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The author expresses his gratitude to Professors C-tin Udrişte, G. Pripoae, O.
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Introduction

Problems of General Relativity

There are two big problems in General Relativity:

1 It predicts the occurrence of singularities (Penrose, 1965; Hawking,
1966a; Hawking, 1966b; Hawking, 1967; Hawking & Penrose, 1970).

2 The attempts to quantize gravity seem to fail, because it is
perturbatively nonrenormalizable (’t Hooft & Veltman, 1974; Goroff
& Sagnotti, 1986).

Are these problems signs that we should give up General Relativity in
favor of more radical approaches (superstrings, loop quantum gravity etc.)?

It is hoped that when GR will be quantized, this will solve the singularities
too, by showing probably that quantum fields prevent the occurrence of
singularities. Loop quantum cosmology obtained significant positive results
in this direction (Bojowald, 2001; Ashtekar & Singh, 2011; Vişinescu, 2009;
Saha & Vişinescu, 2012)
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Saha & Vişinescu, 2012)

3 / 142



Introduction

Problems of General Relativity

There are two big problems in General Relativity:

1 It predicts the occurrence of singularities (Penrose, 1965; Hawking,
1966a; Hawking, 1966b; Hawking, 1967; Hawking & Penrose, 1970).

2 The attempts to quantize gravity seem to fail, because it is
perturbatively nonrenormalizable (’t Hooft & Veltman, 1974; Goroff
& Sagnotti, 1986).

Are these problems signs that we should give up General Relativity in
favor of more radical approaches (superstrings, loop quantum gravity etc.)?

It is hoped that when GR will be quantized, this will solve the singularities
too, by showing probably that quantum fields prevent the occurrence of
singularities. Loop quantum cosmology obtained significant positive results
in this direction (Bojowald, 2001; Ashtekar & Singh, 2011; Vişinescu, 2009;
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Introduction

Singular General Relativity

Our approach is to explore singularities in General Relativity, by constructing
and using canonical geometric objects. As it turned out, singularities are
much nicer than is usually thought.

The equations can be expressed, even at singularities, using finite and
smooth fundamental geometric objects.
We can do covariant calculus, write down field equations.
The FLRW Big Bang singularity is of this type.
Isotropic singularities are of this type.
Degenerate warped products are of this type.
The stationary black holes turn out to be of this type.
Non-stationary black holes are compatible with global hyperbolicity.
The information is not necessarily lost.
Implications to the Weyl Curvature Hypothesis of Penrose.
Implications to dimensional reduction regularization in QFT and QG.
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Introduction

Two types of singularities

1 Malign singularities: some of the components gab →∞.
2 Benign singularities: gab are smooth and finite, but det g → 0.
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Introduction

What is wrong with singularities

1 For PDE on curved spacetimes: the covariant derivatives blow up:

Γc
ab =

1

2
g cs(∂agbs + ∂bgsa − ∂sgab) (1)

2 For Einstein’s equation blows up in addition because it is expressed in
terms of the curvature, which is defined in terms of the covariant
derivative:

Rd
abc = Γd

ac,b − Γd
ab,c + Γd

bsΓs
ac − Γd

csΓs
ab (2)

Gab = Rab −
1

2
Rgab (3)

Rab = Rs
asb, R = gpqRpq (4)

Even if gab are all finite, these equations are also in terms of gab, and
gab →∞ when det g → 0.
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Introduction

What are the non-singular objects?1

Some quantities which are part of the equations are indeed singular, but
this is not a problem if we use instead other quantities, equivalent to them
when the metric is non-degenerate.

Singular Non-Singular When g is...

Γc
ab (2-nd) Γabc (1-st) smooth

Rd
abc Rabcd semi-regular

Rab Rab

√
|det g |W , W ≤ 2 semi-regular

R R
√
|det g |W , W ≤ 2 semi-regular

Ric Ric ◦ g quasi-regular

R Rg ◦ g quasi-regular

1(Stoica, 2011b; Stoica, 2012b) 28 / 142



Examples of singularities

Examples of singularities
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The mathematics of singularities Degenerate inner product - algebraic properties

Degenerate inner product

Definition

An inner product on a vector space V is a symmetric bilinear form
g ∈ V ∗ ⊗ V ∗. The pair (V , g) is named inner product space. We use
alternatively the notation 〈u, v〉 := g(u, v), for u, v ∈ V . The inner
product g is degenerate if there is a vector v ∈ V , v 6= 0, so that
〈u, v〉 = 0 for all u ∈ V , otherwise g is non-degenerate. There is always a
basis, named orthonormal basis, in which g takes a diagonal form:

g =

 Or

−Is
+It

 . (5)

where Or is the zero operator on Rr , and Iq, q ∈ {s, t} is the identity
operator in Rq. The signature of g is defined as the triple (r , s, t).

30 / 142



The mathematics of singularities Degenerate inner product - algebraic properties

(V,g) V*

u
u+w

w (V●,g●)

(V●,g●)V●=V/V○

u●

(V , g) is an inner product vector space.

The morphism [ : V → V ∗ is defined by

u 7→ u• := [(u) = u[ = g(u, ). The radical V ◦ := ker [ = V⊥ is the set of isotropic

vectors in V . V • := im [ ≤ V ∗ is the image of [. The inner product g induces on V • an

inner product defined by g•(u
[
1, u

[
1) := g(u1, u2), which is the inverse of g iff det g 6= 0.

The quotient V • := V /V ◦ consists in the equivalence classes of the form u + V ◦. On

V •, g induces an inner product g•(u1 + V ◦, u2 + V ◦) := g(u1, u2). (Stoica, 2011c)
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The mathematics of singularities Degenerate inner product - algebraic properties

Relations between the various spaces2

The relations between the radical, the radical annihilator and the factor
spaces can be collected in the diagram:

0 V ◦ (V , g) (V •, g
•) 0

0 V ◦ V ∗ (V •, g•) 0

i◦ π•

π◦

[V

i•

[ ]

where V • = V •∗ =
V

V ◦
and V ◦ = V ◦

∗ = V ∗

V • .

2(Stoica, 2011c) 39 / 142



The mathematics of singularities Degenerate inner product - algebraic properties

Netric contraction between covariant indices

1 We define it first on tensors T ∈ V • ⊗ V •, by C12T = g•
abTab.

2 Let T ∈ T r
sV be a tensor with r ≥ 0 and s ≥ 2, which satisfies

T ∈ V⊗r ⊗ V ∗⊗s−2 ⊗ V • ⊗ V •. Then, we define

Cs−1 s := 1T r
s−2V

⊗ g• : T r
sV ⊗ V • ⊗ V • → T r

s−2V , (6)

3 Let T ∈ T r
sV be a tensor with r ≥ 0 and s ≥ 2, which satisfies

T ∈ V⊗r ⊗ V ∗⊗k−1 ⊗ V • ⊗ V ∗⊗l−k−1 ⊗ V • ⊗ V ∗⊗s−l ,
1 ≤ k < l ≤ s. We define the contraction

Ckl : V⊗r⊗V ∗⊗k−1⊗V •⊗V ∗⊗l−k−1⊗V •⊗V ∗⊗s−l → V⊗r⊗V ∗⊗s−2,
(7)

by Ckl := Cs−1 s ◦ Pk,s−1;l ,s , where Pk,s−1;l ,s : T ∈ T r
sV → T ∈ T r

sV
is the permutation isomorphisms which moves the k-th and l-th slots
in the last two positions.
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The mathematics of singularities Definition of singular semi-Riemannian manifolds

Singular semi-Riemannian manifolds

Definition

A singular semi-Riemannian manifold is a pair (M, g), where M is a
differentiable manifold, and g is a symmetric bilinear form on M, named
metric tensor or metric.

Constant signature: the signature of g is fixed.
Variable signature: the signature of g varies from point to point.
If g is non-degenerate, then (M, g) is a semi-Riemannian manifold.
If g is positive definite, (M, g) is a Riemannian manifold.
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The mathematics of singularities Definition of singular semi-Riemannian manifolds

Degenerate metric - algebraic properties

For the tangent bundle TpM at a point p ∈ M, the spaces and associated
metrics are defined as usual:

0 T ◦pM (TpM, g) (V •, g
•) 0

0 T ◦pM T ∗p M (T •pM, g•) 0

i◦ π•

π◦

[T
pM

i•

[ ]

where T •pM = T •∗pM =
TpM

T ◦pM
and T ◦pM = (T ◦pM)∗ =

T∗p M

T•pM
.
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The mathematics of singularities Covariant derivative

The Koszul object

The Koszul object is defined as K : X(M)3 → R,

K(X ,Y ,Z ) :=
1

2
{X 〈Y ,Z 〉+ Y 〈Z ,X 〉 − Z 〈X ,Y 〉
−〈X , [Y ,Z ]〉+ 〈Y , [Z ,X ]〉+ 〈Z , [X ,Y ]〉}.

(8)

In local coordinates it is the Christoffel’s symbols of the first kind:

Kabc = K(∂a, ∂b, ∂c) =
1

2
(∂agbc + ∂bgca − ∂cgab) = Γabc , (9)

For non-degenerate metrics, the Levi-Civita connection is obtained uniquely:

∇XY = K(X ,Y , )]. (10)
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The mathematics of singularities Covariant derivative

The covariant derivatives3

The lower covariant derivative of a vector field Y in the direction of a
vector field X :

(∇[XY )(Z ) := K(X ,Y ,Z ) (11)

The covariant derivative of differential forms:

(∇Xω) (Y ) := X (ω(Y ))− g•(∇[XY , ω),

∇X (ω1 ⊗ . . .⊗ ωs) := ∇X (ω1)⊗ . . .⊗ ωs + . . .+ ω1 ⊗ . . .⊗∇X (ωs)

(∇XT ) (Y1, . . . ,Yk) = X (T (Y1, . . . ,Yk))

−
∑k

i=1K(X ,Yi , •)T (Y1, , . . . , •, . . . ,Yk)
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The mathematics of singularities Covariant derivative

Semi-regular manifolds. Riemann curvature tensor4

A semi-regular semi-Riemannian manifold is defined by the condition

∇X∇[Y Z ∈ A•(M). (12)

Equivalently,
K(X ,Y , •)K(Z ,T , •) ∈ F (M). (13)

Riemann curvature tensor:

R(X ,Y ,Z ,T ) = (∇X∇[Y Z )(T )− (∇Y∇[XZ )(T )− (∇[[X ,Y ]Z )(T ) (14)

Rabcd = ∂aKbcd − ∂bKacd + (Kac•Kbd• −Kbc•Kad•) (15)

Is a tensor field. Has the same symmetry properties as for det g 6= 0. It is
radical-annihilator. It is smooth for semi-regular metrics.
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The mathematics of singularities Examples of semi-regular semi-Riemannian manifolds

Examples of semi-regular semi-Riemannian manifolds5

Isotropic singularities:
g = Ω2g̃ .

Degenerate warped products (f allowed to vanish):

ds2 = ds2
B + f 2(p)ds2

F . (16)

FLRW spacetimes are degenerate warped products:

ds2 = −dt2 + a2(t)dΣ2 (17)

dΣ2 =
dr 2

1− kr 2
+ r 2

(
dθ2 + sin2 θdφ2

)
, (18)

where k = 1 for S3, k = 0 for R3, and k = −1 for H3.
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Einstein’s equation on semi-regular spacetimes

Einstein’s equation on semi-regular spacetimes6

On 4D semi-regular spacetimes Einstein tensor density G det g is smooth.
At the points p where the metric is non-degenerate, the Einstein tensor can
be expressed by:

G ab det g = gklε
akstεblpqRstpq, (19)

where εabcd is the Levi-Civita symbol.

Therefore, Gab det g is smooth too, and it makes sense to write a densitized
version of Einstein’s equation

Gab det g + Λgab det g = κTab det g , (20)

where κ :=
8πG
c4

, G and c being Newton’s constant and the speed of light.

In many cases, the densitized Einstein equation works even with Gab
√

det g .

It is not allowed to divide by det g , when det g = 0.
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Friedmann-Lemâıtre-Robertson-Walker spacetime

Friedmann-Lemâıtre-Robertson-Walker spacetime

If S is a connected three-dimensional Riemannian manifold of constant cur-
vature k ∈ {−1, 0, 1} (i.e. H3,R3 or S3) and a ∈ (A,B), −∞ ≤ A < B ≤
∞, a ≥ 0, then the warped product I ×a S is called a Friedmann-Lemâıtre-
Robertson-Walker spacetime.

ds2 = −dt2 + a2(t)dΣ2 (21)

dΣ2 =
dr 2

1− kr 2
+ r 2

(
dθ2 + sin2 θdφ2

)
, (22)

where k = 1 for S3, k = 0 for R3, and k = −1 for H3.

In general the warping function is taken a ∈ F (I ) is a > 0. Here we allow
it to be a ≥ 0, including possible singularities.
The resulting singularities are semi-regular.
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∞, a ≥ 0, then the warped product I ×a S is called a Friedmann-Lemâıtre-
Robertson-Walker spacetime.

ds2 = −dt2 + a2(t)dΣ2 (21)

dΣ2 =
dr 2

1− kr 2
+ r 2

(
dθ2 + sin2 θdφ2

)
, (22)

where k = 1 for S3, k = 0 for R3, and k = −1 for H3.
In general the warping function is taken a ∈ F (I ) is a > 0. Here we allow
it to be a ≥ 0, including possible singularities.
The resulting singularities are semi-regular.
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Friedmann-Lemâıtre-Robertson-Walker spacetime

Distance separation vs. topological separation

The old method of resolution of singularities shows how we can “untie” the
singularity of a cone and obtain a cylinder.
Similarly, it is not necessary to assume that, at the Big Bang singularity, the
entire space was a point, but only that the space metric was degenerate.
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Friedmann-Lemâıtre-Robertson-Walker spacetime

Friedman equations

The stress-energy tensor is

T ab = (ρ+ p) uaub + pgab, (23)

where ua is the timelike vector field ∂t , normalized.

The Friedmann equation

ρ =
3

κ

ȧ2 + k

a2
, (24)

The acceleration equation

ρ+ 3p = −6

κ

ä

a
. (25)

The fluid equation, expressing the conservation of mass-energy:

ρ̇ = −3
ȧ

a
(ρ+ p) . (26)

They are singular for a = 0.
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ȧ

a
(ρ+ p) . (26)

They are singular for a = 0.

77 / 142
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Friedmann-Lemâıtre-Robertson-Walker spacetime

Friedman equations, densitized7

The actual densities contain in fact
√
−g

(= a3√gΣ):{
ρ̃ = ρ

√
−g = ρa3√gΣ

p̃ = p
√
−g = pa3√gΣ

(27)

The Friedmann equation (24) becomes

ρ̃ =
3

κ
a
(
ȧ2 + k

)√
gΣ, (28)

The acceleration equation (25) becomes

ρ̃+ 3p̃ = −6

κ
a2ä
√

gΣ, (29)

Hence, ρ̃ and p̃ are smooth, as it is the densitized stress-energy tensor

Tab
√
−g = (ρ̃+ p̃) uaub + p̃gab. (30)
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ȧ2 + k

)√
gΣ, (28)

The acceleration equation (25) becomes

ρ̃+ 3p̃ = −6

κ
a2ä
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Friedmann-Lemâıtre-Robertson-Walker spacetime

FLRW Big Bang8

Big Bang singularity, corresponding to a(0) = 0, ȧ(0) > 0.
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Friedmann-Lemâıtre-Robertson-Walker spacetime

FLRW Big Bounce9

Big Bounce, corresponding to a(0) = 0, ȧ(0) = 0, ä(0) > 0.
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Black hole singularities Schwarzschild black holes

Schwarzschild singularity is semi-regular10

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr 2 + r 2dσ2, (31)

where
dσ2 = dθ2 + sin2 θdφ2 (32)

Let’s change the coordinates to{
r = τ2

t = ξτ4 (33)

The four-metric becomes:

ds2 = − 4τ4

2m − τ2
dτ2 + (2m − τ2)τ4 (4ξdτ + τdξ)2 + τ4dσ2 (34)

which is analytic and semi-regular at r = 0.
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Black hole singularities Schwarzschild black holes

Evaporating Schwarzschild black hole and information11

A. Standard evaporating black hole, whose singularity destroys the information.

B. Evaporating black hole extended through the singularity preserves information.
11(Stoica, 2012e) 92 / 142



Black hole singularities Reissner-Nordström black holes

Reissner-Nordström singularity is analytic12

ds2 = −
(

1− 2m

r
+

q2

r 2

)
dt2 +

(
1− 2m

r
+

q2

r 2

)−1

dr 2 + r 2dσ2, (35)

We choose the coordinates ρ and τ , so that

{
t = τρT

r = ρS

The metric has, in the new coordinates, the following form

ds2 = −∆ρ2T−2S−2 (ρdτ + T τdρ)2 +
S2

∆
ρ4S−2dρ2 + ρ2Sdσ2, (36)

where ∆ := ρ2S − 2mρS + q2. (37)

To remove the infinity of the metric at r = 0, take

{
S ≥ 1
T ≥ S + 1

which also ensure that the metric is analytic at r = 0.
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Black hole singularities Reissner-Nordström black holes

Non-singular electromagnetic field13

The electromagnetic potential in the coordinates (t, r , φ, θ) is singular at
r = 0:

A = −q

r
dt, (38)

In the new coordinates (τ, ρ, φ, θ), the electromagnetic potential is

A = −qρT−S−1 (ρdτ + T τdρ) , (39)

the electromagnetic field is

F = q(2T − S)ρT−S−1dτ ∧ dρ, (40)

and they are analytic everywhere, including at the singularity ρ = 0.
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Black hole singularities Reissner-Nordström black holes

Null geodesics of Reissner-Nordström in our coordinates14

To have space+time foliation given by the coordinate, must have T ≥ 3S .

(0, 0)

As one approaches the singularity on the axis ρ = 0, the lightcones become
more and more degenerate along that axis (for T ≥ 3S and even S).

14(Stoica, 2012a) 101 / 142



Global hyperbolicity and information Foliations with Cauchy hypersurfaces

Penrose diagrams for the Reissner-Nordström black holes

C.B.

A.

Our universe,
outside the black

hole

Inside the black hole

Other universe,
outside the black

hole

Timelike
singularity

Other universe,
outside the black

hole

Other universe,
outside the black

hole

Cauchy
horizon

Our universe,
outside the black

hole

Timelike
singularity

Other universe,
outside the black

hole

Cauchy
horizon

Reissner-Nordström black holes. A. Naked solutions (q2 > m2). B. Extremal solution
(q2 = m2). C. Solutions with q2 < m2.
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Global hyperbolicity and information Foliations with Cauchy hypersurfaces

Penrose diagram for our extension of the non-extremal
Reissner-Nordström black hole 15

The Penrose-Carter diagram our extension of for the non-extremal Reissner-Nordström black hole
with q2 < m2, analytically extended beyond the singularity. When represented in plane, it repeats
periodically along both the vertical and the horizontal directions, and it has overlaps. In the
diagram, there is an intentional small shift between the two copies, to make the overlapping
visible.

15(Stoica, 2012a; Stoica, 2012f) 103 / 142



Global hyperbolicity and information Foliations with Cauchy hypersurfaces

Space-like foliation of the Reissner-Nordström solution16

We can foliate the Reissner-Nordström using Cauchy hypersurfaces, if we
remove the regions beyond the Cauchy horizons:

Timelike singularity

Internal horizon
Event horizon

Cauchy hypersurface

p

Implications: we can vary m, q, a and obtain general singularities which
preserve information.

16(Stoica, 2012a; Stoica, 2012f) 104 / 142
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The mathematics of singularities 2 Quasi-regular singularities

The Ricci decomposition

The Riemann curvature tensor can be decomposed algebraically as

Rabcd = Sabcd + Eabcd + Cabcd (41)

where

Sabcd =
1

n(n − 1)
R(g ◦ g)abcd (42)

Eabcd =
1

n − 2
(S ◦ g)abcd (43)

Sab := Rab −
1

n
Rgab (44)

(h ◦ k)abcd := hackbd − hadkbc + hbdkac − hbckad (45)
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The mathematics of singularities 2 Quasi-regular singularities

The expanded Einstein equation17

In dimension n = 4 we introduce the expanded Einstein equation

(G ◦ g)abcd + Λ(g ◦ g)abcd = κ(T ◦ g)abcd (46)

or, equivalently,

2Eabcd − 3Sabcd + Λ(g ◦ g)abcd = κ(T ◦ g)abcd . (47)

It is equivalent to Einstein’s equation if the metric is non-degenerate.
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The mathematics of singularities 2 Quasi-regular singularities

Examples of quasi-regular singularities18

Isotropic singularities.

Degenerate warped products B ×f F with dim B = 1 and dim F = 3.
In particular, FLRW singularities.
Schwarzschild singularities.
The question whether the Reissner-Nordström and Kerr-Newman
singularities are semi-regular, or quasi-regular, is still open.
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The mathematics of singularities 2 Quasi-regular singularities

The Weyl tensor at quasi-regular singularities19

The Weyl curvature tensor :

Cabcd = Rabcd − Sabcd − Eabcd . (48)

Cabcd → 0 as approaching a quasi-regular singularity.

Because of this, any quasi-regular Big Bang satisfies the Weyl curvature
hypothesis, emitted by Penrose to explain the low entropy at the Big Bang.

For example, the spacetime proposed In (Stoica, 2012c), which is not nec-
essarily homogeneous or isotropic, with the metric

ds2 = −N2(t)dt2 + a2(t)dσ2
t , (49)

is quasi-regular, satisfying therefore the Weyl curvature hypothesis.
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Dimensional reduction and QFT

Hints of dimensional reduction in QFT and QG

The scattering amplitudes in QCD (Lipatov, 1988; Lipatov, 1989;
Lipatov, 1991).
High energy Regge regime (Verlinde & Verlinde, 1993; Aref’eva,
1994).
Fractal universe (Calcagni, 2010b; Calcagni, 2010a), based on a
Lebesgue-Stieltjes measure or a fractional measure (Calcagni, 2011),
fractional calculus, and fractional action principles (El-Nabulsi, 2005;
El-Nabulsi & Torres, 2008; Udrişte & Opriş, 2008).
Topological dimensional reduction (Shirkov, 2010; Fiziev & Shirkov,
2011; Fiziev, 2010; Fiziev & Shirkov, 2012; Shirkov, 2011).
Vanishing Dimensions at LHC (Anchordoqui et al., 2012).
Dimensional reduction in Quantum Gravity (Carlip, 1995; Carlip
et al., 2009; Carlip, 2010).
Asymptotic safety (Weinberg, 1979).
Causal dynamical triangulations (Ambjørn et al., 2000).
Hǒrava-Lifschitz gravity (Hǒrava, 2009).
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Dimensional reduction and QFT

Is dimensional reduction due to the benign singularities?20

Geometric, or metric reduction:

dim Tp•M = dim Tp
•M = rank gp. (50)

Kupeli theorem (Kupeli, 1987): for constant signature, the space is
locally a product between a space of lower dimension and a manifold
with metric 0.
This shows the connection with the topological dimensional
reduction (Shirkov, 2010; Fiziev & Shirkov, 2011; Fiziev, 2010; Fiziev
& Shirkov, 2012; Shirkov, 2011).
Weyl tensor Cabcd → 0 as approaching a quasi-regular singularity.
This implies that the local degrees of freedom vanish, i.e. the
gravitational waves for GR and the gravitons for QG (Carlip, 1995).
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Dimensional reduction and QFT

Is dimensional reduction due to the benign singularities?21

A charged particle as a Reissner-Nordström black hole has dim = 2:

ds2 = −∆ρ2T−2S−2 (ρdτ + T τdρ)2 +
S2

∆
ρ4S−2dρ2 + ρ2Sdσ2. (51)

To admit space+time foliation in these coordinates, we should take
T ≥ 3S . Is this anisotropy connected to Hǒrava-Lifschitz gravity?
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Dimensional reduction and QFT

Is dimensional reduction due to the benign singularities?22

In the fractal universe approach (Calcagni, 2010b; Calcagni, 2010a; Calcagni,
2011), to resolve the problems of non-renormalizability, it was postulated
that the measure in

S =

∫
M

d%(x)L (52)

has the form

d%(x) =
D−1∏
µ=0

f(µ)(x) dxµ, (53)

where some of the functions f(µ)(x) vanish at low scales.
In Singular General Relativity, the measure postulated by Calcagni is
obtained naturally, since

d%(x) =
√
− det gdxD . (54)

If the metric is diagonal in the coordinates (xµ), then we can take

f(µ)(x) =
√
|gµµ(x)|. (55)
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Dimensional reduction and QFT

Quantum gravity from dimensional reduction at
singularities23

To make GR renormalizable, some authors proposed various modifications,
entailing apparently distinct kinds of dimensional reduction.

We have seen that some of these are obtained naturally, without modifying
GR, from the properties of singularities.
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What if the singularities are not a problem in General Relativity?

Thank you!

What if they provide the solution to the problem of Quantum Gravity?
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