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Abstract

The algebra semidirect sum of the real three-dimensional Heisenberg
algebra and the su(1, 1) algebra admits a realization by first order differ-
ential operators with polynomial coefficients. In order to construct such a
representation we use coherent state vectors based on the Kähler manifold
which as set is the product of the complex plane and the unit disk. We
present the Hilbert space of holomorphic functions on which the differen-
tial operators act: the reproducing kernel, the group invariant measure,
the base of orthonormal polynomials.

1 Introduction

In this paper we construct representations of Lie algebras which are semidirect
sum of Heisenberg algebras and semisimple Lie algebras by first order differential
operators with holomorphic polynomials coefficients. The natural framework for
such an approach is furnished by the coherent state (CS)-groups, i.e. groups
which admit an orbit which is a complex submanifold of a projective Hilbert
space [15],[16]. Such type of groups contains the compact groups, the simple
hermitian groups, certain solvable groups and also some mixed groups as the
semidirect product of the Heisenberg-Weyl (HW) group and the symplectic
group [16].

For hermitian symmetric spaces we have produced [5], [6] simple formulas
which show that the differential action of the generators of a hermitian group G
on holomorphic functions defined on the hermitian symmetric spaces G/H can
be written down as a sum of two terms, one a polynomial P , and the second one a
sum of partial derivatives times some polynomials Q-s, the degree of polynomials
being less than 3. We have generalized the results of [5], [6] to Kähler CS-orbits
of semisimple Lie groups [7], [9]. The differential action of the generators of
the groups is of the same type as in the case of hermitian symmetric orbits,
i.e. first order differential operators with holomorphic polynomial coefficients,
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but the maximal degree of the polynomials is grater than 2. In [8] we have
discussed the hypothesis that the generators of CS-groups admit representations
by first order differential operators with holomorphic polynomials coefficients on
CS-manifolds. We have obtained [11] such a representation for the so called
Jacobi algebra (cf. p. 178 in [16]), i.e. the Lie algebra semidirect sum of the
three-dimensional Heisenberg algebra h1 and the algebra of the group SU(1, 1),
g := h1 � su(1, 1).

The paper is laid out as follows. §2 presents the Jacobi algebra. Perelo-
mov’s CS-vectors [18] associated with the Jacobi group G := HW � SU(1, 1)
(cf. denomination used at p. 701 in [16]) are based on the manifold M :=
HW/R × SU(1, 1)/U(1) = C × D1. Lemma 1 expresses the differential action
of the generators of the Jacobi group. In Lemma 2 of §3 we calculate the repro-
ducing kernel K : M × M̄ → C. Several facts concerning the representations
of the groups HW and SU(1, 1) are collected in §4. As a consequence of the
fact that the Heisenberg algebra is an ideal of the Jacobi algebra, we obtain
several relations for the representations of the corresponding groups and we
find the recipe to change the order of the representations of the groups HW
and SU(1, 1). Proposition 1 expresses the action of the Jacobi group on Perelo-
mov’s CS-vectors. In §5 we construct the symmetric Fock space attached to
the reproducing kernel K from the symmetric Fock spaces associated with the
groups HW and SU(1, 1). The G-invariant Kähler two-form ω and the volume
form on the manifold M are calculated using the general prescription of [7, 8].
A simple application [6, 7] to equations of motion [12] on M determined by
linear Hamiltonians in the generators of the Jacobi group are presented at the
end. More details about the proofs can be found in [11]. Some of the relations
presented in this paper have appeared earlier in the context of squeezed states
[14] in quantum optics [19].

2 The differential action of the the Jacobi alge-

bra

The Heisenberg-Weyl group is the group with the 3-dimensional real Lie algebra
isomorphic to the Heisenberg algebra

h1 ≡ gHW =< is1 + xa+ − x̄a >s∈R,x∈C, (2.1)

where a+ (a) are the boson creation (respectively, annihilation) operators which
verify the canonical commutation relations (CCR) (2.5a).

We consider the Lie algebra of the group SU(1, 1):

su(1, 1) =< 2iθK0 + yK+ − ȳK− >θ∈R,y∈C, (2.2)

where the generators K0,+,− verify the standard commutation relations (2.5b).
We consider the following matrix realization of the algebra su(1, 1):

K0 =
1
2

(
1 0
0 −1

)
, K+ = i

(
0 1
0 0

)
, K− = i

(
0 0
1 0

)
. (2.3)

The Jacobi algebra is the the semidirect sum

g := h1 � su(1, 1), (2.4)



Holomorphic representation of Lie algebras 75

where h1 is an ideal in g determined by the commutation relations:

[a, a+] = 1, (2.5a)
[K0, K±] = ±K± , [K−, K+] = 2K0, (2.5b)
[a, K+] = a+ ,

[
K−, a+

]
= a, (2.5c)[

K+, a+
]

= [K−, a] = 0, (2.5d)[
K0, a+

]
=

1
2
a+, [K0, a] = −1

2
a. (2.5e)

We associate to the generators a, a+ of the HW group and to the generators
K0,+,− of the group SU(1, 1) the operators a, a+, respectively K0,+,−, where
(a+)+ = a, K+

0 = K0, K
+
± = K∓. We impose to the cyclic vector e0 the

conditions

ae0 = 0, (2.6a)
K−e0 = 0, (2.6b)
K0e0 = ke0; k > 0, 2k = 2, 3, .... (2.6c)

In (2.6c) we consider the positive discrete series representations D+
k of SU(1, 1)

(cf. [1]).
We define Perelomov’s coherent state vectors [18]

ez,w := eza++wK+e0, z ∈ C, |w| < 1. (2.7)

based on the manifold

M := HW/R × SU(1, 1)/U(1), (2.8a)
M = D := C × D1. (2.8b)

The general scheme [7, 8] associates to elements of the Lie algebra g first or-
der holomorphic differential operators X ∈ g → X with polynomial coefficients.

Lemma 1. The differential action of the generators (2.5a)-(2.5e) of the Jacobi
algebra (2.4) is given by the formulas:

a =
∂

∂z
; a+ = z + w

∂

∂z
; (2.9a)

K− =
∂

∂w
; K0 = k +

1
2
z

∂

∂z
+ w

∂

∂w
; (2.9b)

K+ =
1
2
z2 + 2kw + zw

∂

∂z
+ w2 ∂

∂w
. (2.9c)

Sketch of the proof. We start with the formal relations:

a+ez,w =
∂

∂z
ez,w; K+ez,w =

∂

∂w
ez,w.

The proof is based on the general formula

Ad(exp X) = exp(adX), (2.10)

valid for Lie algebras g, which here we write down explicitly as

AeX = eX(A − [X, A] +
1
2
[X, [X, A]] + · · · ), (2.11)

and we take X = za+ + wK+ because of the definition (2.7).
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3 The reproducing kernel

Lemma 2. Let K = K(z̄, w̄, z, w), where z ∈ C, w ∈ C, |w| < 1,

K := (e0, e
z̄a+w̄K−eza++wK+e0). (3.1)

Then the reproducing kernel is

K = (1 − ww̄)−2k exp
2zz̄ + z2w̄ + z̄2w

2(1 − ww̄)
. (3.2)

More generally, the kernel K : M × M̄ → C is:

K(z, w; z̄′, w̄′) := (ez̄,w̄, ez̄′,w̄′) = (1 − ww̄′)−2k exp
2z̄′z + z2w̄′ + z̄′2w

2(1 − ww̄′)
. (3.3)

Sketch of the proof. We introduce the auxiliary operators:

K+ =
1
2
(a+)2 + K ′

+, (3.4a)

K− =
1
2
a2 + K′

−, (3.4b)

K0 =
1
2
(a+a +

1
2
) + K′

0. (3.4c)

We use the relation

(e0, e
w̄K′

−ew′K ′
+e0) = (1 − w′w̄)−2k′

, k = k′ +
1
4
. (3.5)

Recall (cf. [1]) that ek,k+m is an orthonormal system, where

ek,k+m := akm(K+)mek,k; a2
km =

Γ(2k)
m!Γ(m + 2k)

. (3.6)

We use also the orthonormality of the n-particle states:

|n >= (n!)−
1
2 (a+)n|0 >; < n′, n >= δnn′ . (3.7)

We introduce a notation E = E(z, w) and we write down

E(z, w) :=eza++ w
2 (a+)2 =

∑
p,q≥0

zp

p!
(w

2 )q

q!
(a+)p+2q =

∑
n≥0

[n
2 ]∑

q=0

zn−2q

(n − 2q)!q!

(w

2

)q

(a+)n.

(3.8)
We use the following relations of the Hermite polynomials (cf. 10.13.9 and

10.13.22 in [4]):

Hn(x) = n!
[n
2 ]∑

m=0

(−1)m(2x)n−2m

m!(n − 2m)!
, (3.9)

∞∑
n=o

( s
2 )n

n!
Hn(x)Hn(y) =

1√
1 − s2

exp
2xys − (x2 + y2)s2

1 − s2
, |s| < 1. (3.10)
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4 The group action

Let us recall some relations for the displacement operator (see eg. [13]):

D(α) := exp(αa+ − ᾱa) = exp(−1
2
|α|2) exp(αa+) exp(−ᾱa), (4.1)

D(α2)D(α1) = eiθh(α2,α1)D(α2 + α1), θh(α2, α1) := �(α2ᾱ1). (4.2)

We denote by S the Dk
+ representation of the group SU(1, 1) and let us

introduce the notation S(z) = S(w)). We have (see e.g. [18]):

S(z) := exp(zK+ − z̄K−), z ∈ C; (4.3a)
S(w) = exp(wK+) exp(ηK0) exp(−w̄K−); (4.3b)

w = w(z) =
z

|z| tanh (|z|) , w ∈ C, |w| < 1; (4.3c)

z = z(w) =
w

|w|arctanh (|w|) =
w

2|w| log
1 + |w|
1 − |w| ; (4.3d)

η = log(1 − ww̄) = −2 log(cosh (|z|)). (4.3e)

Let us consider an element g ∈ SU(1, 1),

g =
(

a b
b̄ ā

)
, where |a|2 − |b|2 = 1. (4.4)

Remark 1. 1. The following relations hold:

S(z)e0 = (1 − |w|2)ke0,w, (4.5)

eg := S(g)e0 = ā−2ke0,w=−i b
ā

=
(a

ā

)2k

S(z)e0, (4.6)

S(g)e0,w = (ā + b̄w)−2ke0,g·w. (4.7)

The action of the group SU(1, 1) on the unit disk D1 := SU(1, 1)/U(1) in (4.7)
is

g · w =
a w + b

b̄ w + ā
. (4.8)

2. If S(z) is defined by (4.3a), then (cf. [10]) :

S(z2)S(z1) = S(z3)eiθsK0 ; (4.9a)

w3 =
w1 + w2

1 + w̄2w1
; (4.9b)

eiθs =
(

1 + w2w̄1

1 + w1w̄2

)1/2

. (4.9c)

In equation (4.9b) wi and zi, i = 1, 2, 3, are related by the relations (4.3c),
(4.3d).

We recall the so called (see e.g. [17]) Holstein-Primakoff-Bogoliubov equa-
tions:

S−1(z) a S(z) = cosh(|z|) a +
z

|z| sinh(|z|) a+, (4.10a)

S−1(z) a+ S(z) = cosh(|z|) a+ +
z̄

|z| sinh(|z|) a. (4.10b)
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Let us introduce the notation:

Ã :=
(

A
Ā

)
; D = D(z) =

(
M N
P Q

)
, (4.11)

M = cosh (|z|); N =
z

|z| sinh (|z|); P = N̄ ; Q = M. (4.12)

We have

D(z) = eX , where X :=
(

0 z
z̄ 0

)
. (4.13)

Remark 2. In the notation (4.11), (4.12), equations (4.10) become:

S−1(z)ãS(z) = D(z)ã.

Remark 3. 1. If D and S(z) are defined by (4.1), respectively (4.3a), then

D(α)S(z) = S(z)D(β), (4.14)

β̃ = D(−z)α̃; α̃ = D(z)β̃. (4.15)

2. If
S(z, θ) := exp(2iθK0 + zK+ − z̄K−). (4.16)

then

S(z, θ)−1(z) a S(z, θ) = (cs (x) + iθ
si (x)

x
) a + z

si (x)
x

a+, (4.17a)

S(z, θ)−1(z) a+ S(z, θ) = (cs (x) − iθ
si (x)

x
) a+ + z̄

si (x)
x

a, (4.17b)

where

cs (x) :=
{

cosh (x), if λ = x2 > 0,
cos (x), if λ = −x2 < 0,

; λ := |z|2 − θ2, (4.18)

and similarly for si (x).

If X ∈ su(1, 1),

X =
(

iθ z
z̄ −iθ

)
, θ ∈ R, z ∈ C, (4.19)

then g = eX ∈ SU(1, 1) is an element of the form (4.4), where

a = cs (x) + iθ
si (x)

x
, b = z

si (x)
x

. (4.20)

If g =
(

α β
β̄ ᾱ

)
∈ SU(1, 1), then equations (4.17) can be written down as

Remark 4. If S denotes the representation of SU(1, 1) and g =
(

α β
β̄ ᾱ

)
∈

SU(1, 1), then
S−1(g) ã S(g) = g · ã. (4.21)
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Remark 5. In the matrix realization (2.3), we have

S(g)D(α)S−1(g) = D(αg), (4.22)

where the natural action of SU(1, 1) × C → C: g · α̃ := αg is

αg = a α + b ᾱ, (4.23)

and a, b have the expression (4.20).

Remark 6. The action: (α2, z2) × (α1, w1) = (A, w), where z2, α1,2, A ∈ C,
w, w1 ∈ D1 and the variables of type w and z are related by equations (4.3c),
(4.3d), can be expressed as:

A = α2 + α1 cosh |z2| + ᾱ1
z2

|z2| sinh |z2| = α2 +
α1 + ᾱ1w2

(1 − |w2|2)1/2
, (4.24a)

w =
cosh |z2|w1 + z2

|z2| sinh |z2|
z̄2
|z2| sinh |z2|w1 + cosh |z2| =

w1 + w2

1 + w1w̄2
. (4.24b)

Equations (4.24) express the action (α2, w2)× (α1, w1) = (α2 +w2 ◦α1, w2 ◦w1),
α1,2 ∈ C, w1,2 ∈ D1. (4.24) can be written down as:

Ã = α̃2 + Dα̃1, (4.25a)

w =
Mw1 + N

Pw1 + Q
. (4.25b)

Let us introduce the (“squeezed”) normalized vectors:

Ψα,w := D(α)S(w)e0; α ∈ C, w ∈ C, |w| < 1. (4.26)

Remark 7. The product of the representations D and S acts on the CS-vector
(4.26) with the effect:

D(α2)S(z2)Ψα1,w1 = JΨA,w, where J = ei(θh(α2,α)+kθs). (4.27)

(A, w) are given by Remark 6, θh(α2, α) is given by (4.2) with α given by (4.28)
and

α̃ = D(z)α̃1. (4.28)

Note also that the Remark 7 has an important consequence well known in
the quantum optics of squeezed states (see e.g. equation (20) p. 3219 in [19]).

Lemma 3. The vectors (4.26), (2.7), i.e.

Ψα,w := D(α)S(w)e0; ez,w′ := exp(za+ + w′K+)e0,

are related by the relation

Ψα,w = (1 − ww̄)k exp(− ᾱ

2
z)ez,w, (4.29)

where z = α − wᾱ.

For the proof, we use the relations (4.3a), (4.3b), (2.6b), (2.6c), and (2.10)
where Z = −ᾱa; X = wK+.
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Proposition 1. Let us consider the action S(g)D(α)ez,w, where g ∈ SU(1, 1)
has the form (4.4), D(α) is given by (4.1), and the coherent state vector is
defined in (2.7). Then we have the formula (4.30) and the relations (4.31),
(4.32)-(4.34):

S(g)D(α)ez,w = λez1,w1 , λ = λ(g, α; z, w), (4.30)

z1 =
α − ᾱw + z

b̄w + ā
; w1 = g · w =

aw + b

b̄w + ā
, (4.31)

λ = (ā + b̄w)−2k exp(
z

2
ᾱ0 − z1

2
ᾱ2) exp iθh(α, α0), (4.32)

α0 =
z + z̄w

1 − ww̄
, (4.33)

α2 = (α + α0)a + (ᾱ + ᾱ0)b. (4.34)

Corollary 1. The action of the Jacobi group

G := HW � SU(1, 1), (4.35)

on the manifold (2.8) is given by equations (4.30), (4.31). The composition law
in G is

(g1, α1, t1) ◦ (g2, α2, t2) = (g1 ◦ g2, g
−1
2 ·α1 + α2, t1 + t2 +�(g−1

2 ·α1ᾱ2)), (4.36)

where g · α := αg is given by (4.23), and if g has the form given by (4.4), then
g−1 · α = āα − bᾱ.

The proof of Proposition 1 is based on the Remarks of this section and on
Lemma 3.

5 The Hilbert space of holomorphic functions

If ϕ : M → H∗ is Perlomov’s CS-map, we recall [7, 8] the construction of the
map

Φ : H� → FH, Φ(ψ) := fψ, fψ(z) = Φ(ψ)(z) = (ϕ(z), ψ)H = (ez̄, ψ)H, (5.1)

and the isometric embedding

(ψ1, ψ2)H� = (Φ(ψ1), Φ(ψ2))FH
= (fψ1 , fψ2)FH

=
∫

M

fψ1
(z)fψ2(z)dνM (z).

(5.2)
Perelomov’s CS-vectors associated to the HW group are (see e.g. [13])

ez := eza+
e0 =

∑ zn

(n!)1/2
|n >, (5.3)

and their corresponding functions are (see e.g. [2])

f|n>(z) := (ez̄, |n >) =
zn

(n!)1/2
. (5.4)

The reproducing kernel K : C × C̄ → C is

K(z, z̄′) := (ez̄, ez̄′) =
∑

f|n>(z)f̄|n>(z′) = ezz̄′
. (5.5)
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The scalar product on the Segal-Bargmann-Fock space is (cf. [2])

(φ, ψ)H∗ = (fφ, fψ)FH
=

1
π

∫
f̄φ(z)fψ(z)e−|z|2d�zd�z.

Perelomov’s CS-vectors for SU(1, 1) based on the manifold D1 = SU(1, 1)/U(1)
are

ez := ezK+e0 =
∑ znKn

+

n!
e0 =

∑ znek,k+n

n!akn
, (5.6)

and the corresponding functions are (see e.g. [1])

fek,k+n
(z) := (ez̄, ek,k+n) =

√
Γ(n + 2k)
n!Γ(2k)

zn. (5.7)

The reproducing kernel K : D1 × D̄1 → C is

K(z, z̄′) := (ez̄, ez̄′) =
∑

fek,k+m
(z)f̄ek,k+m

(z′) = (1 − zz̄′)−2k. (5.8)

The scalar product on D1 is (see e.g. [1])

(φ, ψ)H∗ = (fφ, fψ)FH
=

2k − 1
π

∫
|z|<1

f̄φ(z)fψ(z)(1−|z|2)2k−2d�zd�z, 2k = 2, 3, ....

In formula (2.7) defining Perelomov’s CS vectors for the Jacobi group (4.35),
we have

ez,w = exp(za+ +
1
2
(a+)2w) exp(wK ′

+)e0.

With (3.8) and (3.9), we have

ez,w =
∑

n

i−n

n!
(
w

2
)

n
2 Hn(

iz√
2w

)(a+)n
∑
m

wm

m!
(K ′

+)me0.

Now we take into account (3.6) and we get

ez,w =
∑

n

i−n

(n!)1/2
|n > (

w

2
)nHn(

iz√
2w

)
∑
m

wm

m!ak′m
ek′,k′+m.

The base of functions associated to the CS-vectors attached to the Jacobi group
(4.35), based on the manifold M (2.8), are

f|n>;ek′,k′+m
(z, w) = fek′,k′+m

(w)
Pn(z, w)√

n!
, z ∈ C, |w| < 1, (5.9)

where the functions fek′,k′+m
are defined in (5.7) and, with formula (3.9), we

obtain

Pn(z, w) = n!
[ n
2 ]∑

k=0

(
w

2
)k zn−2k

k!(n − 2k)!
. (5.10)

The first 6 polynomials Pn(z, w) are

P0 = 1; P1 = z;
P2 = z2 + w; P3 = z3 + 3zw;
P4 = z4 + 6z2w + 3w2; P5 = z5 + 10z3w + 15zw.

(5.11)
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The reproducing kernel (3.3) K : M × M̄ → C has the property:

K(z, w; z̄, w̄′) := (ez̄,w̄, ez̄′,w̄′) =
∑
n,m

f|n>,ek′,k′+m
(z, w)f̄|n>,ek′,k′+m

(z′, w′)(5.12a)

= (1 − ww̄′)−2k exp
2z̄′z + z2w̄′ + z̄′2w

2(1 − ww̄′)
. (5.12b)

The scalar product of functions from the space FK corresponding to the
kernel defined by (3.3) on the manifold (2.8b) is:

(φ, ψ) = Λ
∫

z∈C;|w|<1

f̄φ(z, w)fψ(z, w)(1−ww̄)2kexp− |z|2
1−ww̄

exp−z2w̄+z̄2w

2(1−ww̄)
dν,

(5.13)
where the value of the G-invariant measure dν

dν =
d�wd�w

(1 − ww̄)3
d�zd�z (5.14)

will be deduced latter in (5.20).
In order to find the value of the constant Λ in (5.13), we take the functions

φ, ψ = 1, we change the variable z → (1 − ww̄)1/2z and, applying equations
(A1), (A2) in [3], we get

Λ =
4k − 3
2π2

. (5.15)

Now we calculate the Kähler potential as the logarithm of the reproducing
kernel (3.3), f := log K,

f =
2zz̄ + z2w̄ + z̄2w

2(1 − ww̄)
− 2k log(1 − ww̄). (5.16)

The Kähler two-form ω is given by the formula:

−iω = fzz̄dz ∧ dz̄ + fzw̄dz ∧ dw̄ + fz̄wdz̄ ∧ dw + fww̄dw ∧ dw̄. (5.17)

The volume form is:

ω ∧ ω = −2
∣∣∣∣ fzz̄ fzw̄

fz̄w fw̄w

∣∣∣∣ dz ∧ dz̄ ∧ dw ∧ dw̄. (5.18)

We find for the manifold (2.8) the fundamental two-form ω (5.17), where

fzz̄ =
1

1 − ww̄
, (5.19a)

fzw̄ =
z + wz̄

(1 − ww̄)2
, (5.19b)

fww̄ =
(z̄ + w̄z)(z + wz̄)

(1 − ww̄)3
+

2k

(1 − ww̄)2
. (5.19c)

For the volume form (5.18), we find:

ω ∧ ω = 4k(1 − ww̄)−34�z�z�w�w. (5.20)

It can be checked up that indeed, the measure dν and the fundamental two-
form ω are group-invariant at the action (4.31) of the Jacobi group (4.35).

Now we summarize the contents of this section as follows:
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Proposition 2. Let us consider the Jacobi group G (4.35) with the composition
rule (4.36) acting on the coherent state manifold (2.8) via equation (4.31). The
manifold D has the Kähler potential (5.16) and the G-invariant Kähler two-
form ω given by (5.17), (5.19). The holomorphic polynomials associated to the
coherent state vectors (2.7) are given by (5.9), where the functions f are given
by (5.7), while the polynomials P are given by (5.10). The Hilbert space of
holomorphic functions FK associated to the holomorphic kernel K : M×M̄ → C

given by (3.3) is endowed with the scalar product (5.13), where the normalization
constant Λ is given by (5.15) and the G-invariant measure dν is given by (5.14).

Proposition 3. Let h := (g, α) ∈ G, where G is the Jacobi group (4.35), and
we consider the representation π(h) := S(g)D(α), g ∈ SU(1, 1), α ∈ C, and
let the notation x := (z, w) ∈ D := C × D1. Then the continuous unitary
representation (πK , HK) attached to the positive definite holomorphic kernel K
defined by (3.3) is

(πK(h).f)(x) = J(h−1, x)−1f(h−1.x), (5.21)

where the cocycle J(h−1, x)−1 := λ(h−1, x) with λ defined by equations (4.30)-
(4.34) and the function f belongs to the Hilbert space of holomorphic functions
HK ≡ FK endowed with the scalar product (5.13), where Λ is given by (5.15).

Remark 8. The motion on the manifold (2.8) generated by the linear Hamil-
tonian

H = εaa + ε̄aa+ + ε0K0 + ε+K+ + ε−K−. (5.22)

is governed by the matrix Riccati equation:

iż = εa +
ε0
2

z + ε+zw, (5.23a)

iẇ = ε− + (ε̄a + ε0)w + ε+w2. (5.23b)
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