Climbing scalars and implications for Cosmology

Emilian Dudas CPhT-Ecole Polytechnique

E. D, N. Kitazawa, A.Sagnotti, *P.L. B*694 (2010) 80 [arXiv:1009.0874 [hep-th]].
 E. D, N. Kitazawa, S. Patil, A.Sagnotti, *JCAP*1205 (2012) 012 [arXiv:1202.6630 [hep-th]]
 E. D, N. Kitazawa, S. Patil, A.Sagnotti, in progress

✤ C. Condeescu, E.D., in progress

IFIN,Bucuresti, 23 aprilie 2013

Outline

- Brane SUSY breaking
- A climbing scalar in D dimensions
- Climbing with a SUSY axion (KKLT)
- Climbing and inflation, power spectrum
- Kasner approach: higher-derivative corrections, models with no big-bang
- Outlook

Brane SUSY Breaking

(Sugimoto, 1999) (Antoniadis, E.D, Sagnotti, 1999) (Aldazabal, Vranga, 1999) (Angelantonj, 1999)

A climbing scalar in d dim's

• Consider the action for gravity and a scalar ϕ :

$$S = \frac{1}{2\kappa^2} \int d^D x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \ldots \right]$$

• Look for cosmological solutions of the type

$$ds^2 = -e^{2\mathcal{B}(t)} dt^2 + e^{2A(t)} d\mathbf{x} \cdot d\mathbf{x}$$

(Halliwell, 1987) (E.D,Mourad, 2000) (Russo, 2004)

OT Z

• Make the convenient gauge choice

• Let: $\beta = \sqrt{\frac{d-1}{d-2}}, \quad \tau = M \beta t, \quad \varphi = \frac{\beta \phi}{\sqrt{2}}, \quad \mathcal{A} = (d-1)A$

 $V \equiv$

• In expanding phase : $\ddot{arphi}+\dot{arphi}\sqrt{1+\dot{arphi}}$

• OUR CASE :

$$\frac{\dot{\varphi}^{2}}{\varphi^{2}} + \left(1 + \dot{\varphi}^{2}\right) \frac{1}{2V} \frac{\partial V}{\partial \varphi} = 0$$
$$\exp(2\gamma\varphi) \longrightarrow \left(\frac{1}{2V} \frac{\partial V}{\partial \varphi} = \gamma\right)$$

 $V(\phi) e^{2\mathcal{B}} = M^2$

A climbing scalar in d dim's

- $\gamma < 1$? Both signs of speed
- a. "Climbing" solution (φ climbs, then descends):

$$\dot{\varphi} = \frac{1}{2} \left[\sqrt{\frac{1-\gamma}{1+\gamma}} \, \coth\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) - \sqrt{\frac{1+\gamma}{1-\gamma}} \, \tanh\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) \right]$$

b. "Descending" solution (ϕ only descends):

$$\dot{\varphi} = \frac{1}{2} \left[\sqrt{\frac{1-\gamma}{1+\gamma}} \tanh\left(\frac{\tau}{2}\sqrt{1-\gamma^2}\right) - \sqrt{\frac{1+\gamma}{1-\gamma}} \coth\left(\frac{\tau}{2}\sqrt{1-\gamma^2}\right) \right]$$

NOTE: only φ_o . Early speed \rightarrow singularity time!

Limiting τ -speed (LM attractor):

$$v_l = - rac{\gamma}{\sqrt{1 - \gamma^2}}$$

 $\gamma \rightarrow 1$: LM attractor & descending solution disappear

• $\gamma \ge 1$? Climbing! E.g. for $\gamma=1$:

CLIMBING: in ALL asymptotically exponential potentials with $\gamma \ge 1$!

t = 0.001

t = 0.001

String Realizations

NOTE: a. **Two - derivative couplings**: α' corrections ? (C.Condeescu, E.D, in progress) b. [BUT: climbing \rightarrow weak string coupling]

Dimensional reduction of (critical) 10-dimensional low-energy EFT:

$$S_D = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left\{ e^{-2\phi} \left(-R + 4 \left(\partial \phi \right)^2 \right) - T e^{-\phi} + \ldots \right\}$$

$$ds^2 = e^{-\frac{(10-d)}{(d-2)}\sigma} g_{\mu\nu} dx^{\mu} dx^{\nu} + e^{\sigma} \delta_{ij} dx^i dx^j$$

$$S_d = \frac{1}{2\kappa_d^2} \int d^d x \sqrt{-g} \left\{ -R - \frac{1}{2} (\partial \phi)^2 - \frac{2(10-d)}{(d-2)} (\partial \sigma)^2 - T e^{\frac{3}{2}\phi - \frac{(10-d)}{(d-2)}\sigma} + \ldots \right\}$$

• Two scalar combinations (Φ_s and Φ_t). Focus on Φ_t :

Climbing with a SUSY Axion
(Kachne, Kallosh, Linde Trived, 2003)
T =
$$e^{-\frac{\Phi_4}{\sqrt{3}}} + i\frac{\theta}{\sqrt{3}}$$

(Cemmer, Fernara, Kounnas, Nanopoulos, 1983)
(Cemmer, Fernara, Kounnas, Nanopoulos, 1983)
(Witten, 1985)
 $S_4 = \frac{1}{2\kappa_4^2} \int d^4 \sqrt{-g} \left\{ R - \frac{1}{2} (\partial \Phi_t)^2 - \frac{1}{2} e^{\frac{2}{\sqrt{3}} \Phi_t} (\partial \theta)^2 - V(\Phi_t, \theta) + \cdots \right\}$
 $V(\Phi_t, \theta) = \left(\frac{e}{(T+\overline{T})^3} + V_{(non pert.)} \right)$
 $\Phi_t = \frac{2}{\sqrt{3}} x, \theta = \frac{2}{\sqrt{3}} y$
 $\frac{d^2x}{d\tau^2} + \frac{dx}{d\tau} \sqrt{1 + \left(\frac{dx}{d\tau}\right)^2 + e^{\frac{4\pi}{3}} \left(\frac{dy}{d\tau}\right)^2} = 0,$
 $\frac{d^2y}{d\tau^2} + \frac{dy}{d\tau} \sqrt{1 + \left(\frac{dx}{d\tau}\right)^2 + e^{\frac{4\pi}{3}} \left(\frac{dy}{d\tau}\right)^2} + \left(\frac{1}{2V} \frac{\partial V}{\partial x} + \frac{4}{3}\right) \frac{dx}{d\tau} \frac{dy}{d\tau}}{d\tau} + \frac{1}{2V} \frac{\partial V}{\partial y} \left[e^{-\frac{4\pi}{3}} + \left(\frac{dy}{d\tau}\right)^2\right] = 0$
AXION INITALLY "FROZEN"

Climbing and Inflation

a. "Hard" exponential of Brane SUSY Breaking b. "Soft" exponential $(\gamma < 1/\sqrt{3})$:

$$\left\{ \begin{array}{cc} \text{Would} \\ \text{need} \end{array} \right\} \gamma \approx \frac{1}{12} \left\{ \begin{array}{cc} V(\phi) \ = \ \overline{M} \ ^4 \left(e^{2 \, \varphi} \ + \ e^{2 \, \gamma \, \varphi} \right) \end{array} \right.$$

Non-BPS D3 brane gives $\gamma = 1/2$ [+ stabilization of Φ_s]

(Sen , 1998) (E.D .J.Mourad, A.Sagnotti 2001)

- BSB "Hard exponential" → makes initial climbing phase inevitable

$$\boldsymbol{\phi}_{o}$$
: "hardness" of kick !

Mukhanov – Sasaki Equation

Schroedinger-like equation for scalar (or tensor) fluctuations :

$$\frac{d^2 v_k(\eta)}{d\eta^2} + [k^2 - W_s(\eta)]v_k(\eta) = 0$$

"MS Potential": determined by the background

Initial Singularity :
$$W_s \qquad \gamma \rightarrow -\eta_0 \qquad - \frac{1}{4} \frac{1}{(\eta + \eta_0)^2}$$

LM Inflation : $W_s \qquad \gamma \rightarrow 0 \qquad \frac{\nu^2 - \frac{1}{4}}{\eta^2}$
 $\left[\nu = \frac{3}{2} \frac{1 - \gamma^2}{1 - 3\gamma^2}\right]$

$$P(k) \sim k^3 \left| \frac{v(-\epsilon)}{z(-\epsilon)} \right|^2$$

$$egin{aligned} ds^2 &= a^2(\eta) \left(-d\eta^2 + d\mathbf{x} \cdot d\mathbf{x}
ight) \ Scalar : z(\eta) &= a^2(\eta) \, rac{\phi_0'(\eta)}{a'(\eta)} \ Tensor : z(\eta) &= a \ W_s &= rac{1}{z} \, rac{d^2 \, z}{d\eta^2} \end{aligned}$$

Numerical Power Spectra

Key features:

- **1.** Harder "kicks" make φ reach later the attractor
- **2.** Even with mild kicks the **time scale** is $10^3 10^4$ in t M !
- 3. η re-equilibrates slowly

$$\epsilon_{\phi} \equiv -\frac{\dot{H}}{H^2} , \quad \eta_{\phi} \equiv \frac{V_{\phi\phi}}{V} \qquad \qquad P_{S,T} \sim \int \frac{dk}{k} \ k^{n_{S,T}-1} \qquad \qquad n_S - 1 = 2(\eta_{\phi} - 3\epsilon_{\phi}) , \\ n_T - 1 = -2\epsilon_{\phi}$$

Analytic Power Spectra

An Observable Window?

Multipole moments of the angular power spectrum (large angular scales ($\ell \leq 30$), are given to an excellent approximation by (Mukhanov)

$$C_{\ell} = \frac{2}{9\pi} \int \frac{dk}{k} \mathcal{P}_{\mathcal{R}}(k) j_{\ell}^2 [k(\eta_0 - \eta_r)] ,$$

where $\eta_0 - \eta_r$ denotes our present comoving distance to last scattering surface.

 If inflation had started within 6-7 e-folds of our present horizon exit, climbing would bring about a noticeable drop in power at the largest angular scales.

• That would become more significant the closer the climbing phase were to the exit of our current horizon.

WMAP9/Planck powerspectrum:

Another way of presenting the results in slide 11 2 parameters to adjust: "hardness" of kick & time of horizon exit

Kasner approach

Search for approximate Kasner-like solutions near big-bang (t=0)

$$ds^{2} = -dt^{2} + \sum_{i=1}^{d} t^{2a_{i}} dx_{i}^{2} , \ \Phi = p \ln t$$
(1)

The leading order e.o.m. close to big-bang reduce to

$$\sum_{i=1}^{d} a_i = 1 , \sum_{i=1}^{d} a_i^2 + \frac{1}{2}p^2 = 1$$

whereas for the exponential potential V = $\alpha \exp(\Delta \phi)$ the descending solution exists if $\Delta p > -2$. Then we find:

- for asymmetric metric there is always a descending solution
- for the symmetric (FRW) case a_i = a, the descending solution exists if

$$\Delta > \sqrt{\frac{2d}{d-1}} \equiv \Delta_c$$
 , in agreement with the exact solution

The method can be used to analyze the climbing behaviour of any lagrangian (and any potential). Some results (FRW case):

• Higher-derivative corrections typically spoil the climbing behaviour. Specific operators preserve it. Quartic order:

$$S = \frac{1}{2} \int d^{d+1}x \sqrt{-g\eta} \left\{ R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - \frac{(d-2)(d-3)}{4d(d-1)} \left[(\nabla\phi)^4 - 2\sqrt{\frac{2(d-1)}{d}} (\nabla\phi)^2 \Box\phi \right] \right\}$$

• Most other higher-derivatives spoils it. Ex: DBI

$$S = \int d^{d+1}x \sqrt{-g} \left[R - \sqrt{1 + (\partial \phi)^2} - V(\phi) \right]$$

The scalar close to big-bang is force to slow-down

$$\phi \simeq \phi_0 \pm \left(t - \frac{p^2 t^5}{10}\right), \text{ where}$$

 $a = \frac{2}{d}, \quad |p| = \frac{d}{4(d-1)}$

The scalar potential V = $\alpha \exp(\Delta \phi)$ is now regular for both descending and climbing solution, for any Δ .

16

Examples with no big-bang

Consider the potentials with asymptotic behaviour

$$V = 2\tilde{\alpha}_1 e^{\gamma_1 \Phi} + 2\tilde{\alpha}_2 e^{-\gamma_2 \Phi}$$

For:

• $\gamma_1, \gamma_2 < \Delta_c$

Kasner/FRW solutions starting on either side $\pm \infty$ of the minimum

• $\gamma_1 < \Delta_c$, $\gamma_2 > \Delta_c$ \implies scalar starts near big-bang necessarily on the flat side $-\infty$

Moreover, for $\gamma_1\gamma_2 \leq \frac{1}{8}\Delta_c^2$ the scalar is exponentially damped to the minimum, whereas for $\gamma_1\gamma_2 > \frac{1}{8}\Delta_c^2$ there is damping plus oscillations. For $\gamma_1, \gamma_2 > \Delta_c$, no singular solutions anymore. Scalar forced

Summary & Outlook

- **BRANE SUSY BREAKING** $(d \le 10)$: "critical" exponential potentials
- **"HARD"** exponential of BSB **+ "MILD"** exponential (for inflation) :

WITH "short" inflation (~60 e-folds):

- WIDE IR depression of scalar spectrum (~ 6 e-folds)
- [MILDER IR enhancement of tensor spectrum]
- LARGE quadrupole depression & qualitatively next few multipoles!
- ILARGE CLASS of integrable potentials with climbing (Fre, Sagnotti, Sorin, to appear)

 Kasner approach used to analyze climbing for various Models, confirms and extend previous analysis.

Multumesc pentru atentie

Extra slides

More analytical spectra

Analogy with QM allows us to anticipate :

- oscillations for intermediate momenta k.
- supression of the power spectrum for small k.

There are interesting deformations of the attractor MS potential that analytically capture gross features of the actual MS scalar and tensor potentials:

$$W_S = \frac{\nu^2 - \frac{1}{4}}{\eta^2} \left[c \left(1 + \frac{\eta}{\eta_0} \right) + (1 - c) \left(1 + \frac{\eta}{\eta_0} \right)^2 \right] ,$$

They combine the proper LM late-time behavior, a single zero and an almost flat region.

 v_k = Coulomb wave functions.

Analytic scalar (red) and tensor (blue) spectra vs attractor spectrum (dotted).

$$P_R(k) \sim \frac{(k \eta_0)^3 \exp\left(\frac{\pi \left(\frac{c}{2}-1\right) \left(\nu^2-\frac{1}{4}\right)}{\sqrt{(k \eta_0)^2 + (c-1)\left(\nu^2-\frac{1}{4}\right)}}\right)}{\left|\Gamma\left(\nu + \frac{1}{2} + \frac{i\left(\frac{c}{2}-1\right) \left(\nu^2-\frac{1}{4}\right)}{\sqrt{(k \eta_0)^2 + (c-1)\left(\nu^2-\frac{1}{4}\right)}}\right)\right|^2 \left[(k \eta_0)^2 + (c-1)\left(\nu^2-\frac{1}{4}\right)\right]^{\nu}}.$$

Scales

• BSB potential:

$$T_{10} = \frac{1}{\left(\alpha'\right)^5} \to T_4 = \frac{1}{\left(\alpha'\right)^2} \left(\frac{R}{\sqrt{\alpha'}}\right)^6 = \left(\overline{M}\right)^4$$

• Attractor Power spectra:

$$P_{S}(k) = \frac{1}{16\pi G_{N} \epsilon} \left(\frac{H_{\star}}{2\pi}\right)^{2} \left(\frac{k}{a H_{\star}}\right)^{n_{S}-1}$$

$$P_{T}(k) = \frac{1}{\pi G_{N} \epsilon} \left(\frac{H_{\star}}{2\pi}\right)^{2} \left(\frac{k}{a H_{\star}}\right)^{n_{T}-1}$$

$$n_{S} = 1 - 6\epsilon + 2\eta \qquad n_{T} = 1 - 2\epsilon$$

$$\epsilon = 8\pi G_{N} \left(\frac{V'}{V}\right)^{2}, \qquad \eta = 16\pi G_{N} \left(\frac{V''}{V}\right)^{2}$$

COBE normalization
 & bounds on ∈:

$$\begin{array}{lll} H_{\star} \approx 10^{15} \ \times \ (\epsilon)^{\frac{1}{2}} \ GeV \\ \bar{M} \approx 6.5 \ 10^{16} \ \times \ (\epsilon)^{\frac{1}{4}} \ GeV \\ 10^{-4} \ < \ \frac{P_T}{P_S} \ < \ 1.28 \ \rightarrow \ 10^{-5} < \epsilon < 0.08 \end{array}$$