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Introduction

Geometric Algebra is an approach to the differential and spin geometry of pseudo-Riemannian
manifolds (M, g) which allows for a synthetic and effective formulation of those operations on
forms and spinors that can be constructed naturally by using only the differential and Riemannian
structure. It has a number of advantages arising from the category-theoretical fact that it provides
a functorial realization of the Clifford bundle of a pseudo-Riemannian manifold, thereby solving a
number of issues which plague the usual approach to spin geometry.

It employs an isomorphic realization of the Clifford bundle Cl(T ∗M) of T ∗M as the Kähler-Atiyah
bundle (ΛT ∗M, �), where � : ΛT ∗M × ΛT ∗M → ΛT ∗M is the geometric product, an associative
(but non-commutative) fiberwise composition which makes the exterior bundle into a bundle of
unital associative algebras.

Has natural physical interpretation through the quantization of spin systems, most elegantly
expressed as a form of “vertical geometric quantization” of a spinning particle moving on (M, g),
which shows that � can be viewed as a kind of star product in the sense of deformation or
geometric quantization.

It allows for a functorial reformulation of the differential and spin geometry of pseudo-Riemannian
manifolds, which is extremely effective in supergravity/string theories, especially in the presence of
fluxes. Leads to deep connections with non-commutative algebraic geometry (the theory of
Azumaya varieties) thereby allowing exchange of methods with that field of research.

History and outlook

First inklings in Kähler’s work on the Kähler-Dirac equation (1960’s); some ideas used by
Atiyah (1970s). Precursors: Cartan and Chevalley’s algebraic spinors, the Riesz-Chevalley
isomorphism.

Basic work in General Relativity by W. Graf (1978) and few others (Estabrook, Wahlquist etc.)
(1990s-2000s).

Deep connections with Kähler-Cartan theory, in particular with Kobayashi’s reformulation
thereof.

Notes

Little work was done on supergravity/string theory, despite the power of this approach.

Connection with quantization became clearer only since 2004 (P. Henselder et al.); full analysis
leads to new ideas in the spin geometry of almost Hermitian manifolds (J-P. Michel et. al).

Implications for operations on cohomology, spin structures and the characteristic classes of
spinor bundles remain unexplored (implicit in ideas of J. Vanžura, A. Trautman, T. Friedrich
but not worked out in GA language).

Upshot

We use Geometric Algebra techniques to re-formulate and solve hard computational problems
related to supersymmetric actions and backgrounds in supergravity compactifications of String/M
Theory.
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Mathematical setting

(M, g) is a (smooth, Hausdorff and paracompact) pseudo-Riemannian manifold of signature
(p, q) and dimension d = p + q.

ΛT ∗M := ⊕d
k=0ΛkT ∗M is the exterior bundle of M (endowed with the metric induced by g).

Ω(M) := C∞(ΛT ∗M) is the space of all (inhomogeneous) differential forms on M.

S is a real pin bundle of M, defined as a bundle of simple modules over the Clifford bundle
Cl(T ∗M). It is well-known (Trautmann and Friedrich) that that S exists iff M has a Cliffordc

structure, in which case it is the Cliffordc spinor bundle of M.

ι : Ω∗(M)→ Ω∗(M) is the left interior product (a.k.a. left generalized contraction) operator,
defined as the adjoint of the wedge product: 〈ιωη, ρ〉 = 〈ω, η ∧ ρ〉 for all ω, η, ρ ∈ Ω(M).

The Kähler-Atiyah bundle

Definition The geometric product of (M, g) is the unique associative and unital bundle morphism
� : ∧T ∗M ⊗ ∧T ∗M → ∧T ∗M which satisfies the Riesz-Chevalley formulas:

X � ω = X ∧x ω + ιXω

ω � X = (−1)k(X ∧ ω − ιXω)

for all X ∈ Γ(M,T ∗M) and ω ∈ Ωk(M). When endowed with this composition, the bundle of
algebras (∧T ∗M, �) is called the Kähler-Atiyah bundle of (M, g); it is isomorphic (as a bundle of
unital associative algebras) with the Clifford bundle Cl(T ∗M).

Note The pin bundle S can be viewed as a bundle of modules over the Kähler-Atiyah bundle. We
let γ : ∧T ∗M → End(S) be the (unital) morphism of bundles of associative algebras defining this
module structure; it is fiberwise equivalent with a representation of the Clifford algebra Cl(T ∗x M)
on the fiber Sx .

There exists a semiclassical expansion of the geometric product:

� =

[ d2 ]∑
k=0

(−1)k 42k +

[ d−1
2 ]∑

k=0

(−1)k+1 42k+1 ◦(π ⊗ id∧T∗M) , (1)

where ∆k : ∧T ∗M ⊗ ∧T ∗M → ∧T ∗M (k = 0, . . . , d) are the generalized products, defined
inductively through:

ω∆0η = ω ∧ η , ω∆k+1η =
1

k + 1
gmn(ιemω)∆k(ιenη) .

Notes:

∆k is homogeneous of degree −2k

∆k are the homogeneous components of �

Theorem Any natural and smooth multilinear algebraic fiberwise operation on ∧T ∗M which can
be constructed using only the metric and differential structure of (M, g) can be expressed as a
combination of geometric products and the operation of taking rank components.

Notes:

Natural means functorial while smooth means smooth functor in the sense of Serge Lang.

A precursor of this theorem was given by Leo Dorst.
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Vertical quantization and CGKS

Vertical Quantization

Theorem When (M, g) admits a compatible almost complex structure J, the operation � can be
identified with the star product of “vertical” Weyl quantization of a certain even symplectic
supermanifold associated with (M, g) (with polarization induced by J).

Notes

In the flat case, this form of “vertical quantization” is well-known (Berezin & Marinov
(1967)). In the curved (esp. compact) case, rigorous results are quite recent (J-P. Michel).

The physical interpretation is given by the spinning particle moving on (M, g) in the presence
of fluxes. The most general coupling can be written down by generalizing work of Van Holten
and Riedtijk and makes connection with the theory of generalized Dirac operators as developed
by E. Getzler and in the book of Berline, Getzler and Vergne.

There exist implications for index theorems (with or without fluxes) and characteristic classes.

Conditions for (M, g) to admit a compatible almost complex structure are non-trivial in higher
dimensions. For d = 8 (of interest for M/F -theory compactifications, higher
Donaldson/Seiberg-Witten theory etc.) those conditions were worked out quite recently by J.
Vanžura et al.

Upshot The expansion of the geometric product into generalized products can be seen as the
semiclassical expansion of a star product (upon replacing the metric with g

~ ). The complexity of all
natural operations on differential forms (induced by various ways of combining the wedge product
with contractions of indices) is the well-known complexity characteristic of the semiclassical
expansion of quantum operations. Just as Heisenberg simplified the theory of quantum observables
and amplitudes by introducting the operator formalism, one can simplify the analysis of operations
on differential forms and spinors by using the quantum language provided by the geometric
product. In particular, this is a baby version of quantum geometry — the full string variant of
which would correspond to performing the corresponding analysis on the loop space of (M, g).

Computational aspects Since the definition of generalized products is recursive, Geometric
Algebra is highly amenable to implementation in symbolic domain systems such as Mathematica

(Ricci, GrassmannAlgebra, MathTensor), Maple (Clifford, GfG/TNB), Cadabra,
Singular/Plural, etc. This allows us to re-formulate succintly and promises to almost fully
automate hard computations which used to be the bane of supergravity. As one application, we
used this approach in the study of certain flux compactifications of M-theory, which were never
studied in full generality before. The domain of applications is extremely wide, comprising the
whole subject of “spin geometry” as defined by Lawson and Michelson.

Implementation. I wrote procedures (being generalized by Ioana) to implement this approach
within:

Ricci (a Mathematica package for tensor computations)

GrassmannAlgebra (a Mathematica package for computation with multilinear forms)

Cadabra (a specialized symbolic computation system written in C++)

Generalized Killing spinors. I developed a mathematical theory of generalized Killing spinors,
connecting it to a notion of generalized Killing forms. This is quite technical and explained in some
detail in our papers, but not directly relevant to this talk. There are deep connections with
Kähler-Cartan theory, especially in its formulation via jet bundles (Kobayashi). Also deep
connections with non-commutative algebraic geometry (the theory of Azumaya varieties). All this
promises to change the point of view on supergravity and string theory compactifications, especially
in the singular context.
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(S)pinors in the Geometric Algebra approach

pinor bundle: R-vector bundle endowed with a morphism of algebras γ : (Ω(M), �)→ (End(S), ◦)
which makes S into a bundle of modules over the the Kähler-Atiyah bundle of (M, g).

pin bundle: A spinor bundle for which S is a bundle of simple modules over the
Kähler-Atiyah bundle.

spin(or) bundle: As above, but replace the Kähler-Atiyah bundle with its even rank sub-bundle.

Notes:

This is more general (and in some ways better) than Cartan’s approach via Spin,Pin,Pinc

structures etc. It is also functorial.

Any pinor bundle is naturally a spinor bundle.

The (s)pin bundle case corresponds to spin=1/2.

There exists a notion of spin projector etc. which can be defined in some cases.

Topological and representation-theoretic subtleties will largely be suppressed below.

ν � ν = +1 ν � ν = −1

ν is central 1(R), 5(H) 3(C), 7(C)

ν is not central 0(R), 4(H) 2(R), 6(H)

Table: Properties of the (real) volume form ν according to the mod 8 reduction of p − q. At the intersection
of each row and column, we indicate the values of p − q (mod 8) for which the volume form ν has the
corresponding properties. In parentheses, we also indicate the Schur algebra S for that value of
p − q (mod 8). The real Clifford algebra Cl(p, q) is non-simple iff. p − q ≡8 1, 5, which corresponds to the
upper left cell of the table and is also indicated through the magenta color of that table cell. In the
non-simple cases, there are two choices for γ, which are distinguished by the signature εγ = ±1; these are
also the only cases when γ fails to be injective. Notice that ν is central iff. d is odd. The green color
indicates those values of p − q (mod 8) for which a spin endomorphism can be defined (see the main text).

injective non-injective

surjective 0(R), 2(R) 1(R)

non-surjective 3(C), 7(C), 4(H), 6(H) 5(H)

Table: Fiberwise character of real pin representations γ. At the intersection of each row and column, we
indicate the values of p − q (mod 8) for which the map induced by γ on each fiber of the
Kähler-Atiyah algebra has the corresponding properties. In parentheses, we also indicate the Schur algebra S
of γ for that value of p − q (mod 8). Note that γ is fiberwise surjective exactly for the normal case, i.e.
when the Schur algebra is isomorphic with R. Also notice that γ fails to be fiberwise injective precisely in the
non-simple case p − q ≡8 1, 5, which we indicate through the magenta colouring of the corresponding table
cells.

Type
p − q
mod 8

S

normal 0, 1, 2 R
almost complex 3, 7 C

quaternionic 4, 5, 6 H

Table: Type of the pin bundle of (M, g) according to the mod 8 reduction of p − q. The pin bundle S is
called normal, almost complex or quaternionic depending on whether its Schur algebra is isomorphic with R,
C or H. The non-simple sub-cases are indicated in magenta, while those cases when a spin operator can be
defined are indicated in green.
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(S)pinors in the Geometric Algebra approach

S p − q
mod 8

∧T ∗x M
≈ Cl(p, q)

∆ N
Number of

choices
for γ

γx(∧T ∗x M)
Fiberwise
injectivity

of γ

R 0, 2 Mat(∆,R) 2[ d
2

] = 2
d
2 2[ d

2
] 1 Mat(∆,R) injective

H 4, 6 Mat(∆,H) 2[ d
2

]−1 = 2
d
2
−1 2[ d

2
]+1 1 Mat(∆,H) injective

C 3, 7 Mat(∆,C) 2[ d
2

] = 2
d−1

2 2[ d
2

]+1 1 Mat(∆,C) injective

H 5 Mat(∆,H)⊕2 2[ d
2

]−1 = 2
d−3

2 2[ d
2

]+1 2 (εγ = ±1) Mat(∆,H) non-injective

R 1 Mat(∆,R)⊕2 2[ d
2

] = 2
d−1

2 2[ d
2

] 2 (εγ = ±1) Mat(∆,R) non-injective

Table: Summary of pin bundle types. The non-negative integer N
def.
= rkRS is the real rank of S while

∆
def.
= rkΣγ

S is the Schur rank of S . The non-simple cases are indicated by the magenta shading of the
corresponding table cells.

p − q
mod 8

Cl(p, q)
γ

is injective
εγ R (real spinors) ν � ν ν

is central

0 simple Yes N/A γ(ν) (Majorana-Weyl) +1 No

1 non-simple No ±1 N/A +1 Yes

2 simple Yes N/A N/A −1 No

Table: Summary of subcases of the normal case.

p − q
mod 8

Cl(p, q)
γ

is injective
εγ D2 R (real spinors) ν � ν ν

is central

3 simple Yes N/A −idS N/A −1 Yes

7 simple Yes N/A +idS D (Majorana) −1 Yes

Table: Summary of subcases of the almost complex case. In this case, γ(ν) defines a complex structure J on
S and we have imγ = EndC(S). We also have an endomorphism D of S which anticommutes with J (thus
giving a complex conjugation on S , when the latter is viewed as a complex vector bundle) and satisfies
[D, γm]+,◦ = 0. The two subcases p − q ≡8 3 and p − q ≡8 7 are distinguished by whether D2 equals −idS

or +idS . In both cases, γ can be viewed as an isomorphism of bundles of R-algebras from the
Kähler-Atiyah bundle (∧T ∗M, �) to (EndC(S), ◦), while its complexification γC gives an isomorphism of
bundles of C-algebras from the complexified Kähler-Atiyah bundle (∧T ∗CM, �) to (EndC(S), ◦). When
p − q ≡8 7, D is a real structure which can be used to identify S with the complexification

(S+)C
def.
= S+ ⊗OC of the real bundle S+ ⊂ S of Majorana spinors. When p − q ≡8 3, D is a second

complex structure on S , which anticommutes with the complex structure J = γ(ν). In that case, the
operators J,D and J ◦ D define a global quaternionic structure on S — which, however, is not compatible
with γ since D anticommutes with γm.

p − q
mod 8

Cl(p, q)
γ

is injective
εγ R (real spinors) ν � ν ν

is central

4 simple Yes N/A γ(ν) (sympl. Majorana-Weyl) +1 No

5 non-simple No ±1 N/A +1 Yes

6 simple Yes N/A γ(ν) ◦ J (sympl. Majorana) −1 No

Table: Summary of subcases of the quaternionic case. J denotes any of the complex structures induced on S
by the quaternionic structure.
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(S)pinors in the Geometric Algebra approach

S p − q
mod 8

Cl(p, q) R Terminology
for real spinors

R 0 simple γ(ν) Majorana-Weyl

C 7 simple D Majorana

H 4 simple γ(ν) symplectic Majorana-Weyl

H 6 simple γ(ν) ◦ J symplectic Majorana

Table: The product structure R used in the construction of the spin projectors PR±
def.
= 1

2 (1±R) for those
cases when they can be defined and the corresponding terminology for real spinors. When p − q ≡8 6, the
endomorphism J ∈ Γ(M,End(S)) appearing in the expression for R is any of the complex structures
associated with the quaternionic structure of S . Notice that Cl(p, q) is always simple as an R-algebra (and
hence γ is fiberwise injective) in those cases when spin projectors can be defined.

d d mod 8 S ∆ N Cl(p, q)
Irrep.
image

No. of
R−irreps.

Injective ?
Chirality
operator
R

γ(d+1)
Name of
pinors

(spinors)

1 1 R 1 1 Mat(1,R)⊕2 Mat(1,R) 2 no N/A ±1l M

2 2 R 2 2 Mat(2,R) Mat(2,R) 1 yes N/A γ(3) M
3 3 C 2 4 Mat(2,C) Mat(2,C) 1 yes N/A ±J M

4 4 H 2 8 Mat(2,H) Mat(2,H) 1 yes γ(ν) γ(5) SM (SMW)

5 5 H 2 8 Mat(2,H)⊕2 Mat(2,H) 2 no N/A ±1l SM

6 6 H 4 16 Mat(4,H) Mat(4,H) 1 yes γ(ν) ◦ J γ(7) DM (M)
7 7 C 8 16 Mat(8,C) Mat(8,C) 1 yes D ±J DM (M)

8 0 R 16 16 Mat(16,R) Mat(16,R) 1 yes γ(ν) γ(9) M (MW)

9 1 R 16 16 Mat(16,R)⊕2 Mat(16,R) 2 no N/A ±1l M

10 2 R 32 32 Mat(32,R) Mat(32,R) 1 yes N/A γ(11) M
11 3 C 32 64 Mat(32,C) Mat(32,C) 1 yes N/A ±J DM

12 4 H 32 128 Mat(32,H) Mat(32,H) 1 yes γ(ν) γ(13) SM (SMW)

Table: Clifford algebras, representations and character of spinors for Riemannian manifolds. In this case, one has q = 0 and

d = p.

d
d − 2
mod 8

S ∆ N Cl(p, q)
Irrep.
image

No. of
R−irreps.

Injectve ?
Chirality
operator
R

γ(d+1)
Name of
pinors

(spinors)

1 7 C 1 2 Mat(1,C) Mat(1,C) 1 yes D ±J DM (M)

2 0 R 2 2 Mat(2,R) Mat(2,R) 1 yes γ(ν) γ(3) M (MW)

3 1 R 2 2 Mat(2,R)⊕2 Mat(2,R) 2 no N/A ±1l M

4 2 R 4 4 Mat(4,R) Mat(4,R) 1 yes N/A γ(5) M
5 3 C 4 8 Mat(4,C) Mat(4,C) 1 yes N/A ±J SM

6 4 H 4 16 Mat(4,H) Mat(4,H) 1 yes γ(ν) ◦ J γ(7) SM (SMW)

7 5 H 4 16 Mat(4,H)⊕2 Mat(4,H) 2 no N/A ±1l SM

8 6 H 8 32 Mat(8,H) Mat(8,H) 1 yes γ(ν) ◦ J γ(9) DM (W)
9 7 C 16 32 Mat(16,C) Mat(16,C) 1 yes D ±J DM (M)

10 0 R 32 32 Mat(32,R) Mat(32,R) 1 yes γ(ν) γ(11) M (MW)

11 1 R 32 32 Mat(32,R)⊕2 Mat(32,C) 2 no N/A ±1l M

12 2 R 64 64 Mat(64,R) Mat(64,R) 1 yes N/A γ(13) M

Table: Clifford algebras, representations and character of spinors for Lorentzian manifolds. In this case, one has p = d − 1,

q = 1 and p − q = d − 2.
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The Geometric Algebra of Fierz identities

Given an admissible fiberwise bilinear pairing B on S , we define endomorphisms
Eξ,ξ′ ∈ Γ(M,End(S)) ≈ HomC∞(M,R)(Γ(M, S), Γ(M, S)) through:

Eξ,ξ′(ξ
′′)

def
= B(ξ′′, ξ′)ξ , ∀ξ, ξ′ ∈ Γ(M,S) .

One has the algebraic Fierz identities:

Eξ1,ξ2 ◦ Eξ3,ξ4 = B(ξ3, ξ2)Eξ1,ξ4 , ∀ξ1, ξ2, ξ3, ξ4 ∈ Γ(M,S) , (2)

as well as:
tr(T ◦ Eξ,ξ′) = B(T ξ, ξ′) , ∀ξ, ξ′ ∈ Γ(M,S) . (3)

Fierz identities for the normal case (p − q ≡8 0, 1, 2)

Proposition. We have the completeness relation for the normal case:

T =U
N

2d

∑
A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,End(S)) . (4)

Setting T = Eξ,ξ′ in this relation gives the expansion:

Eξ,ξ′ =
N

2d

∑
A=ordered

ε
|A|
B B(ξ, γAξ′)γA . (5)

The geometric Fierz identities. The inhomogeneous differential forms:

Ěξ,ξ′
def.
=
(
γ|Ωγ(M)

)−1
(Eξ,ξ′) ∈ Ωγ(M)

have the expansion:

Ěξ,ξ′ =
N

2d

∑
A=ordered

ε
|A|
B B(ξ, γAξ

′)eAγ , ∀ξ, ξ′ ∈ Γ(M,S) .

and satisfy the geometric Fierz identities:

Ěξ1,ξ2 � Ěξ3,ξ4 = B(ξ3, ξ2)Ěξ1,ξ4 , ∀ξ1, ξ2, ξ3, ξ4 ∈ Γ(M,S) ,

an equality which holds in Ωγ(M).
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Geometric Fierz identities for the almost complex case

Fierz identities for the almost complex case

Proposition. We have the partial completeness relation for the almost complex case:

2d+1

N
T =

2d

∆
T =U

∑
A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,EndC(S)) . (6)

and the full completeness relation for the almost complex case:

2d+1

N
T =

2d

∆
T =U

∑
A=ordered

[
tr(γ−1

A ◦ T )γA + tr(γ−1
A ◦ D−1 ◦ T )D ◦ γA

]
, ∀T ∈ Γ(M,End(S)) .

(7)
Skipping many intermediate steps, this gives the geometric Fierz identities for the almost complex
case:

Ě
(0)
ξ1,ξ2
� Ě

(0)
ξ3,ξ4

+ (−1)
p−q+1

4 Π(Ě
(1)
ξ1,ξ2

) � Ě
(1)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(0)
ξ1,ξ4

,

Π(Ě
(0)
ξ1,ξ2

) � Ě
(1)
ξ3,ξ4

+ Ě
(1)
ξ1,ξ2
� Ě

(0)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(1)
ξ1,ξ4

,
(8)

with the local expansions:

Ě
(0)
ξ,ξ′ =U

∆

2d

∑
A=ordered

(−1)|A|B0(ξ, γAξ′)eA ,

Ě
(1)
ξ,ξ′ =U

∆

2d

∑
A=ordered

(−1)
p−q+1

4 (−1)|A|B0(ξ,D ◦ γAξ′)eA .

(9)
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Geometric Fierz identities for the quaternionic case

Fierz Identities for the quaternionic case

Proposition. We have the partial completeness relation for the quaternionic case:

2d+2

N
T =

2d

∆
T =U

∑
A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,EndH(S)) (10)

and the full completeness relation for the quaternionic case:

2d+2

N
T =

2d

∆
T =U

∑
A=ordered

tr(γ−1
A ◦ T )γA −

3∑
k=1

∑
A=ordered

tr(γ−1
A ◦ Jk ◦ T )Jk ◦ γA , (11)

for any T ∈ Γ(M,End(S)). After some work, this gives the geometric Fierz identities for the
quaternionic case:

Ě
(0)
ξ1,ξ2
� Ě

(0)
ξ3,ξ4
−

3∑
i=1

Ě
(i)
ξ1,ξ2
� Ě

(i)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(0)
ξ1,ξ4

,

Ě
(0)
ξ1,ξ2
� Ě

(i)
ξ3,ξ4

+ Ě
(i)
ξ1,ξ2
� Ě

(0)
ξ3,ξ4

+
3∑

j ,k=1

εijk Ě
(j)
ξ1,ξ2
� Ě

(k)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(i)
ξ1,ξ4

(i = 1 . . . 3) ,

where:

Ě
(0)
ξ,ξ′ =U

∆

2d

∑
A=ordered

ε
|A|
B0

B0(ξ, γAξ
′)eAγ , ∀ξ, ξ′ ∈ Γ(M,S) ,

Ě
(i)
ξ,ξ′ =U

∆

2d

∑
A=ordered

ε
|A|
B0

B0(ξ, (Ji ◦ γA)ξ′)eAγ , ∀i = 1 . . . 3 .
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Examples and applications (with help from Ioana, Mirela)

Upshot We can put conceptual aned computational order in the theory of Fierz identities on
curved space-times, in arbitrary dimensions and signatures — a notoriously messy subject which
used to be the bane of supergravity/string theory.

Tests of correctness After some discussion of complexification/decomplexification, biquaternions
etc. we correctly recover results which were obtained previously through much more cumbersome
computations — in particular, finding full agreement with some well-known examples in each class
of pin representations (normal, almost complex and quaternionic).

New applications We worked out new examples and plan to do many more. I will spare you the
details, which are quite involved (see the papers).

For the future Using a generalization of our code, we hope to unifty, systematize and automate
the story of Fierz identities in supegravity and string theory, as well as to analyze the many cases
which have remained inaccessible due to lack of conceptual understanding as well as due to
computational difficulty.

Issues that I have skipped over The (rather lengthy) proofs, some global vs. local aspects, quite
a bit of the algebra/representation theory, a synthetic formulation of geometric Fierz identities
which can be given using the language of superalgebras, the theory of twisted anti-selfdual
inhomogeneous forms, identities for the generalized products etc. — these are treated in detail in
the papers.
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