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1 Introduction

The phenomenological description of α-decay half-lives uses a simple picture
of a preformed α-cluster penetrating through the Coulomb barrier, presented
in Refs. [1, 2], with a preformation factor proportional to the fragmentation
potential, as shown in Ref. [3]. Simple empirical formulas for the half-lives
corresponding to ground-to-ground α-transitions have been given in Ref. [4].
The microscopic description needs a more sophisticated R-matrix theory in
terms of the formation amplitude, see for instance Refs. [5, 6, 7, 8, 9].

2 Second section

Let us consider the general α-decay transition

P (JP ) → D(J) + α(L) , (2.1)

where JP denotes the spin/parity of the parent nucleus, J the spin/parity
of the daughter nucleus and L the angular momentum of the emitted α-
particle. We consider a wave function with a clustered α-daughter ansatz
[10] with the total spin of the initial state

ΨJPMP
(ξ,R) =

∑

c=(J,L)

fc(R)

R
Y(c)
JPMP

(ξ, R̂) . (2.2)

Here, we introduced the core-angular harmonic

Y(c)
JPMP

(ξ, R̂) =
[

ΦJ(ξ)⊗ YL(R̂)
]

JPMP

, (2.3)

where ΦJMJ
(ξ) denotes the daughter internal wave function with ξ the

daughter degrees of freedom, while YLML
(R̂) is the standard spherical har-

monic describing the angular motion of the α-daughter system. The ra-
dial function fc(R) describes the α-daughter radial motion in the channel
c ≡ (J,L). At large distances it has an outgoing asymptotic expression

fc(R) → NcH
(+)
L (κcR,χc) , (2.4)

in terms of the Coulomb-Hankel spherical wave depending on the reduced
radius κcR and Coulomb parameter

χc =
2ZDZα

h̄vc
∼ 2ZDZα√

Qα −Ec
, (2.5)
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where Qα is the Q-value of the decay process. By using the continuity
equation one obtains that the total decay width as a sum of partial widths
[10]

Γ =
∑

c

Γc =
∑

c

h̄vc lim
R→∞

|fc(R)|2 (2.6)

=
∑

c

h̄vc|Nc|2 ,

where vc = h̄κc/µ is the center of mass velocity at infinity in the α-daughter
channel c.

3 Third Section

3.1 First Subsection

The CSM was proposed in Refs. [11] as a tool to describe in a unified way
the spectra of vibrational, transitional and rotational nuclei. It treats the
surface vibrations of a deformed nucleus by using an exponential superpo-
sition of boson operators. The model was later extensively developed for
the description of low-lying as well as high spin states in nuclei, including
isospin degrees of freedom (for a review, see Ref. [12]).

The wave function of an axially deformed even-even nucleus in its intrin-
sic system of coordinates is given by a coherent superposition of quadrupole
boson operators b2µ with µ = 0 acting on the vacuum state

|ψg〉 = ed
(

b†
20
−b20

)

|0〉 , (3.1)

in terms of the deformation parameter proportional to the static quadrupole
deformation

d = κβ2 . (3.2)

Physical states which define the ground band are obtained by projecting out
the angular momentum

|ϕ(g)
J 〉 = N (g)

J P̂ J
M0|ψg〉 , (3.3)

in terms of the projection operator

P̂ J
MK =

√

2J + 1

8π2

∫

dωDJ
MK(ω)R̂(ω), (3.4)
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whereDJ
MK(ω) is a Wigner function and R̂(ω) is a rotation operator, parametrized

by the Euler angles ω.
The norm of the wave function is given by

N (g)
J =

[

(2J + 1)I
(0)
J (d)

]−1/2
ed

2/2 , (3.5)

in terms of the following integral

I
(0)
J (d) =

∫ 1

0
PJ (x)e

d2P2(x)dx , (3.6)

where PJ(x) are Legendre polynomials. The simplest estimate of the ground
band energy spectrum is given by

EJ(d) = A1

[

〈ϕ(g)
J |N̂ |ϕ(g)

J 〉 − 〈ϕ(g)
0 |N̂ |ϕ(g)

0 〉
]

(3.7)

= A1d
2 [IJ(d) − I0(d)] ,

where N̂ is the operator for the number of bosons. Here, we defined the
following function depending on the deformation parameter

IJ(d) =
I
(1)
J (d)

I
(0)
J (d)

(3.8)

I
(1)
J (d) ≡ dI

(0)
J (x)

dx
, x = d2 .

Notice that for small values of d the energy spectrum has a vibrational
character EJ ∼ A1J , while for large values it has a rotational shape EJ ∼
A1J(J+1) [11]. A one parameter description of the CSM Hamiltonian leads
to a universal dependence of the energy ratio on the deformation parameter

EJ+2

EJ
=

IJ+2(d)− I0(d)
IJ(d)− I0(d)

. (3.9)

3.2 Second subsection

For an odd-mass nucleus, the state of total angular momentum I and pro-
jection M is given by projecting out the product between the coherent state
(3.1) and the single particle state ψjm, where j is a shorthand notation for
all of the quantum numbers of the state, that is

ΦIM = P I
M0 [ψjφg] . (3.10)
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A straighforward calculation leads to the following result

ΦIM =
∑

J

XJj
I

[

ϕ
(g)
J ⊗ ψjm

]

IM
, (3.11)

with normalization coefficients XJj
I given by

XJj
I =

(

N (g)
J

)−1
〈jJ ; Ω0|IΩ〉

√

∑

J ′

(

N (g)
J ′

)−2
(〈jJ ′Ω0|IΩ〉)2

, (3.12)

where Ω is the fixed z-projection of the single-particle angular momentum
j.

The states built upon the bandhead I = j = Ω that follow the sequence
I = Ω,Ω + 1,Ω + 2, . . . constitute a rotational band. In the Nilsson model,
these states are labeled by the set Ωπ [NnzΛ], where π is the parity, N
is the principal quantum number, nz the number of nodes of the radial
wavefunction in the z direction and Λ the projection of the single-particle
orbital angular momentum. The last three numbers act only as labels, as
the good quantum numbers are only Ω and π.

The simplest Hamiltonian that can describe such a rotational structure
consists of two terms:

H = A1b
†
2 · b2 −A2r

2
(

b†2 + b̃2
)

· Y2. (3.13)

where by dot we denoted the scalar product. A1 is a strength parameter
required to fit experimental data and A2 is the strength of the particle-core
QQ interaction.

For the description of the rotational band the only relevant parameter is
A1 due to the fact that the particle-core term is common. Instead of solving
the eigenvalue problem by a full diagonalization procedure, a simpler ap-
proach, involving the analytical expression for the diagonal matrix elements
of the Hamiltonian (3.13) in the basis of Eq. (3.11) suffices:

〈IM |H|IM〉 = A1d
2fjΩI − d

(

N +
3

2

)

× (3.14)

× 〈j2;Ω0|jΩ〉〈j2; 1
2
0|j 1

2
〉,

with fjΩI given by
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(a) Ω=3/2
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(b) Ω=5/2
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(c) Ω=7/2
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(d) Ω=9/2

Figure 1: Normalized energy levels EI as function of deformation d, for
different values of the single particle angular momentum projection Ω.

fjΩI =

∑

J
〈Ij; Ω − Ω|J0〉2I(1)

J (d)

∑

J
〈Ij; Ω − Ω|J0〉2I(0)

J (d)
. (3.15)

The shape of such a spectrum is dependent both on the deformation param-
eter and on the value of Ω, as can be seen in Fig. 1.

While this approach is adequate, if a greater precision in the description
of the nuclear energy spectrum is required, then more terms can be added to
the Hamiltonian (3.13). Let us also mention that the development presented
here is appropriate for any rotational band built upon an angular momentum
projection Ω 6= 1

2 . The special case Ω = 1
2 requires a modification of the

formalism.

4 Conclusions

Here include Conclusions.
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