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Overview 



The high performance computing in physics research frequently 

asks for fast and reliable computation of Riemann integrals as part of 

the models involving evaluation of physical observables.  

A numerical solution of the Riemann integral 
 

 

 

is sought under the assumption that the real valued integrand 

function f(x) is continuous almost everywhere on [a, b] such that I 

exists and is finite. 

The weight function 𝑔 𝑥  either absorbs an analytically integrable 

difficult factor in the integrand (e.g., endpoint singularity or 

oscillatory function), or else 𝑔 𝑥 ≡ 1, ∀ 𝑥 ∈ 𝑎, 𝑏  . 

𝐼 ≡ 𝐼[𝑓] =   𝑔 𝑥 𝑓 𝑥 𝑑𝑥, −∞ ≤ 𝑎 < 𝑏 ≤ 
𝑏

𝑎

∞, 

General frame  (1) 



The automatic adaptive quadrature (AAQ) solution of I provides an  

approximations 𝑄 ≡ 𝑄 𝑓  to 𝐼 𝑓  based on interpolatory quadrature. 

The meaningfulness of the output 𝑄 𝑓  is assessed by deriving a 

bound 𝐸 ≡ 𝐸 𝑓 >0 to the remainder 𝑅 𝑓 = 𝐼 𝑓 − 𝑄 𝑓  . 

For a prescribed accuracy τ requested at input, the approximation  

Q to I is assumed to end the computation provided 

 𝑅 𝑓 < 𝐸 < 𝜏. 

The definition of τ needs two parameters: the absolute accuracy 𝜀𝑎 

and the relative accuracy 𝜀𝑟 , such that  

𝜏 = max{𝜀𝑎,  𝜀𝑟 ⋅ |𝐼|} ≃ max{𝜀𝑎 ,  𝜀𝑟 ⋅ |𝑄|}. 

General frame  (2) 



If the condition of termination of the computation is not satisfied, 

the standard automatic adaptive quadrature (SAAQ) approach to the 

solution attempts at decreasing the error E by the subdivision of the 

integration domain [a, b] into subranges using bisection and the 

computation of a local pair {q, e > 0} over each newly defined 

subrange 𝛼, 𝛽 ⊂ [𝑎, 𝑏].  
This procedure builds a subrange binary tree the evolution of 

which is controlled by an associated priority queue.  

Local pairs  𝑞𝑖 , 𝑒𝑖 > 0  are computed over the i-th subrange of [a, b]  

and global outputs 𝑄𝑁, 𝐸𝑁 > 0  are got by summing the results 

obtained over the N existing subranges in [a, b]. 

After each subrange binary tree update, the termination criterion is 

checked until it gets fulfilled.  

General frame  (3) 



Within SAAQ, the derivation of practical bounds  e > 0 to q rests on 

probabilistic arguments the validity of which is subject to doubt. 

The BAAQ advancement to the solution incorporates the rich SAAQ 

accumulated empirical evidence into a general frame based on the 

Bayesian inference. While the probabilistic derivation of practical 

bounds to the local quadrature errors is preserved, each step of the 

gradual advancement to the solution is scrutinized based on a set of 

hierarchically ordered criteria which enable decision taking in terms 

of the stability of the established Bayesian diagnostics. 

The present report stresses two main things: (i) the need of using 

length scale dependent quadrature sums and (ii) the importance of 

the scrutiny of the range of variation of the generated integrand 

profile in order to decide on the use of a SAAQ-based approach to the 

solution or on the need of full use of the BAAQ analysis machinery.  

General frame  (4) 
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• For any                         we write the symmetric decomposition 

 
• Over the left (l) and right (r) halves of [α, β], the floating point integrand values 

entering the quadrature sums are computed respectively as 

           
      where  

 
      stay for the floating point values of the reduced modified quadrature knots 

associated to either the Clenshaw-Curtis (CC) or the Gauss-Kronrod (GK) 
quadrature sums.  

• Notice that  f0
l = f(α),  fn

l = fn
r = f(γ),  f0

r = f(β)  are inherited from ancestor 
subranges while at  0 < ηk < 1, values fk

l, fk
r are computed at each attempt to 

evaluate I[α, β] f. 

• Definition. The integrand profiles over half-subranges consist of appropriately 
chosen sets of pairs {ηk , fk

l} and {ηk , fk
r} respectively, including those coming 

from the abscissas pairs {α, γ} and {γ, β}. 

• Other symmetric quadrature rules result in similarly defined integrand profiles. 
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Symmetric Decomposition of the 
SAAQ Integrand Profiles 



• The algebraic degree of precision, d, is an invariant feature of a 

quadrature sum over the field ℝ  of the real numbers: its value remains 

constant irrespective of the extent and the localization of the current 

integration domain over the real axis. 

• Under floating point computations, the characterization of an 

interpolatory quadrature sum is made by its floating point degree of 

precision, dfp .  

    Given the integration domain [a, b] (a ≠ b), the value of dfp is 

determined by the magnitude of the parameter  

ρ = |L| ∕ max{1.0, X},   0 < ρ ≤ 2, 

where 

L = b – a   (L ≠ 0.0);   X = max{|a|, |b|}   (X > 0.0). 

The quantity ρ defines the floating point scale length of [a, b].  

Algebraic and Floating Point Degrees 
of Precision 



Gauss-Kronrod 10-21 
local quadrature rule 

The following plot gives outputs for the family of 1024 integration ranges 

{[jα, jα + β], α = β = 1; j = 0, 1, ..., 1023} 
Variation of the floating 

point degree of precision 

of the GK 10-21 local 

quadrature rule over the 

gliding range [0, 1] versus 

its distance j from the 

origin. It is shown that    

dfp = d = 31 at low j values 

(j = 0, 1, 2), then dfp 

abruptly decreases at 

larger but small enough j, 

to show slower decreasing 

rates under the 

displacement of [0,1] far 

away from the origin, 

reaching a bottom value 

dfp = 5 at 701 ≤  j ≤ 1023. 

Features of the Floating Point Degree of Precision 
• Gliding integration range [0,1] on the real axis. 



•  Find the family of the integration ranges 𝛼, 𝛽  over which the 

floating point degree of precision cannot exceed a prescribed 

value d. 

•  Possibilities at hand:  

  - d = 2 (the, perhaps composite, trapezoidal rule), 

  - d = 4 (the, perhaps composite, Simpson rule),  

  - d ≫1 (the SAAQ used GK 10-21 or CC 32).  

    Each of these three cases corresponds to specific integration 

domain lengths, which are separated from each other by two 

empirically chosen thresholds, 𝜏𝜇 and 𝜏𝑚 , defined below.  

They separate three classes of integration domain lengths 

corresponding to various quadrature sums at hand. 

The Inverse Problem  



• Microscopic ranges [using (composite) trapezoidal rule (d = 2)], 

are characterized by the threshold condition 

                    0 < min(𝑋,  |L| ∕ X) ≤ 𝜏𝜇 = 2
−22 . 

• Mesoscopic ranges [using (composite) Simpson rule (d = 4)], 

are characterized by the threshold condition 

                        𝜏𝜇 = 2
−22 < min(𝑋, |L| ∕ X) ≤ 𝜏𝑚 = 2

−8 . 

• Macroscopic ranges [using quadrature sums of high algebraic 

degrees of precision], are characterized by the threshold condition 

                         min(𝑋, |L| ∕ X) ≤ 𝜏𝑚 = 2
−8 . 

  == 𝝉𝝁 = 𝟐
−𝟐𝟐 corresponds to d = 3 

  == 𝝉𝒎 = 𝟐
−𝟖 corresponds to d = 8; it results in negligible  

                       round off over the macroscopic domain lengths. 

Three Classes of Finite Integration 
Domain Lengths 



• Irrespective of the domain scale, the early Bayesian assessment 
of the degree of difficulty of a given integral starts with the 
symmetrically decomposed integrand profile (IP) generated over 
the spanning modified reduced quadrature abscissas. A non-
commutative decision chain results in the following diagnostics: 

• (i) The range of the IP variation enables the identification of a 
constant integrand.  

• (ii) The measure of oddness of the IP distribution around its 
centre enables the identification of an odd integrand.  

• (iii) Splitting the IP into subsets with interlacing abscissas and 
computation of quadrature sums by composite generalized centroid 
quadrature sums enables the identification of:  

- a vanishing integral;  
- occurrence of catastrophic cancellation by subtraction;  
- occurrence of an easy integral;  
- occurrence of a difficult integral asking for Bayesian analysis.  

Exceptional Cases Ending Computation 



• If the reference Riemann integral is defined over an infinite 
domain, (−∞ = 𝑎 and/or 𝑏 = +∞) then there are two possibilities:  

• (i) Mapping the infinite range onto [−1, 1]. This introduces a 
singularity at the endpoint corresponding to the infinite limit. 
Therefore, the use of an extrapolation procedure is compulsory.  

• (ii) Replacing the infinite limit by a finite value. The 
computation of the given integral over the resulting macroscopic 
finite range yields a finite reference value. Then the addition of a 
supplementary range toward the infinite limit allows the 
assessment of the rate of decay of the integrand at infinity.   

If the integrand decays fast, then computation can be stopped 
after a small number of iterations.   

If however, there is a slow decay, then a Richardson 
extrapolation improves the output.  

Asymptotic Tails 
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• Let {εa
(i), εr

(i)} denote the values provided at input for the 

accuracy parameters.  

• The input reliability check aims at setting up reliable 

values {εa
(r), εr

(r)} to be used within the BAAQ.  

•  εa
(i) is mapped onto a non-negative value  εa

(r), 

εa
(r) = max{εa

(i), 0.0}. 

•  εr
(i) is mapped onto an inner value εr

(r) satisfying  

 εr
(r) = min{rceil(), max{εr

(i), rfloor()}}; 

 rceil() = 2-8 ; rfloor() = 2-48 denote two empirically defined 
environment functions.  

Input Reliability Check 



• After the solution of the exceptional cases, we remain 

with the pairs computed by the composite trapezoidal rule, 

QN = QN [f] and TN = QN [|f|]. Let ρN = rfloor() ⋅ (TN / |QN|).  

• The termination criterion is checked for integrand 

dependent accuracy bounds at output {εa
(o), εr

(o)}, 

|I − QN| < EN < max{εa
(o) , εr

(o) |Q|}. 

Here    εa
(o) = min{εa

(r), max{|QN|, 1.0}⋅ rceil()}. 

εr
(o) = max{εr

(r), ρN}, where {εa
(r), εr

(r)} denote the 

validated input. 

Integrand Dependent Accuracy Bounds 
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Ill-integrand behavior illustrated in the irregular variation of the Chebyshev expansion coefficients for the integrand 

𝑓1 𝑥 = 𝑥2 + 2𝑥 − 2 −1/2: 0, 1 → ℝ which shows an inner singularity at 𝑥𝑠 = 3 − 1 over the specified subranges.  

The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and 'o' (for odd). 





The data on the left figure were derived for the integrand 𝑓1 𝑥 = 𝑥2 + 2𝑥 − 2 −1/2: 0, 1 → ℝ which shows an 

inner singularity at 𝑥𝑠 = 3 − 1 over the specified subranges.  

The data on the right figure were derived for the family of integrand functions 𝑓2 𝑥 = 𝑒𝑝(𝑥−𝑥0) sin(𝜔𝑥) : [−1, 1] → ℝ  

in terms of the variable parameters 𝑝, 𝑥0, and ω at 𝑝 = 5 (marked as 'p05' in the file names), at fixed 𝑥0 = −1 (not 

marked), and at the specified four ω values. 

The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and 'o' (for odd). 

Three typical integrand conditioning diagnostics are apparent:  

(1) Cases (a): well-conditioned, fast converging. 

(2) Cases (b): well-conditioned, hopefully converging. 

(3) Cases (c) and (d): ill-conditioned – integrand  profile analysis requested to set precise diagnostic. 

Typical patterns of variation of the absolute magnitudes of the 

Chebyshev expansion coefficients within the even and odd rank 

subsets versus the coefficient labels 



The data were derived for the family of integrand functions 𝑓2 𝑥 = 𝑒𝑝(𝑥−𝑥0) sin(ω𝑥) : [−1, 1] → ℝ  in terms of 

the variable parameters 𝑝, 𝑥0, and ω at 𝑝 = 40 (marked as 'p40' in the file names), at fixed 𝑥0 = −1 (not marked), 

and at the specified four ω values. 

The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and 'o' (for odd). 

The same three typical integrand conditioning diagnostics are apparent:  

(1) Cases (a): well-conditioned, fast converging. 

(2) Cases (b): well-conditioned, hopefully converging. 

(3) Cases (c) and (d): ill-conditioned – integrand  profile analysis requested to set precise diagnostic. 
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• The identification of exceptional cases based on the analysis of the 

range of variation of the integrand is to start the Bayesian inference.  

• The implementation of termination criteria using integrand 

dependent accuracy parameters enables the distinction between easy 

integrals, for which the SAAQ approach suffices and the difficult 

integrals for which the BAAQ approach is necessary.  

• These results hold true and avoid the overcomputing provided three 

submanifolds of distinct integration domain ranges are selected, with 

specific quadrature sums:  

- microscopic – trapezoidal rule,   

- mesoscopic – Simpson rule, and  

- macroscopic – quadrature sums of high algebraic degrees of precision 

Conclusions (1)  



• Over macroscopic  integration ranges, the Clenshaw-Curtis (CC) 

quadrature provides fast  and sensitive diagnostics: 

    (i) well-conditioned integrand, typical for an easy (or hopefully 

converging) integral within the standard automatic adaptive 

quadrature approach; 

    (ii) heavily oscillatory integrand asking for the scrutiny of the 

possible redefinition of the attainable output accuracy within the  

BAAQ approach; 

    (iii) highly probable integrand ill-conditioning asking for the 

activation of the integrand profile analysis procedure for the 

inference of precise conditioning diagnostics. 

Conclusions (2)  



 

 Thank you for your attention !  


