finite distances, as well as wavefronts propa-
gating slower and slower in time, having the form of disks or rings. They are
suggestive of the atmospheric clouds paterns, or wreaths of smoke and gaseous
emanation of chimneys and smokestakes. Similarly, such patterns are associated
to energy diffusion in complex structures, as, for instance, the wave localization
in heterogeneous bodies, and the local effects associated to such localization.
Such a localization phenomenon has been identified recently for seismic waves
propagating on the Earth’s surface, and suggestions have been made for ex-
tracting such type of information from the end sequence of the seismograms
(coda).

The non-linear diffusion equations described herein read

1

S

∂n

∂t
= 4n±A(gradn)2 , (26)

where S is the diffusion coefficient and A is a non-linear coupling constant.
The sign plus correponds to the non-stocahstic part of the Kardar-Parisi-Zhang
equation, while the sign minus corresponds to a new equation of non-linear diffu-
sion. The asymptotics of the solution of the former equation in two dimensions
read

n ∼ 1
A ln

∣

∣ln
(

ξ2/4S
)∣

∣ , ξ2/4S � 1 ,

n ∼ 1
ξ2/4S · e−ξ2/4S , ξ2/4S � 1 ,

(27)

where ξ = r/
√
t. They define a diffusion front at ξ2/4S ∼ 1, which means

r ∼ 2
√
St, which propagates with velocity dr/dt ∼ 1/

√
t −→ 0 for t −→ ∞,
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covering an area which increases linear in time, as the total number of diffusing
particles does. This solution has a disk-like form.

For the latter equation in (26), the solution has a logarithmic discontinuity at a

finite distance ξ0, where it looks like n ∼ − ln
∣

∣

∣
(ξ − ξ0)/2

√
S

∣

∣

∣
. This singularity

defines two fronts of diffusion, one of each side of the singularity, propagating in
opposite directions, slower and slower in time, and covering an ever increasing
area proportional to the total amount of diffusing particles. This solution has a
ring-like form.

It may be conceivable that seismic waves localized (like particles) on Earth’s
surface, as a consequence of heterogeneous structures, transport seismic energy
by such a non-linear mechanism of diffusion, exhibiting self-organized spatial
patterns like disks or rings.

8. Quasi-classical approximation.[9] For propagating distances much longer
than wavelengths the waves may be approximated by plane waves, or, equiv-
alently, by geometric rays similar to the optical rays. This is the current ap-
proximation in the theory of propagating seismic waves. The rays may suffer
refraction, reflexion, difraction, interference, etc, and in addition, they may un-
dergo a weak dispersion, arising from the slight change in the properties of the
propagating structure. This weak dispersion, which alters slightly the proper-
ties of the plane wave is treated by a standard method known as the WKB (or
WKBJ) approximation. The wave is given in this case by

ψ(x) =
C

√

k(x)
e
±i

∫

x

x0

k·dx
, (28)

where k(x) is the (variable) wavevector (and λ(x) = 1/k(x) is the wavelength) C
and x0 are constants of integration. The approximation is valid for |dλ/dx| � 1.

Distance may be divided in infinitesimal slices xn−1 < x < xn, n = 0, 1, ...N+1,
and the wave may be approximated in each of them by a superposition

ψn(x) = Ane
iknx +Bne

−iknx , xn−1 < x < xn, n = 0, 1, ...N + 1 (29)

of transmitted and reflected waves, whereA0 = 1, B0 = R, AN+1 = T, BN+1 =
0, x−1 and xN+1 being arbitrary. The continuity of the wave leads to a matricial
equation, whose solution coincides with (28).

The present treatment can be extended in at least three directions. First, one
may account for an incidence different from normal, including this way refrac-
tion on an inhomogeneous structure. Then, higher-order contributions can be
included in the matricial equation, leading thus to corrections to the rays the-
ory of wave propagation. And, finally, defects, more or less localized, can be
included in this treatment, enlarging thus appreciably the capabilities of treating
the wave propagation in complex structures.

9. A non-linear equation of elastic waves.[10] Apart from statistical the-
ories, another topic much debated in seismology is the understanding of the
non-linear effects associated with the propagation of the seismic energy, and
with the seismic waves in general. This is an issue in non-linear elasticity, and
an instance of an exact solution to a non-linear wave equation is briefly presented
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here, as well as its relation to the quasi-plane waves. The intriguing issue in this
connection is that, the non-linearities being present, exact solutions, as the one
presented below are unphysical, and still the empirical observations are com-
patible with a limited type of quasi-linear behaviour in the propagation of the
seismic energy and the associated effects. It is shown below that indeed, there
are local amplification factors in the non-linear effects of the propagation of the
seismic energy, which, however, still allow for a quasi-linear regime.

The first non-linear correction to the wave equation comes from the cubic an-
harmonicities, which lead to an elastic energy

E =

∫

dr(
λ

2
u2

ii + µu2
ij +

1

3
Auijujkuki +Bu2

ijukk +
1

3
Cu3

ii) , (30)

for an isotropic elastic body, where λ and µ are the usual Lame coefficients,
A, B, C are constant coefficients, and uij = (1/2)(∂ui/∂xj+∂uj/∂xi+∂uk/∂xi ·
∂uk/∂xj) is the cartesian (finite-) strain tensor. It is assumed that the coeffi-
cients in (30) are such as the stability conditions are satisfied. First, a transverse
displacement, say, u2(x1) is not affected by the cubic anharmonicities above, so
that the corresponding linear wave equation is left unchanged (the transverse
waves propagate with velocity vt =

√

µ/ρ, where ρ is the density of the body).

A longitudinal displacement u1(x1) = u(x) is, however, subjected to the non-
linear equation ∂2u/∂t2 = (∂2u/∂x2)(v2

l + v2∂u/∂x), where vl =
√

(λ+ 2µ)/ρ
is the velocity of the longitudinal waves, and v2 = [3(λ+2µ)+2(A+3B+ c)]/ρ
is a characteristic square velocity. Leaving aside again the stability conditions,
and denoting U = ∂u/∂x+ v2

l /v
2, this non-linear equation becomes

∂2U/∂t2 = (v2/2)∂2U2/∂x2 . (31)

This equation is the continuum limit of the Fermi-Pasta-Ulam equation. Its
solution, and solutions of other, similar, equations have been analyzed recently
by making use of the Lie algebra of the equation symmetry group and the
prolongation technique. The solution U(t, x) = g(t)f(x) of equation (31) can
be obtained by elementary quadratures. The time dependence is given by

g(t) = |s| [
√

3
1 − cn(

√√
3 |s| |ωt|)

1 + cn(
√√

3 |s| |ωt|)
− 1]sgn(ω2) , (32)

where s = −g(0) (ġ(0) = 0), ω is a constant of integration and cn is the
Jacobi elliptic cosine-amplitude. Function g(t)given by (32) is a periodic func-

tion with period
√√

3 |s| |ωt| = 4K, where K is the complete elliptic integral

F (π/2, k) (∼ 4) for k2 = (2 +
√

3)/4. It has singularities at
√√

3 |s| |ωt| =

4K(n+1/2), where n is an integer. These singularities make the solution of eq.
(31) unphysical. The spatial dependence f(x) is given by the implicit equation
√

(|f/h|)3 − 1F (1/2, 1/3, 3/2; 1− (|f/h|)3) = 3 |ωx/v| /2
√

|h| , where F is the
Gauss hypergeometric function and h = f(0) is another constant of integration
(f ′(0) = 0). Function f goes like f ∼ |h| sgn(ω/v)2 + (ω/2v)2x2 for x ∼ 0, and
f ∼ (ω/2v)2x2 at infinite (x → ±∞). It is worth noting that f(x) is boundless
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for spatial boundaries placed at infinite, which adds to the unphysical char-
acter of the solution. The general solution of the non-linear equation for the
longitudinal strain u(t, x) reads then

u(t, x) = g(t− t0)

∫ x

0

dxf(x− x0) − (vl/v)
2x+ c , (33)

where the origin of time t0 and the origin of space x0 are introduced, and c is
another constant of integration. The nature of this solution is worth discussing.
First, it is worth noting that the displacement given by (33) implies large strain
(and stress) values at the boundary of the spatial region, which is consistent
with the accumulation model of the critical focal zone employed herein. Sec-
ond, these large strain and stress values may lead in time to ruptures at the
boundaries of the focal zone (or at the boundaries of the critical seismic region),
as a consequence of the boundless increase of the time dependence (which is
singular at certain times, as noted above). These ruptures may propagate, with
a non-uniform velocity, which represents a distinct mechanism of dissipation of
the seismic energy in the critical zone affected by non-linearities. It is not re-
stricted to cubic anharmonicities, higher-order non-linear contributions to the
wave equation leading to a similar behaviour. Third, it is worth noting that the
total energy conserves, but it is non-uniformly distributed, such that ruptures
may appear in time at the boundaries of the spatial region. The energy flow
at the boundaries increases also boundlesly in time. The process looks rather
like a vibration than a wave propagation. All these features make the solution
unphysical. Exact, unphysical solutions of non-linear type described above are
therefore more appropriate for the critical focal zone and for the seismic region
disrupted by the earthquakes.

After all this seismic energy is dissipated in ruptures and damage of the elas-
tic body, the non-linear contributions to the wave equation may be viewed as
perturbation to the plane wave solutions of the linear equation. Indeed, intro-
ducing the perturbation parameter ε = (v/vl)

2 the equation for the longitudinal
displacement may be written as ü− v2

l u
′′ = εv2

l u
′u′′, whose solution reads

u = a cos(ωt− kx) + 1
16εa

2k2(x+ vlt) cos[2(ωt− kx)]+

+ 1
128ε

2a3k4(x+ vlt)
2[cos[3(ωt− kx)] − cos(ωt− kx)] + ...

(34)

where a is the amplitude, ω = vlk is the frequency and k is the wavevector of the
elementary plane wave. The solution given by (34) is, actually, a triple expansion
in powers of the perturbation parameter ε, the ratio ak of the amplitude to
the wavelength, and the ratio lk of a characteristic length l = x + vlt to the
wavelength. The solution (34) is actually an asymptotic series, and it has a
limited validity over finite distances and times, providing that the amplitude is
much smaller than the wavelength. Such a wave may be viewed as a quasi-plane
wave, i.e. a plane wave distorted by higher-order harmonics of limited validity
in space and time. It is worth noting the amplification factor F of the order of
F ' 1 + εalk2/16 (in displacement) brought by the non-linear effects to such
quasi-plane waves, amplification which is well-documented in the analysis of the
local seismic effects due to non-linearities. An estimation of the distribution
of the seismic energy originating in a localized focal zone shows that the long
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wavelengths and small amplitudes are favoured, the ratio ak being of the order
of 10−2 − 10−4. Therefore, one may use the quasi-plane waves pictures up to
distances l very large in comparison with the wavelengths.

Another worth noting non-linear phenomenon appears in the non-linear cou-
pling between a longitudinal displacement and a transverse one, propagating
in the same direction. Beside higher-order harmonics and amplification fac-
tors, there may appear resonances at certain frequencies, due to the combined-
frequency phenomenon, as, for instance, at the transverse wave frequency ω2 =
(ω1/2)(1 + vt/vl), where ω1is the frequency of the longitudinal wave. Such
resonances depend on the ratio vt/vl of the waves velocities. Another non-
linear coupling arises, for instance, from longitudinal displacements of the type
u1(x1) , u2(x2) , u3(x3), which might be relevant for the dynamics of the ac-
cumulation model of the critical focal zone. There seems not to be a simple
treatment of such coupled non-linear equations.

10. Conclusions. There seems to be at least three basic features pertaining
to the science of the earthquakes, according to the present image of this science.
First, the energy of the earthquakes is distributed over a huge scale, according
to the semi-empirical Gutenberg-Richter law (1), relating the seismic energy
to magnitude M . Second, the seismic energy originates in a rather restricted
critical focal zone, of a characteristic linear size given by (2); at the same time,
equation (2) refers also to an epicentral length scale characteristic of the seismic
region disrupted by the earthquake. Third, the large variety of the earthquakes
in energy, magnitude, number, space and time suggests a statistical approach, as
based on their various distributions. Such a statistical approach is also suggested
by the distribution in magnitudes of the differential number of earthquakes
(equation (11)), by a similar distribution of the earthquakes with magnitudes
exceeding a given value (excedence, or recurrence law given by equation (12)),
by the Omori temporal distribution of the aftershocks (which goes like t−γ ,
where γ = 1+), and, in general, by Omori-type power laws, where a positive
Omori parameter r appears, like in (9), by the average aftershock magnitude
(Bath’s law, this aftershock magnitude being 1.2 less than the magnitude of the
main shock), and by the time Poisson-like distribution of the recurrence times.
All these laws are semi-empirical, having a limited validity. Such a limitation
comes mainly from the fact that very small seisms, or very great earthquakes,
by their own nature, do not reliably belong to a statistical ensemble. It is also
woth noting an intriguing issue much debated today in seismology, regarding
the effects of the non-linearities on the propagation of the seismic energy, and
the corresponding estimation of such local effects, especially in studies of seismic
risk and hazard.

An attempt of a systematic understanding of such basic features in seismology
is made here, by introducing an accumulation, or growth, model for the concen-
tration of the seismic energy in the critical focal zone. This model relates the
accumulation time to the seimic energy (equation (3)), and introduces a char-
acteristic parameter r, whose value r = 1/3 is derived on geometrical grounds.
It turns out that this parameter r is an Omori parameter. Indeed, the second
main theoretical point made here is the interpretation of the accumulation time
as the average recurrence time of the earthquakes with corresponding energy
(and magnitude), as given by the accumulation model. On this basis, the tem-
poral distribution (8) of the earthquake average recurrence times is derived, the
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Omori distribution in energy (equation (9)) and the exponential distribution in
magnitudes with the exponent β = br = 3.5/3 = 1.17 (equations (10) and (11)).
The derivation of Omori’s law and Bath law for accompanying seismic activity
are relegated to forthcoming publications. The differential distribution of the
earthquakes in magnitudes (11), as well as the excedence rate (recurrence law)
(12) are derived from the exponential distribution in magnitudes with β = 1.17,
in agreement with empirical observations. The time Poisson-like distribution
of earthquakes is also derived for a fixed mean recurence time (equation of
type (1/tr) exp(−t/tr)), and the differential average recurrence time is given for
earthquakes with magnitude in the range M to M + ∆M (equation (13)). The
errors in estimating both the magnitude and time distributions are discussed,
and the errors asssociated with the seismicity rate 1/t0 are shown to be critical
for the statistical prediction of long succession times of the great earthquakes
(t0 being also a threshold time introduced by the accumulation model). An
application of these results is made to the great earthquakes in the seismic re-
gion Vrancea, Romania, in the past 200years. The universal pair-correlation
distribution for earhtquakes and its application to Vrancea region are left to
forthcoming publications.

It is shown, by analyzing the cubic anharmonic corrections to the elastic waves
equation corresponding to longitudinal displacements, that the non-linearities
have a disruptive effect on the critical focal zone, or the epicentral region greatly
affected by the earthquake. The exact solution of this equation (equations
(32) and (33)) has an unphysical character, exhibiting time singularities and
a boundless increase at the boundaries of the spatial region. Such an unphysical
behaviour is also specific to higher-order non-linearities. Consequently, ruptures
may appear at the boundaries of the critical zone, which may propagate in the
whole body of the region. However, the propagating seismic energy is distributed
mainly on long wavelengths and small amplitudes, such that for small values of
the ratio of the amplitude to the wavelength the linear picture of quasi-plane
waves is still valid, in a perturbational picture, for limited distances and times
(as controlled by the ratio of a characteristic length l to the wavelength, accord-
ing to equation (34)). As a consequence of the non-linearirites the quasi-plane
waves are distorted by higher-order harmonics, and exhibit local amplification
factors in displacement, velocity and acceleration, as documented by empirical
evidence. The non-linearities may lead, in this perturbational approach, to other
effects, as resonances, combined-frequency phenomenon, or non-linear coupling
between various kinds of elastic waves, which enriches considerably the linear
phenomenology of waves propagation.

The remaining of critical-point theory, amplification factors, elastic waves in
a uniaxial solid, non-linear diffusion and a new derivation of the rays theory
pertain to various generalizations and extensions into new methods for treating
seismic phenomenology discussed partly in Refs.[11]-[17]
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