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Abstract

For arbitrary quantizable compact Kähler manifolds, relations between the geometry given by
the coherent states based on the manifold and the algebraic (projective) geometry realized via the
coherent state mapping into projective space, are studied. Polar divisors, formulas relating the scalar
products of coherent vectors on the manifold with the corresponding scalar products on projective
space (Cauchy formulas), two-point, three-point and more generally cyclicm-point functions are
discussed. The three-point function is related to the shape invariant of geodesic triangles in projective
space. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this article the close relations between the coherent state approach appearing in quan-
tum mechanics and certain aspects of algebraic geometry, respectively, Kähler geometry
are considered. We analyze the case where the phase-space manifold of the theory is a com-
pact Kähler manifold(M,ω). The symplectic structure which gives the kinematics of the
theory is defined via the Kähler formω. The geometric quantization condition requires the
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existence of a line bundle (i.e. the quantum line bundle) with curvature essentially equal to
the Kähler form. This implies that the phase-space manifold is projective algebraic. Hence
it admits an embedding into projective space. An embedding can be explicitly given by the
global sections of a suitable tensor power of the quantum line bundle. It is usually known
as Kodaira embedding. Vice versa, every submanifold of projective space is a quantizable
Kähler manifold.

Berezin’s coherent states [7] in their reformulation and generalization due to Rawnsley
[25] define also an embedding into projective space. It turns out that this embedding is
nothing else as the Kodaira embedding (respectively, its conjugate) with respect to an
orthonormal basis of the space of global holomorphic sections of a suitable tensor power of
the quantum line bundle. Here the scalar product is induced by the Kähler form (see Section
2 for details). Having the possible inhomogeneous readership in mind we recall the basics
of the aforementioned concepts in Section 2. In this way we also explain our notation and
prove some results used later on.

The main goal of this article is to study relations between the geometry of the quantizable
Kähler manifold using coherent states and the algebraic (or projective) geometry of the
embedded manifold inPN(C). Such kind of relations for homogeneous manifolds (with
respect to Perelomov’s coherent states) were studied by Berceanu [1,2,4–6]. Here we will
make similar definitions and prove some analogous results for arbitrary compact Kähler
manifolds. Clearly, now we have to use the coherent states of Berezin–Rawnsley.

The first objects we introduce are the polar divisors (Section 3). The polar divisor of a
point onM is the divisor consisting of the points on the manifold whose coherent states
are orthogonal to the coherent state associated to the fixed point. It turns out that the polar
divisor is indeed a divisor in the sense of algebraic geometry. It should not be confused with
the divisor of the polar part of a meromorphic function.

The polar divisors are useful for many purposes. It was shown by Berceanu that for
Grassmannians and more general for symmetric spaces [2–4] the polar divisor6x (with
respect to Perelomov’s coherent states) coincides with the cut-locus of the pointx. For
general compact Kähler manifolds the polar divisors describe the zero-sets of two-point
functions (and via them also of them-point functions). They appear as singularity sets of
the analytic extensions for real-analytic metrics in the bundle and as singularity sets of the
covariant two-point Berezin symbols.

Next (Section 4) we discuss “Cauchy formulas”. By a “Cauchy formula” we understand
a relation between the scalar product of the coherent states (more precisely, of the coherent
vectors) associated to two points on the manifold (again more precisely, associated to points
in the total space of the quantum line bundle) and the scalar product via the coherent state
map embedded two points (more precisely, the scalar product of certain homogeneous
representatives of the embedded points). The main results are contained in Theorem 4.5
and the propositions in Section 4. The denomination “Cauchy formula” was used in this
context the first time in [1] for Perelomov’s coherent states on flag manifolds. For the
Grassmannian the appearing formulas are essentially the (Binet–)Cauchy formulas [17, p.
10] which give relations between the intrinsic metric on the Grassmannian and the pull-back
of the Fubini–Study metric obtained via the Plücker embedding.
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In the remaining part of Section 4 the two-point function and cyclicm-point functions
are discussed. Considered onM ×M the complex-valued two-point function has a phase
ambiguity. This ambiguity can either be removed by considering the modulus of the function
or alternatively by fixing a holomorphic section of the quantum line bundle as a reference
lift to the quantum line bundle. In the first case one ends up with the two-point function
studied by Cahen et al. [14] which is related to Calabi’s diastatic function. But it turns
out that the complex-valued “non-canonical” two-point function plays at least a very useful
intermediate rôle. The polar divisors appear naturally in this context as zero-sets of two-point
functions. Next, cyclicm-point functions are introduced. They are well-defined onM×m and
invariant under cyclic permutations of its arguments. It is shown that they are invariant under
pull-back via the coherent state embedding into projective space. They can be expressed in
terms of the Cayley distances of the embedded points in projective space and a phase factor,
depending on the points. The three-point function is studied in more detail. Here the phase
is related to the shape invariant of the geodesic triangle which has the embedded points as
vertices. The shape invariant was introduced in 1939 by Blaschke and Terheggen [10]. By
a result of Hangan and Masala [19] the phase can be calculated via integrating the Kähler
form over geodesic triangles. See the closing Theorem 4.8 for the detailed result.

2. Coherent state embedding

2.1. Quantizable Kähler manifolds and Kodaira embedding

Let (M,ω) be a Kähler manifold of complex dimensionn, i.e.M a complex manifold and
ω a Kähler form onM. In the following we will mainly consider compact Kähler manifolds.
If nothing else is said we will assume compactness. A further data we need is the triple
(L, h,∇), with a holomorphic line bundleL onM, a hermitian metrich onL (with the
convention that it is conjugate linear in the first argument) and a connection∇ compatible
with the metric onL and the complex structure. With respect to local holomorphic coor-
dinates of the manifold and with respect to a local holomorphic frame for the bundle the
metrich can be given as

h(s1, s2)(x) = ĥ(x)ŝ1(x)ŝ2(x), (2.1)

whereŝi is a local representing function for the sectionsi (i = 1,2) and ĥ is a locally
defined real-valued function onM. The compatible connection is uniquely defined and is
given in the local coordinates as∇ = ∂ + (∂ log ĥ) + ∂̄. The curvature ofL is defined as
the two-form

F(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ], (2.2)

whereX andY are vector fields onM. In the local coordinates the curvature can be expressed
as

F = ∂̄∂ log ĥ = −∂∂̄ log ĥ. (2.3)
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A Kähler manifold(M,ω) is calledquantizableif there exists such a triple(L, h,∇)
which obeys

F(X, Y ) = −iω(X, Y ). (2.4)

The condition (2.4) is called the (pre)quantum condition. The bundle(L, h,∇) is called a
(pre)quantum line bundle. Usually we will drop∇ and sometimes alsoh in the notation.

For the following we assume(M,ω) to be a quantizable Kähler manifold with quantum
line bundle(L, h,∇). Let us note some important consequences of the quantum condition.
Firstly, we get for the Chern form of the line bundleL the relation

c(L) = i

2π
F = ω

2π
. (2.5)

This implies thatL is a positive line bundle. In the terminology of algebraic geometry it is
an ample line bundle. This says that there exists a tensor powerLm0 := L⊗m0 with m0 a
positive integer such thatM can be holomorphically embedded into projective spacePN(C)

using the global holomorphic sections ofLm0. Let us describe this embedding in more detail.
We will denote the space of global holomorphic sections byH 0(M,Lm0), or depending on
the context, also as0hol(M,L

m0) (if we regard it as subspace of the space of differentiable
sections), resp. byH (if we regard it as the quantum Hilbert space). By compactness of the
manifoldM this vector space is finite-dimensional. We takeN = dimH 0(M,Lm0) − 1
and after fixing a basis of the global sections the embedding is given as

ϕ : M ↪→ PN(C), z 7→ ϕ(z) = (s0(z) : s1(z) : · · · : sN(z)) ∈ PN(C). (2.6)

Here we denote the pointϕ(z) in projective space by its homogeneous coordinates. Recall
that two sets of homogeneous coordinates correspond to the same point if and only if
they are a non-zero scalar multiple of each other. To evaluate the sections one chooses
local representing functions for the sections. Clearly, they are only well-defined up to a
common scalar function. Hence, only after passing to the projective space the map will
be well-defined. The conclusion that from the positivity of the line bundle it follows that
there exists such an embedding is the content of Kodaira’s embedding theorem, see [18,29].
By Chow’s theorem [18, p. 166] compact submanifolds ofPN(C) are projective varieties,
i.e. they can be given as zero-sets of a finite number of homogeneous polynomials in the
coordinates ofPN(C), see [18,26]. Hence, we obtain the first part of the following important
observation.

Observation 2.1. Quantizable compact Kähler manifolds are submanifolds ofPN(C),
hence projective algebraic. Conversely, every projective algebraic manifold will be a quan-
tizable Kähler manifold.

The second part will follow from the discussion further down in this section.
In the language of Kähler geometry quantizable compact Kähler manifolds are Hodge

manifolds [18,29]. This is due to the fact that from the relation (2.5) it follows that the class
of ω is 2π times a Chern class, hence an integral class, i.e. a class which gives an integer
when integrated over a closed 2-surface inM.
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The numberN can be explicitly given with the help of the Grothendieck–Hirzebruch–
Riemann–Roch Theorem [20,26]. A different choice of basis chosen for the embedding
corresponds to a holomorphic automorphism ofPN(C), i.e. to an element of PGL(N+1,C)
mapping the images onto each other.

In the following we will assume thatL is already very ample. This says thatM can
already be embedded using the global sections ofL. If this is not yet the case we can always
choose am0 ∈ N such thatLm0 is very ample. Now in generality for amth tensor power
Lm of the bundleL a metrich(m) and a connection∇(m) is given by

h(m) := h⊗ · · · ⊗ h︸ ︷︷ ︸
m times

,

∇(m) = ∇ ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ ∇ ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ ∇. (2.7)

The corresponding local objects are (if one takes themth tensor power of the frame ofL as
frame forLm)

ĥ(m) = (ĥ)m, ∇(m) = ∂ +m(∂ log ĥ)+ ∂̄, F (m) = mF = −imω. (2.8)

Hence, for everym ∈ N the bundle(Lm, h(m),∇(m)) is a quantum line bundle for the Kähler
manifold(M,mω). Note that the underlying complex manifold remains the same, only the
Kähler form is multiplied by an integer.1 So, if we start with(M,m0ω) the corresponding
quantum line bundleLm0 is very ample.

A second consequence of the quantum condition (2.4) is that the metric in the quantum
bundle can be expressed with the help of a local Kähler potential [16]. For a Kähler manifold
there exist locally real-valued (non-unique) functionsK such thatω = i∂∂̄K. With the
quantum condition (2.4) it follows from (2.3)

ω = i∂̄∂ log ĥ. (2.9)

Hence a local Kähler potential can be given as

K(z) = −log ĥ(z), resp., ĥ(z) = exp(−K(z)). (2.10)

Recall the Kähler structure of the projective spacePN(C). The points [z] in PN(C) are
given by their homogeneous coordinates [z] := (z0 : z1 : · · · : zN). In the affine chart
V0 consisting of the points withz0 6= 0 we takeωj = zj /z0 with j = 1, . . . , N as
holomorphic coordinates. In the similar way we define affine chartsVk, k = 1, . . . , N and
corresponding holomorphic coordinates. The union

⋃N
k=0Vk is now an affine covering of

PN(C). Denote by

τ : CN+1 − {0} → PN(C), (2.11)

1 The process that starting from one line bundleL one obtains for everym ∈ N a quantization allows to introduce
semi-classical limits of the quantization scheme (geometric quantization, Berezin–Toeplitz quantization, coherent
state quantization, etc.), to prove approximation results for them (e.g. see [11]), and to show the existence of star
products [13,14,28].
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the projection which is obtained by identifying the whole line through 0 and the pointz

with the point in projective space with homogeneous coordinates [z]. The Kähler form on
PN(C) is the Fubini–Study fundamental form. OnV0 it is given as

ωFS := i
(1 + ‖w‖2)

∑N
i=1 dwi ∧ dw̄i − ∑N

i,j=1w̄iwj dwi ∧ dw̄j

(1 + ‖w‖2)2
. (2.12)

Here‖w‖2 := ∑N
i=1w̄iwi , as usual. Alternatively it can be described as [21]

τ ∗ωFS(z) = i∂̄∂ log‖z‖2. (2.13)

OverPN(C) we have the tautological line bundleU . Its fiber over [z] consists of the line
through 0 andz. Taking the standard metric inCN+1 it is endowed with a natural hermitian
fiber metric. Note that the manifoldCN+1 − {0} can be identified with the total space ofU
with the zero section removed. With respect to the affine chartV0 ∼= CN we can write two
elements of the same fiber overw ∈ CN as

s1 = α · (1, w1, . . . , wN), s2 = β · (1, w1, . . . , wN), (2.14)

and obtain

s̄1 · s2 = ᾱ · β · (1 + ‖w‖2). (2.15)

Hence, the local representing function inV0 for the hermitian metric of the line bundleU
(and with respect to the standard frameV0 → C× V0, w 7→ (1, w)) is

k̂(w) = 1 + ‖w‖2. (2.16)

The quantum line bundle is the dual of the tautological bundle, the hyperplane bundle
H = U∗. The hermitian metric of the hyperplane bundle can be given in the affine chart by
the representing function

ĥ(w) = 1

1 + ‖w‖2
. (2.17)

The global holomorphic sections ofH can be identified with the linear forms in theN + 1
coordinate functionsZi .

We were using the term “the quantum line bundle” indicating that there is up to alge-
braic isomorphy just one line bundle with curvature form−iω. In general this is not the
case. But for the projective space there is for every degree up to isomorphy just one line
bundle and the degree is fixed by the curvature. Hence for the projective space (with the
Fubini–Study Kähler form) the quantum line bundle is fixed. In fact the same is true for
any simply-connected, compact, quantizable Kähler manifold. In this case there is at most
one line bundle which has a given candidate as curvature form, see [22, Theorem. 2.2.1].
Here a warning is in order. It is not excluded that for the same underlying complex manifold
there exist (essentially) different Kähler forms and hence essentially different associated
quantum line bundles.
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If M is a projective submanifold ofPN(C) with

i : M ↪→ PN(C), (2.18)

the inclusion then(M, i∗ωFS) is a Kähler manifold [18,29] which is quantizable with the
associated quantum line bundle(i∗H, i∗h). Here i∗ is nothing but the restriction to the
submanifold. Hence, projective manifolds are quantizable Kähler manifolds. This shows
the second statement in Observation 2.1.

We have to stress an important fact. If(M,ωM) is a quantizable Kähler manifold with very
ample quantum line bundleL then we saw thatL induces an embeddingi : M ↪→ PN(C).
By the constructioni∗H ∼= L as holomorphic line bundle. Now(M, i∗ωFS) is a Kähler
manifold with the same underlying complex manifold structure. But in generalωM 6= i∗ωFS,
so the Kähler structure ofM does not coincide with the induced Kähler structure coming
from the embedding. The embedding is in general not an isometric (Kähler) embedding.
The situation is very much related to Calabi’s diastatic function, [13,15]. In general we only
know the identity of the deRham classes [ωM ] = [i∗ωFS]. This follows from the identity
of the Chern classesc1(L) = c1(i

∗H) = i∗c1(H) and from the fact that by the quantum
condition the Kähler forms represent (up to a factor) the curvature class.

In the compact case the Kähler formω (hence the metric onM) fixes via the quantum
condition the hermitian bundle metric inL up to a scalar constant.

Proposition 2.2. Let (M,ω) be a quantizable compact Kähler manifold with quantum
bundles(L, h) and(L, h′) thenh = eα · h′, with α ∈ R.

Proof. Represent the metrich andh′ with respect to a local frame of the (same) bundleL

as local functionŝh andĥ′. By the quantum condition (2.4) we obtain for the Kähler form

ω = i∂∂̄ log ĥ = i∂∂̄ log ĥ′. (2.19)

Hence∂∂̄(log ĥ − log ĥ′) = 0 or equivalently log(ĥ/ĥ′) is a locally defined harmonic
function. But the quotient of the two metrics is a globally defined function. Hence log(ĥ/ĥ′)
is a globally defined harmonic function on the compact manifold and hence a constantα ∈ R.
This shows the claim. �

2.2. Embedding via coherent states

We now want to describe an (anti-)holomorphic embedding of the Kähler manifold
(M,ω) into projective space using coherent states. We use Berezin’s coherent states [7–9]
in the coordinate independent global version due to Rawnsley, see [13,25].

First we have to introduce a scalar product in the space of global holomorphic sections
of the quantum line bundleL. With the normalized volume form

� := (−1)(
n
2)

1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

(2.20)
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and with the fiber metrich we can introduce a scalar product and a norm on the space of
differentiable sections0∞(M,L)

〈ϕ,ψ〉 :=
∫
M

h(ϕ,ψ)�, ‖ϕ‖ :=
√

〈ϕ, ϕ〉. (2.21)

Using local representing functionŝϕ andψ̂ for the sections and̂h for the metric the scalar
product can be described as

〈ϕ,ψ〉 =
∫
M

ĥ(z) ϕ̂(z) ψ̂(z)�(z) =
∫
M

exp(−K(z)) ϕ̂(z) ψ̂(z)�(z). (2.22)

In the second form we used the local Kähler potential (2.10). Clearly, these integrals should
be calculated locally and their values patched together by a partition of unity argument.2

The scalar product can be restricted to the finite dimensional subspace of global holo-
morphic sections.

Recall that we assume the quantum line bundle to be already very ample. Denote by
π : L → M the bundle projection and byL0 the total space ofL with the zero section
0(M) removed. Fixq ∈ L0 and take an arbitrary holomorphic sections ofL. By evaluation
of the section atx = π(q) the relation

s(π(q)) = q̂(s) · q (2.23)

defines a linear form

q̂ : 0hol(M,L) → C, s 7→ q̂(s). (2.24)

Using the scalar product on the space of global sections, by Riesz’s theorem there exists
exactly one holomorphic sectioneq with

〈eq, s〉 = q̂(s) for all s ∈ 0hol(M,L). (2.25)

If we choose an orthonormal basissj , j = 0, . . . , N := dim0hol(M,L) − 1 theneq can
be explicitly given as

eq =
N∑
j=0

q̂(sj ) sj . (2.26)

Let x = π(q) and chooseq ′ ∈ π−1(x) with q ′ 6= 0 then there is ac ∈ C∗ with q ′ = cq.
From (2.23) we concludêq ′ = c−1q̂ and using (2.25) we obtain

ecq = c̄−1 · eq . (2.27)

We obtain two mappings

L0 → 0hol(M,L)
∗, q 7→ q̂, (2.28)

2 Sometimes it is useful to writêh(z, z̄), resp.K(z, z̄) to remind of the fact that these functions are not holomorphic
in zand (even more important) to consider the possibility to extend the objects analytically toh(z, w̄), resp.K(z, w̄).
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L0 → 0hol(M,L), q 7→ eq . (2.29)

The first one is holomorphic, the second one antiholomorphic. By the above relations
both maps are well-defined onM if we pass to the projectivized vector spaces

M → P(0hol(M,L)
∗), x 7→ [π̂−1(x)], (2.30)

M → P(0hol(M,L)), x 7→ [eπ−1(x)]. (2.31)

Here [v] denotes the equivalence class of the vectorv in a vector space in the projectivized
vector spaceP(V ). In abuse of notation we understand byπ−1(x)only the non-zero elements
of the fiber overx.

Note thatq̂ ≡ 0 or equivalentlyeq ≡ 0 would imply that all sectionss ∈ 0hol(M,L)

will vanish atπ(q) and this contradicts the very ampleness ofL.
Depending onq ∈ L0 the sectionseq ∈ 0hol(M,L) are calledcoherent vectors. De-

pending onx ∈ M the [eπ−1(x)] ∈ P(0hol(M,L)) are calledcoherent states. To simplify
the notation we will setex := [eπ−1(x)]. The mappings (2.29) and (2.31) are thecoherent
vector mapping, resp. thecoherent state mapping.

To identifyP(0hol(M,L))with PN(C)we choose an orthonormal basis. The description
(2.26) shows that the coherent state mapping is given as

x 7→ ex = [eπ−1(x)] 7→ (q̂(s0) : q̂(s1) : · · · : q̂(sN ))

= (s0(x) : s1(x) : · · · : sN(x)). (2.32)

For the last equality we usedsj (x) = sj (π(q)) = q̂(sj ) · q.

Proposition 2.3. The map(2.32)

M → P(0hol(M,L)) ∼= PN(C), (2.33)

is an antiholomorphic embedding. Up to complex conjugation it coincides with the Kodaira
embedding(2.6)obtained with respect to the chosen orthonormal basis.

Proof. That the map is well-defined we showed above. That it is an embedding follows
from the observation that Eq. (2.32) is up to complex conjugation nothing else as the Kodaira
embedding with respect to the very ample line bundleL. �

In the following it will be more convenient to consider the complex conjugate of the
coherent state embedding

x 7→ ex = [eπ−1(x)] 7→ (q̂(s0) : q̂(s1) : · · · : q̂(sN ))

= (s0(x) : s1(x) : · · · : sN(x)), (2.34)

which is a holomorphic embedding. We will use the termcoherent state embeddingalso
for (2.34) if there is no danger of confusion.

Note that a different orthonormal basis (ONB) will yield an embedding which is equiv-
alent under a PU(N + 1) action to the chosen one.
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In the language of physics Proposition 2.3 means that the phase-space of a mechan-
ical system (assumed here to be Kählerian) can be embedded via coherent states into a
projectivized Hilbert space, the quantum Hilbert space.

It should be pointed out that the coherent state embedding is not just Kodaira embedding.
It is Kodaira embedding using orthonormal sections. The scalar product used to define
the orthonormality on0hol(M,L) (which should be interpreted as the quantum Hilbert
spaceH) is induced by the Kähler form on the manifold and by the hermitian metric in
the bundle. In view of the quantization condition the latter itself can be related to the
Kähler form of the manifold, see (2.9) and Proposition 2.2. The Kähler form (interpreted
as symplectic form) is an important ingredients to the description of the system to be
quantized.

If one considers non-compact Kähler manifolds then the scalar product (2.21) on0∞(M,L)
or more precisely onL2(M,L) is the starting point. The space0hol(M,L)has to be replaced
by the subspace0b

hol(M,L)b of bounded holomorphic sections. An orthonormal basis of
the subspace defines a map

M → P(0b
hol(M,L)). (2.35)

This defines an embedding into the infinite dimensional projective space. By the continuity
of the evaluation functional (2.23) Riesz’s theorem can also be applied to define the coherent
vectors. For more details see [23–25,30].

We need also thecoherent projectorsused by Rawnsley

Pπ(q) = |eq〉〈eq |
〈eq, eq〉 . (2.36)

Here we used the convenient bra-ket notation. Fors, t ∈ 0hol(M,L) the symbol|s〉〈t |
denotes the following rank 1 operator of0hol(M,L) (resp. of0∞(M,L))

|s〉〈t | : r → 〈t, r〉 · s. (2.37)

By the normalization the projectors are indeed only depending on the pointsπ(q) of the
manifold.

Rawnsley introduced the Epsilon function

ε(π(q)) := |q|2〈eq, eq〉, with |q|2 := h(π(q))(q, q). (2.38)

Let s1 ands2 be two sections. At a fixed pointx = π(q) we can writes1(x) = q̂(s1)q and
s2(x) = q̂(s2)q and hence using (2.25)

h(s1, s2)(x) = q̂(s1) · q̂(s2) · |q|2 = 〈s1, eq〉〈eq, s2〉|q|2 = 〈s1, Pxs2〉 · ε(x). (2.39)

After integration we obtain the over-completeness property of the coherent states

〈s1, s2〉 =
∫
M

〈s1, Pxs2〉ε(x)�(x). (2.40)

We calculate
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ε(x)= |q|2〈eq, eq〉 = |q|2
N∑
j=0

|q̂(sj )|2 =
N∑
j=0

|q̂(sj )|2h(x)(q, q)

=
N∑
j=0

h(sj , sj )(x). (2.41)

It was shown in [13, Eq. (3.4)] that forε ≡ const. one obtains

ε = dim0hol(M,L)

vol(M)
. (2.42)

On homogeneous Kähler manifolds with a homogeneous quantum line bundle (in particular
also with homogeneous metric) the functionε(x) is invariant under moving the point, hence
it is a constant. In particular, it is constant for the projective spacePN(C). See Proposition
4.1 for more information.

To compare this approach with the local description used by Berezin we have to choose a
sections0 ∈ 0hol(M,L), s0 6≡ 0. LetV = {x ∈ M|s0(x) 6= 0} be the open subset on which
the section does not vanishes.3 Now s0 is a holomorphic frame for the bundleL overV .
This says that overV every holomorphic (differentiable) section can be described ass(x) =
ŝ(x)s0(x)with a holomorphic (resp. differentiable) functionŝ. The mappings 7→ ŝ defines
an isometry of0hol(M,L) (resp. of0∞(M,L)) into theL2 space of holomorphic (resp.
differentiable) functions onV with respect to the measureµs0(x) = h(s0, s0)(x)�(x).

With respect to the frames0 the functionĥ describing the metric is given aŝh(x) =
h(s0, s0)(x). Hence we can describe the scalar product forϕ,ψ ∈ 0∞(M,L) as

〈ϕ,ψ〉 =
∫
V

ϕ̂(x)ψ̂(x)h(s0, s0)(x)�(x). (2.43)

If we introduced the local Kähler potential given by (2.10) then this can be rewritten as

〈ϕ,ψ〉 =
∫
V

ϕ̂(x)ψ̂(x)exp(−K(x))�(x). (2.44)

It is enough to calculate the integral onV , becauseM\V is of (complex) codimension
one, hence of measure zero, see Section 3. Such a description is always possible. For doing
explicit calculations Berezin considered special cases whereV is eitherCn, or special
subsets ofCn (e.g. bounded symmetric domains) [7–9].

3. The polar divisor

3.1. The definition of the polar divisor

Definition 3.1. Let x ∈ M and 0 6= q ∈ π−1(x) then thepolar divisor6x associated to
x ∈ M is defined as

3 In the terminology of Section 3 we remove the support of the divisor of the sections0.
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6x := {x′ ∈ M|〈eq, eq ′ 〉 = 0 for 0 6= q ′ ∈ π−1(x′)}. (3.1)

That is the polar divisor6x is the set of points on the manifold for which the associated
coherent vectors are orthogonal to the coherent vectors associated tox.

Due to the relation (2.27) the definition is independent of the representing elementsq and
q ′. In the context of Perelomov’s coherent states the notion of polar divisors was introduced
by Berceanu [1,2,4,6]. On the purely geometric side the polar divisor was used earlier by
Wu [31] for the complex Grassmannians. As we will see in the following it has a meaning
in much more general situations. There should be no danger of confusion with the notion of
polar divisor in complex analysis as the divisor of the polar part of a meromorphic function.
(See the remark after (4.7) for a connection.)

Note that for every (meromorphic or holomorphic) section of a line bundle there is an
associated divisor in the sense of algebraic geometry. For a thorough treatment of the relation
between divisors, line bundles and sections of line bundles, (see [18], p. 130ff; [26]). What
we need here are only the following facts. For a holomorphic sections 6≡ 0 of a line bundle
the zero-set of the section can be decomposed into a union of (complex) one-codimensional
“irreducible subvarieties” which are not necessarily smooth. The complement of the zero-set
is an open dense subset ofM. 4 Each codimension oneirreducible subvarietycan be given
locally as zero-set of an algebraic function. By the irreducibility the vanishing order along
the subvariety is constant. Hence we can assign to the sections the formal sum(s) of
(irreducible) codimension one subvarieties with integer coefficients

(s) :=
∑

Y irreducible
subvariety ofM
of codimension one

nY Y, (3.2)

wherenY denotes the vanishing order alongY . By the compactness ofM the sum (3.2) will
always be finite. Every such formal sum withnY ∈ Z fulfilling the restriction thatnY 6= 0
only for finitely manyY is called adivisor of M. The sum(s) is called thedivisor of the
sections. For meromorphic sections negative integers (corresponding to algebraic poles)
are allowed. Two divisors are calledlinearly equivalentif their difference (as formal sum) is
the divisor of a meromorphic function onM. Note that the functions are the (meromorphic)
sections of the trivial line bundle. By this an equivalence relation is defined. The linear
equivalence class of a divisor is called a divisor class. The set of divisor classes carries
a natural structure of an abelian group under addition of divisors. For smooth projective
varieties (asM is one by the quantization condition) this divisor class group is isomorphic
to the group of isomorphy classes of algebraic line bundles, where for the latter the group
structure is defined by the tensor product of line bundles. The isomorphism is given by
assigning to the line bundle the divisor class of any non-trivial meromorphic section. Note
that the divisors of two meromorphic sections of the same line bundle are linearly equivalent.

Recall that the coherent vectoreq is a section of the quantum line bundle and as introduced
above its divisor is given by(eq). The zero-set ofeq (forgetting the multiplicities) is called
the thereduced supportred(eq) of the divisor(eq).

4 We assumeM to be connected and compact.
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Proposition 3.2. The polar divisor associated to x is the reduced support of a divisor. More
precisely,

6x = red(eq) with q ∈ π−1(x), q 6= 0. (3.3)

Proof. Let q ′ ∈ L0, resp.x′ ∈ M, π(q ′) = x′. From (2.25) it follows〈eq ′ , eq〉 = q̂ ′(eq)
and

eq(x
′) = eq(π(q

′)) = q̂ ′(eq) · q ′ = 〈eq ′ , eq〉 · q ′. (3.4)

Hence,x′ = π(q ′) is a zero of the sectioneq if and only if 〈eq ′ , eq〉 = 0. This completes
the claim. �

By the above proof we see that the multiplicity structure of the zeros ofeq and that of
〈eq ′ , eq〉 = 0 are the same. Hence we can indeed consider6x as a divisor if we assign to it
the corresponding multiplicity of its components. Note that due to relation (2.27)

(eq) = (eq ′) for q, q ′ ∈ π−1(x)\{0}, x ∈ M. (3.5)

Hence we can assign for everyx ∈ M the divisor

(ex) := (eπ−1(x)), (3.6)

to the coherent stateex .
We obtain

Corollary 3.3. The polar divisor6x associated to x is the divisor(ex) in the sense of
algebraic geometry(3.6)of the coherent stateex associated to x.

Let V be an open non-empty subset over which the bundleL can be (holomorphically)
trivialized, i.e.L|V ∼= V × C. We takeq ′ abovex′ ∈ V asx′ 7→ (x′,1) (i.e. we take asq ′

the value atx′ of the frame given by the trivialization) then using (3.4) we obtain

Proposition 3.4. The function̂eq(x′) := 〈e(x′,1), eq〉 is the holomorphic local representing
function for the sectioneq .

Let s be a global holomorphic section not identically zero. The complement of the divisor
(s)

Vs := V \(s) = {x ∈ M|s(x) 6= 0}, (3.7)

will be an open dense subset ofM. If we apply Proposition 3.4 to the trivialization obtained
by taking as frame the holomorphic sections on Vs then (x′,1) ∼= s(x′) and we can
reformulate Proposition 3.4 as

Corollary 3.5. Let s 6≡ 0 be a global holomorphic section. Then with respect to the frame
given by the sections a local representing function overVs for the coherent vectoreq is
given by

êq (x
′) = 〈es(x′), eq〉. (3.8)
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Immediately from the definition of polar divisors we get

Proposition 3.6. The polar divisors obey the symmetry relation

y ∈ 6x ↔ x ∈ 6y. (3.9)

Remark. By the definition(2.23) of q̂, resp. ofeq (2.25) one concludes that〈eq ′ , eq〉
varies antiholomorphically in q and holomorphically inq ′. Henceq 7→ 6q defines an
antiholomorphic family of divisors on M andq 7→ êq an antiholomorphic family of sections
for the bundle L.

Remark. By Bertini’s theorem[20] the divisor of a generic global holomorphic section of
the bundle L is a smooth hypersurface. The divisors(eq) for the coherent vectors are not
necessarily generic, so one can not expect them to be smooth in general. For example, see
[3].

Example. Let us consider the simplest example, the projective lineP1(C), resp. the sphere
S2 with the Kähler structure given bym (m ∈ N) times the Fubini–Study form

ω = i

(1 + zz̄)2
dz ∧ dz̄, (3.10)

as Kähler form with respect to the quasi-global coordinatez. The corresponding quantum
line bundle isH⊗m, whereH is the hyperplane bundle. The coherent vectors in the standard
affine chart are given as

eψ(w)(z) = m+ 1

2π
(1 + w̄z)mψ(z), (3.11)

where we take the (on this chart) non-vanishing sectionψ as the reference section. The
divisors are formal sums of points with integer coefficients. We denote the divisor corre-
sponding to the point with the coordinatez0 by 〈z0〉. The polar divisors are calculated (using
Corollary 3.3) directly as the zero-set of the section (3.11), hence

6w = m

〈
− 1

w̄

〉
, w 6= 0,∞, 60 = m〈∞〉, 6∞ = m〈0〉. (3.12)

Using the original Definition 3.1 we can also calculate (compare (3.8))

〈eψ(w′), eψ(w)〉H⊗m = m+ 1

2π
(1 + w̄w′)m, (3.13)

yielding (in accordance with Corollary 3.3) clearly the same set of points where (3.13)
vanishes.

In particular form > 1 the divisors appearing as divisors of coherent states are not smooth
because they have higher multiplicities.

The polar divisors appear at many places. It was shown by Berceanu that for Grassman-
nians and more general for hermitian symmetric spaces [2–4] the polar divisor6x (with
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respect to Perelomov’s coherent states) coincides with the cut-locus of the pointx. Recall
that for a geodesic starting atx the cut-pointy is the point where the geodesic ceases to be
the shortest curve connectingx andy′ with y′ > y on the geodesic. The cut-locus consists
of all cut-points. For more details see the above references.

As we will see in the following section for arbitrary compact Kähler manifolds the
polar divisors describe the zero-sets of two-point functions and more general ofm-point
functions. They appear as singularity sets of the analytic extensions of real-analytic met-
rics in the bundle (see (4.8)) and as singularity sets of the covariant two-point Berezin
symbols.

4. Cauchy formulas and multi-point functions

4.1. Coherent projective Kähler embedding

Let the compact Kähler manifold(M,ωM) be embedded via the (holomorphic) coherent
state map (2.34) with respect to the very ample line bundle(L, hL) : i : M ↪→ PN(C).
Fix the orthonormal sectionssj , j = 0, . . . , N of the quantum bundleL. Let tj , j =
0, . . . , N be the sections of the hyperplane bundleH overPN(C) corresponding to the
linear formsZj , j = 0, . . . , N . By construction we havei∗H ∼= L and i∗(tj ) = sj

(i.e. sj (x) = tj (i(x)) under the identification of the bundles. It is well-known that thetj

are orthogonal sections ofH with norm independent ofj . We will denote the rescaled
orthonormal section byt ′j and obtainsj = τ i∗(t ′j ) with a factorτ independent ofj . More

precisely,τ =
√

vol(PN(C))/(N + 1). Note that the pull-back in our case is nothing else
as the restriction of the section to the embedded manifoldM.

Consider the case where the coherent state embedding is an isometric (projective) Kähler
embedding, i.e. the pull-back of the Fubini–Study formωFS coincides withωM . By Propo-
sition 2.2 the metrichL in the bundleL is up to a positive scalar multiple the pull-back of the
metrichFS in the hyperplane bundle:hL = ρ · i∗hFS, ρ ∈ R, ρ > 0. LetεM be the Epsilon
function (2.38) for the manifoldM and the bundleL. Due to the explicit description (2.41)
of the Epsilon functionεM it is up to a constant the restriction ofεPN(C) to the embedded
points. The latter is constant, hence alsoεM . In more detail:

εM(x)=
N∑
j=0

hL(sj , sj )(x) =
N∑
j=0

hLτ i
∗(t ′j , τ i

∗(t ′j ))(x) = ρτ2
N∑
j=0

hH (t
′
j , t

′
j )(i(x))

= ρτ2εPN(C)(i(x)) = ρτ2 N + 1

vol(PN(C))
= ρ. (4.1)

From thisρ calculates to(N + 1)/vol(M).
Rawnsley calls a quantization where all the data can be obtained by pulling back the

objects: bundle, forms, etc. via the (holomorphic) coherent state map from the projective
space to the manifoldM projectively induced. Hence projectively induced quantizations
have constant Epsilon functions. In fact the converse is also true.



S. Berceanu, M. Schlichenmaier / Journal of Geometry and Physics 34 (2000) 336–358 351

Proposition 4.1 (Cahen et al. [13, p. 58].).A quantization of(M,ω) with quantum line
bundle(L, h) is projectively induced if and only if the Epsilon function is constant.

This has very interesting consequences for compact homogeneous Kähler manifolds
M ∼= G/H with a homogeneous quantum line bundle. Recall that it is assumed in this case
that the Kähler formωM and the metric in the bundle are invariant under the action of the
groupG. In particular,εM will be constant, hence

Corollary 4.2. For a compact homogeneous Kähler manifold which admits a homoge-
neous very ample quantum line bundleL the coherent state embedding using this bundle
is a projective Kähler embedding. In such cases the Kähler form is the pull-back of the
Fubini–Study form.

4.2. Cauchy formulas

Let us return to the general situation of the coherent state embeddingi (2.34) without
assuming it to be a Kählerian embedding. Fix an orthonormal basiss0, s1, . . . , sN of the
sections of the quantum line bundleL. Denote byφ the map fromL0 toCN+1 defined by
the composition

q 7→ eq 7→ φ(q) := (q̂(s0), q̂(s1), . . . , q̂(sN )). (4.2)

Clearly,i(π(q)) = [φ(q)].
In the following, three scalar products will appear: (1)〈·, ·〉L, the scalar product on the

space of global sections ofL given by (2.21); (2)〈·, ·〉CN+1, the standard scalar product on
CN+1; and (3)〈·, ·〉H the scalar product on the space of global sections of the hyperplane
bundleH on PN(C). Again (3) is defined by (2.21), but now the manifold isPN(C) and
the sections are the hyperplane sections. Recall that all our scalar products are conjugate
linear in the first arguments. We will call relations between these scalar products (evaluated
for coherent vectors) Cauchy formulas. The first Cauchy formula is immediate from (2.26)
and (4.2).

Proposition 4.3. In the above situation we have

〈eq, eq ′ 〉L = 〈φ(q ′), φ(q)〉CN+1. (4.3)

Next we want to find relations between the scalar product of coherent vectors ofL over
M and the scalar product of coherent vectors of the hyperplane bundleH over the projective
space. Lets 6≡ 0 be a holomorphic section ofL, which is non-vanishing over the dense
open subsetVs . Clearly, the scalar product of two coherent states is not defined. But, after
choosing such a section we can set

〈ex, ey〉s := 〈es(x), es(y)〉. (4.4)

If we choose another holomorphic sections′ 6≡ 0 then onVs∩Vs′ we haves′(x) = f (x)s(x)

with f a non-vanishing holomorphic function on this set. Hence,
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〈ex, ey〉s′ = 1

f (x)

1

f (y)
〈ex, ey〉s . (4.5)

Recall that Rawnsley’s Epsilon functionε (2.38) can be written as

εM(x) = |s(x)|2〈es(x), es(x)〉, where |s(x)|2 := h(s(x), s(x)). (4.6)

The function

χs(x, x) := 〈es(x), es(x)〉 = h(s(x), s(x))−1 · εM(x)
is real-analytic and admits a real-analytic extension to the function

χs(x, y) := 〈ex, ey〉s = 〈es(x), es(y)〉, (4.7)

which is holomorphic inx and antiholomorphic iny.

Remark. Assume the metric h in the bundle to be real-analytic. Then from(4.7)one con-
cludes that for fixed x the singularity set(in the variable y) of the extension of the metric is
given by the polar divisor(ex).

Remark. For ε(x) = E a constant, we see that the scalar product of the coherent vectors
are essentially given by the inverse of the local metric:

〈ex, ey〉s = E

h(s(y), s(x))
. (4.8)

Let us apply this toM = PN(C) with the hyperplane bundleH as quantum line bundle
and the metric of the bundle induced by the Fubini–Study metric. LetV0 := {[z] = (z0 :
z1 : · · · : zN)|z0 6= 0} be the standard affine chart. The points ofV0 can be given in a
normalized way as(1 : w)withw ∈ CN . Taket0 to be the section of the hyperplane bundle
corresponding to the linear formZ0, i.e.t0(w) = 1 for allw. We set̂y := (t0(y), y) = (1, y)
andx̂ = (t0(x), x) = (1, x). Then

h(t0(y), t0(x)) = 1

1 + ȳ · x = 1

〈ŷ, x̂〉CN+1
. (4.9)

Hence in this case (4.8) specializes to

〈ex, ey〉t0 = 〈et0(x), et0(y) = 〈ŷ, x̂〉CN+1 · F, (4.10)

with

F := εPN(C) = N + 1

vol(PN(C)
. (4.11)

Now we return to the general situation. The second Cauchy formula is expressed in

Proposition 4.4. Let q, q ′ ∈ L0 with π(q) = x andπ(q ′) = y, i : M → PN(C) the
coherent state embedding(2.34),andφ the map(4.2),then on the affine chartV0

〈eq, eq ′ 〉L = q̂(s0)q̂ ′(s0) · 〈î(y), î(x)〉CN+1 = q̂(s0)q̂ ′(s0)
F

· 〈ei(x), ei(y)〉t0. (4.12)
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Proof. We start from (4.3) in Proposition 4.3 and divide the vectorsφ(q) andφ(q ′) on the
left-hand side by their first components. This can be done because we are onV0. We obtain

〈eq, eq ′ 〉L = q̂(s0)q̂ ′(s0)〈φ(q ′)norm, φ(q)norm〉CN+1.

Here φ(q)norm is the normalized representative which has first component one. Using
φ(q)norm = ̂i(π(q)) and (4.10) we obtain

〈eq, eq ′ 〉L = q̂(s0)q̂ ′(s0)〈î(y), î(x)〉CN+1 = q̂(s0)q̂ ′(s0)
F

〈ei(x), ei(y)〉t0.

�The third Cauchy formula is expressed in

Theorem 4.5. Let(M,ω) be a quantizable Kähler manifold with very ample quantum line
bundle L. Leti : M → PN(C) be the coherent state embedding(2.34),H the hyperplane
section bundle. For every section t of H denote byi∗(t) its pull-back to M. Assumet 6≡ 0
then overVt := {z ∈ PN(C)|t (z) 6= 0}

〈ex, ey〉i∗(t) = vol(PN(C))

N + 1
〈ei(x), ei(y)〉t . (4.13)

Proof. First consider the sectiont0. In this casei∗(t0) = s0. Note that in view of (4.11) and
(4.12) it is enough to show that̂s0(x)(s0) = 1. But by definitionŝ0(x)(s0) · s0(x) = s0(x),
hence

〈ex, ey〉s0 = 〈es0(x), es0(y)〉 = 1

F
〈ei(x), ei(y)〉t0. (4.14)

Now take a generalt 6≡ 0. Recall that the complement of a zero-set of a section (6≡ 0) is
always a dense open subset. Hence the same is true for finite intersections of such sets. On
the dense open setV0 ∩ Vt we havet (z) = f (z) · t0(z) with f (z) a holomorphic function
on the intersection. For the pull-backs we obtain

(i∗t)(x) = t (i(x)) = f (i(x)) · t0(i(x)) = (i∗f )(x) · (i∗t0)(x).

This implies (using (4.5))

〈ex, ey〉i∗(t) = ((i∗f )(x))−1 · ((i∗f )(y))−1 · 〈ex, ey〉i∗(t0),

〈ei(x), ei(y)〉f ·t0 = (f (i(x)))−1 · (f (i(y)))−1〈ei(x), ei(y)〉t0.

But note thati∗(t0) = s0 andf (i(x)) = i∗f (x). The claim follows from (4.14). �

The reason for calling Eqs. (4.12),(4.13) and (4.3) “Cauchy formulas” is that in the case
of the Grassmannians the appearing formulas are essentially the (Binet–)Cauchy formulas
[17, p. 10] which give relations between the intrinsic metric on the Grassmannian and the
pull-back of the Fubini–Study metric obtained via the Plücker embedding (see [2], Eqs.
(3.13) and (4.7); [3]).
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4.3. Two-point functions

As already noted in Section 3.1 the assignment

L0 × L0 → C, (q, q ′) 7→ 〈eq, eq ′ 〉 (4.15)

defines a real-analytic function holomorphic inq and antiholomorphic inq ′. It can be
normalized by setting

φ(q, q ′) := 〈eq, eq ′ 〉
‖eq‖‖eq ′ ‖ . (4.16)

By the Cauchy–Schwartz inequality its absolute value is bounded by 1.
Using (2.27) we see

φ(cq, c′q ′) = |c|
c

|c′|
c′
φ(q, q ′), c, c′ ∈ C∗. (4.17)

Due to the occurrence of phase factors, it does not descend to a two-point function onM.
Clearly, one way out is to take the modulus (or its square, see [14]) of (4.16). In this way
one obtains the functionψ : M ×M → [0,1]

ψ(x, y) := |〈eq, eq ′ 〉|2
‖eq‖2‖eq ′ ‖2

, x = π(q), y = π(q ′). (4.18)

This is a globally defined real-valued real-analytic function. Unfortunately, the information
contained in the complex phase gets lost.

Note that the set of zerosM(ψ) of (4.18) can be given with the help of polar divisors

M(ψ) := {(x, y) ∈ M ×M|y ∈ 6x}. (4.19)

Recall that by Proposition 3.6 the condition is symmetric inx andy. Clearly, the zero-set
M(φ) of (4.16) consists of the fibers overM(ψ).

Take a sections 6≡ 0 of0hol(M,L) and choose it as frame overVs = M\(s). We define
the function

φ̂s(x, y) := 〈es(x), es(y)〉
‖es(x)‖‖es(y)‖ , (4.20)

onVs × Vs . It “represents” the two-point function (4.16). But note thatφ̂s depends on the
sections which was chosen as frame.

Immediately from the definition we get

φ̂s(x, y) = φ̂s(y, x). (4.21)

If we deal with different manifolds and if there is a danger of confusion, we will exhibit
also the manifold in the notation of the two-point function (resp. of them-point functions
introduced later on).
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Proposition 4.6. Let i be the coherent state embedding(2.34).Let t 6≡ 0 be a section of
the hyperplane section bundle H ands = i∗(t) the corresponding section of the quantum
line bundle then
(a)

φ̂M,i∗(t)(x, y) = φ̂PN(C),t (i(x), i(y)) = i∗(φ̂PN(C),t )(x, y). (4.22)

(b) For the first coordinate functions0 = i∗(t0) and with î(x) ∈ CN+1 the normalized
homogeneous representative ofi(x) one has

φ̂M,s0(x, y) = 〈î(y), î(x)〉
‖î(x)‖‖î(y)‖ . (4.23)

(c)

ψM(x, y) = i∗ψPN(C)(x, y) = ψPN(C)(i(x), i(y)) = |〈î(y), î(x)〉|2
‖î(x)‖2‖î(y)‖2

. (4.24)

Proof.
(a) Follows immediately from Theorem 4.5.
(b) Follows from (a) using (4.10).

(c) Follows from (a), resp. (b) by taking the squared modulus. Note thatψM = φ̂M,s · φ̂M,s
independently on the sections chosen. �

In the case of Perelomov’s coherent states Eq. (4.23) was also called a Cauchy formula
in [2, Eq. 3.13].

The two-point functions (complex-valued or real-valued) play an important rôle. From
their very definition they give the transition amplitudes for coherent states. They appear as
integral kernel of the Berezin transform which relates contravariant and covariant Berezin
symbols, see [27]. See also the discussion in [14] for the real-valued two-point function
and its relation to Calabi’s diastatic functionD. Let us add a few words on this relation.
For real-analytic metricsh also another two-point functioñψ is introduced in the article
[14]. It is given completely in local terms of the metric. The relationψ̃ = exp(−D/2) is
shown. Certain natural behavior under pull-backs is proven. In the case thatε = const. (in
the terminology of [14]: the bundle is regular) one obtainsψ̃ = ψ . The key ingredients for
this is Eq. (4.8) which relates the global scalar product with the local metric. For regular
line bundles (4.24) was also proven in [14].

4.4. Cyclicm-point functions and the three-point function

Let us consider the (cyclic)m-point function form ∈ N,m ≥ 2

9(m) : M ×M × · · · ×M → {z ∈ C||z| ≤ 1}, 9(m)(x(1), x(2), . . . , x(m))

= 〈eq(1) , eq(2)〉〈eq(2) , eq(3)〉 · · · 〈eq(m) , eq(1)〉
‖eq(1)‖2‖eq(2)‖2 · · · ‖eq(m)‖2

, x(i) = π(q(i)), i = 1, . . . , m. (4.25)
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It is a complex-valued and real-analytic function in its variables. Note that the phase ambi-
guity of the lifts is canceled by this combination. The function9(m) can be written in terms
of the complex-valued two-point function as

9(m)(x(1), x(2), . . . , x(m)) = φ̂s(x
(1), x(2)) · φ̂s(x(2), x(3)) · · · φ̂s(x(m), x(1)), (4.26)

with respect to any sections 6≡ 0 of L. Note that9(2) = ψ , the real-valued two-point
function as defined in (4.18). But form > 2,9(m) will be complex-valued.

Proposition 4.7. Let9(m)M , resp.9(m)
PN(C)

be the m-point function of the manifold M, resp.

of the projective space. Let i be the coherent state embedding(2.34)and î(x) an arbitrary
homogeneous representative for the pointi(x) then

9
(m)
M (x(1), x(2), . . . , x(m)) = i∗(9(m)

PN(C)
)(x(1), x(2), . . . , x(m))

= 9
(m)

PN(C)
(i(x(1)), i(x(2)), . . . , i(x(m)))

= 〈î(x(2)), î(x(1))〉〈î(x(3)), î(x(2))〉 · · · 〈î(x(1)), ̂i(x(m))〉
‖î(x(1))‖2‖î(x(2))‖2 · · · ‖̂i(x(m))‖2

. (4.27)

The function9(m)M is invariant under cyclic permutations of its arguments.

Proof. Using (4.26) we see that from (4.22) the first equality follows. Now using (4.23) we
obtain the last equality. Note that aŝi(x)any homogeneous representative can be chosen (but
then it has to be kept fixed). The ambiguity will cancel in this combination. The invariance
under cyclic permutations is clear. �

We can represent the last expression in (4.27) as the complex conjugate of a similar
expression where thex(i) appear in strictly increasing index order modm.

Again, the zero-set of them-point function can be given with the help of polar divisors.
Note that the last expression in (4.27) can be rewritten as follows. Let [u], [v] ∈ PN(C)

be points with homogeneous coordinatesu, v ∈ CN+1. The Cayley distancedC of the two
points, i.e the geodesic distance with respect to the Fubini–Study metric is given as

dC([u], [v]) = arccos
|〈u, v〉|
‖u‖‖v‖ . (4.28)

Hence the last expression in (4.27) can be given in terms of the Cayley distances of neigh-
boring points and an additional global phase factor8 depending on the points.

Let us study the three-point function9 = 9(3) in more detail. Take [u], [v], [w] ∈ PN(C)
and leta = dC([u], [v]), b = dC([v], [w]), c = dC([w], [u]) be the Cayley distances. To
avoid degenerate situations assume that 0< a, b, c < π/2. In particular, no point should
lie in the support of the polar divisors of the other two. We can write

〈u, v〉〈v,w〉〈w, u〉
‖u‖2‖v‖2‖w‖2

= cosa cosb cosc e−i8, (4.29)
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with the phase factor8 = 8(u, v,w) defined by this formula. The phase factor is related
to the shape invariantρ introduced by Blaschke and Terheggen [10] forP2(C), resp. by
Brehm [12] forPN(C) : ρ = cosa cosb cosc cos8.

Hangan and Masala [19] showed that8 has the following geometric meaning: Take the
(oriented) geodesic triangleσ([u], [v], [w]) with the vertices [u], [v], [w], i.e. the surface
swept out by the the geodesics between the point [w] and all points on the geodesic between
[u] and [v]. Then

8 =
∫
σ([u],[v],[w])

ωPN(C) + 2kπ, k ∈ Z. (4.30)

Recall thatωPN(C) is the Fubini–Study Kähler form ofPN(C). See also [5] for a different
proof by coherent state methods. Clearly, due to the fact thatωPN(C) is closed the integral
does not change if we replaceσ([u], [v], [w]) by any deformed surface as long as the
boundary is fixed.

By applying Proposition 4.7 we see that (4.29) is the complex conjugate of the three-point
function of the projective space. We obtain

Theorem 4.8. Let(M,ω) be a quantizable Kähler manifold with very ample quantum line
bundle L. Leti : M → PN(C) be the coherent state embedding(2.34).Then the three-point
function

9(3)(x, y, z) = 〈eq, eq ′ 〉〈eq ′ , eq ′′ 〉〈eq ′′ , eq〉
‖eq‖2‖eq ′ ‖2‖eq ′′ ‖2

, x = π(q), y = π(q ′), z = π(q ′′),

(4.31)

can be written as

9
(3)
M (x, y, z) = cosa cosb cosc ei8, (4.32)

with a = dC(i(x), i(y)), b = dC(i(y), i(z)), c = dC(i(z), i(x)) the Cayley distances in
PN(C) and phase

8 =
∫
σ̃ (i(x),i(y),i(z))

ωPN(C), (4.33)

whereσ̃ (i(x), i(y), i(z)) is any deformation of the geodesic triangle(in PN(C)) with fixed
boundary given by the geodesics(in PN(C)) connecting the pointsi(x), i(y), andi(z).

The relationship between the phaseφ of the 3-point function and the symplectic area of
the geodesic triangle on the manifold itself is studied for the complex Grassmann manifold
in [5].
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