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The Origin of Chemical Elements
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A S pointed out by one of us, ' various nuclear species

must have originated not as the result of an equilib-

rium corresponding to a certain temperature and density,

but rather as a consequence of a continuous building-up

process arrested by a rapid expansion and cooling of the

primordial matter. According to this picture, we must

imagine the early stage of matter as a highly compressed

neutron gas (overheated neutral nuclear Quid) which

started decaying into protons and electrons when the gas

pressure fell down as the result of universal expansion. The

radiative capture of the still remaining neutrons by the

newly formed protons must have led first to the formation

of deuterium nuclei, and the subsequent neutron captures

resulted in the building up of heavier and heavier nuclei. It

must be remembered that, due to the comparatively short

time allowed for this procgss, ' the building up of heavier

nuclei must have proceeded just above the upper fringe of

the stable elements (short-lived Fermi elements), and the

present frequency distribution of various atomic species

was attained only somewhat later as the result of adjust-

ment of their electric charges by P-decay.

Thus the observed slope of the abundance curve must

not be related to the temperature of the original neutron

gas, but rather to the time period permitted by the expan-

sion process. Also, the individual abundances of various

nuclear species must depend not so much on their intrinsic

stabilities (mass defects) as on the values of their neutron

capture cross sections. The equations governing such a

building-up process apparently can be written in the form:

We may remark at first that the building-up process was

apparently completed when the temperature of the neutron

gas was still rather high, since otherwise the observed

abundances would have been strongly affected by the

resonances in the region of the slow neutrons. According to

Hughes, 2 the neutron capture cross sections of various

elements (for neutron energies of about 1 Mev) increase

exponentially with atomic number halfway up the periodic

system, remaining approximately constant for heavier

elements.Using these cross sections, one finds by integrating

Eqs. (1) as shown in Fig. 1 that the relative abundances of

various nuclear species decrease rapidly for the lighter

elements and remain approximately constant for the ele-

ments heavier than silver. In order to fit the calculated

curve with the observed abundances' it is necessary to

assume thy integral of p„dt during the building-up period is

equal to 5 X104g sec./cm'.

On the other hand, according to the relativistic theory of

the expanding universe4 the density dependence on time is

given by p—10'/t~. Since the integral of this expression

diverges at t =0, it is necessary to assume that the building-

up process began at a certain time to, satisfying the

relation:

J (10'jt')dt =5X 104,
&0

(2)

CAt ClMlKO

-2

which gives us to=20 sec. and p0=2. 5)&105g sec./cm'. This

result may have two meanings: (a) for the higher densities

existing prior to that time the temperature of the neutron

gas was so high that no aggregation was taking place, (b)

the density of the universe never exceeded the value

2.5 )& 10' g sec./cm' which can possibly be understood if we

lsd—=f(t)(;,n; —;n;) i=1,2, " 238
'0

/50

BO

where n; and a;. are the relative numbers and capture cross

sections for the nuclei of atomic weight i, and where f(t) is a

factor characterizing the decrease of the density with time.

803 Fio. 1.Log of relative abundance
Atomic weight
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General Perspective
Observing the present sky

Clusters of Galaxies (1933) 

Rotations curves (1939)

Simulating the Universe (1971)
The dark halo hypothesis (1973)

The observation (1965)

Observing the primordial sky
The genesis of nucleosynthesis and the CMB  (1948)

Measuring its composition  (Novembre 1984)
 Filling the Universe with particles (1967)



3 scales of study

The bullet cluster

The rotation curve

Astrophysics scale

Measurement of the CMB

Cosmological scale Particle physics

Cosmic rays

Neutrino sector
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Classical introduction on DM
Rotation  curve, Zwicky, Vera Rubin..

No rotation curve  

but viral theorem

Not  M
33 but M

31 

(Andromeda)

Not pioneer (1
970) 

but Babcock (1939)

In atrophysics



Global Warning

In this historical section, I will retrace the scientific dark matter history. 
In other words, I will reconstruct step by step how the hypothesis of the 

existence of a dark structure in the clusters of galaxies, then in the galaxies 
and finally in the imprints of the Cosmological Microwave Background. It 

means that several numbers, observations, conclusions will be falsified 
during the lecture. The distances for instance are twice smaller in the early 
time due do the Hubble parameter which has been divided by two between 
its first evaluation in 1930  and now. Same for the age of the Universe, or 

temperature of the CMB. The aim of the lecture is indeed to make you 
understand the process of model building from hypothesis that can change 

with time due to new observations.  
All reasonings will be based on the original articles, the complete list of 

references being given at the end of the lecture.

All the original historical articles discussed in this section can be found on the page: 

http://www.ymambrini.com/My_World/History.html

http://www.ymambrini.com/My_World/History.html


Observing the present sky
From the clusters to the galaxies 
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The early times (1930-1960)
The first appearance of the word « dark matter » in the literature is in a paper 
of the physicist Jan Oort from Netherland in 1932. While he was analyzing  
the radial velocities, he notice a discrepancy with Newton law. He computed 
that only one third of the dynamically inferred mass was present in bright 
visible stars. It is clear from the context that, as characterizing the remainder 
as « dark » («Dunkle Materie »), Oort was describing all matter not in the 
form of visible stars with luminosity comparable or larger than that of the Sun. 
Gas and dusts between the stars was his « invisible mass » that should be 
found (for him) soon. The main reason evoked at this time was the presence of 
low luminosity objects (dead stars) or large absorbing gas. Imagining a new 
dark component took a very long time to physicists, who even preferred to 
modified the law of  gravity at large scale before invoking a new particle. 

In this sense, the first real work underlining that the missing mass could be  
problematic is Fritz Zwicky in 1933

Jan Oort

19
32
BA
N.
..
..
6.
.2
49
O

Jan Oort, Bulletin of the Astronomical Institutes of the Netherlands, Vol. 6, p.249
(the original articles can be found there: http://www.ymambrini.com/My_World/History.html )
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« The Redshift of Extragalactic Nebulae »
Fritz Zwicky, Helv. Phys. Acta 6, 110-127 (1933) 

Republication of: The redshift of extragalactic nebulae 221

play an essential role. Assuming effects which have their origin in direct
spatial interaction between light and matter shows that this cannot explain
the transparency of intergalactic space.

I proposed then another possible effect, which can however hardly be
observed on earth, for the existence of which, nevertheless, some theoretical
reasons can be given. According to the theory of relativity there corresponds
to each photon or light quantum of frequency ν a gravitational as well as an
inertial mass hν/c2. Thus there is an interaction (attraction) between light
and matter. If the photon is emitted resp. absorbed at two points P1 and P2
which have the same gravitational potential, it loses on the way from P1 to
P2 a certain momentum and gives this to matter. The photon gets redder.
This effect, which could be called gravitational friction, is caused mainly by
the finite velocity of gravitational interaction. Its amount depends on the
average density of matter and on its distribution. The redshift ∆λ/λ in this
case depends not only on the distance but also on the distribution of matter.
Explorations to test this second conclusion are being done now.

Finally it has to be said that none of the proposed theories is satisfying.
All of them have been developed on a most hypothetical basis, and none of
them has succeeded to uncover any new physical relationships.

§5. Remarks concerning the dispersion of velocities in the Coma
nebular cluster.

As the data in §3 show, there are in the Coma cluster differences in
velocity of at least 1500 to 2000 km/sec. In the context of this enormous
variation of velocities the following considerations can be made:

1. Under the supposition that the Coma system has reached, mechani-
cally, a stationary state, the Virial Theorem implies

ϵk = −1
2ϵp, (4)

where ϵk and ϵp denote average kinetic and potential energies, e.g. of the
unit of mass in the system. For the purpose of estimation we assume that
the matter in the cluster is distributed uniformly in space. The cluster has a
radius R of about one million light-years (equal to 1024 cm) and contains 800
individual nebulae with a mass of each corresponding to 109 solar masses.
The mass M of the whole system is therefore

M ∼ 800 × 109 × 2 × 1033 = 1.6 × 1045 g. (5)
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This implies for the total potential energy Ω:

Ω = −3
5
Γ

M2

R
(6)

Γ = Gravitational constant

or
εp = Ω/M ∼ −64 × 1012 cm2s−2 (7)

and then
εk = v2/2 ∼ −εp/2 = 32 × 1012 cm2s−2

(
v2

)1/2
= 80 km/s. (8)

In order to obtain the observed value of an average Doppler effect of 1000
km/s or more, the average density in the Coma system would have to be at
least 400 times larger than that derived on the grounds of observations of
luminous matter.8 If this would be confirmed we would get the surprising
result that dark matter is present in much greater amount than luminous
matter.

2. One could also assume that the Coma system is not in stationary
equilibrium, but that all available energy has the form of kinetic energy.
Then we would have

εk = −εp, (9)

This assumption thus allows to get rid of a factor of only 2 compared to 1.,
and the necessity of an enormously large density of dark matter stays the
same.

3. Let the average density in the Coma cluster be wholly determined by
the presence of luminous matter (mass M above). Then the large velocities
cannot be determined by considerations of type 1. or 2. If the observed
velocities are indeed real ones, the Coma system should disperse in the course
of time. The result of this expansion would be 800 individual nebulae (field
nebulae), which, as follows from 2., would have eigenvelocities of the original
order of magnitude (1000 to 2000 km/sec). From analogies it is to be expected
that field nebulae with such large eigenvelocities would be observable also in
the state of development the world is in today. This conclusion however

8In order of magnitude this would agree with the view of Einstein and de Sitter discussed
in §4.
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The Redshift of Extragalactic Nebulae

by F. Zwicky.

(16.II.33.)

Contents. This paper gives a representation of the main characteristics
of extragalactic nebulae and of the methods which served their exploration.
In particular, the so called redshift of extragalactic nebulae is discussed in
detail. Different theories which have been worked out in order to explain
this important phenomenon will be discussed briefly. Finally it will be indi-
cated to what degree the redshift promises to be important for the study of
penetrating radiation.

§1. Introduction.

It has been known for a long time that there exist in space certain objects
which, when observed with small telescopes, appear to be quite fuzzy, self
shining spots. These objects have different structures. Often they are spher-
ical, often elliptical, and many of them have a spiral-like appearance, and are
therefore occasionally called spiral nebulae. Thanks to the enormous resolv-
ing power of modern giant telescopes astronomers were able to establish that
these nebulae lie beyond the limits of our own Milky Way. Photographs made
with the Hundred-Inch-Telescope on Mount Wilson reveal that these nebulae
are stellar systems, similar to our own Milky Way System. The extragalactic
nebulae are on the whole homogeneously distributed over the sky and are,
as could be shown, also homogeneous in space. They are seen as individuals
or grouped in clusters. The following lines aim to give a short account of the
most important characteristics and a description of the methods which made
it possible to establish them.
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The Coma Cluster of Galaxies. 
This i s a h ighly regular 
gravitationally bound system of 
thousands of galaxies at a 
distance of about 100 Mpc 
(NASA, SDSS) 
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(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =
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mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P
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miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)
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such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
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For forces which obey and inverse distance squared law, the potential is just inversely pro-
portional to the distance. For systems held together by mutual gravitation or electrostatic
attraction the virial theorem reduces to

K = �1

2
V (17.5)

For systems held together by mutual gravitational attraction the potential energy is negative
so the kinetic energy is positive. The average total energy of the system T = K +V is given
by

T =
1

2
V (17.6)

Astronomy has made great use of the virial theorem as a way to measure gravitational mass.
Consider a set of n galaxies, each of mass m. Let v2 be the measured time averaged squared
velocity of a galaxy and v2 the average of this quantity over the n galaxies. Then the time
averaged kinetic energy of the system is n[1

2
mv2].

The gravitational potential for two galaxies separated by a distance R is then �Gm2/R,
where G is the gravitational constant1. Let 1/R be the cluster average of the time average of
(1/R). There are n(n � 1)/2 pairs of galaxies, so the time averaged potential of the system
is then �[n(n � 1)/2][Gm2/R]. Then, according to the virial theorem,
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2
Gm2
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(17.7)

giving for the total mass of the cluster nm

nm =
2v2

G

n

n � 1
R (17.8)

where R is the reciprocal of (1/R). In some clusters n is of the order of 1000 so n/(n � 1)
is essentially unity.
Considering a general form of the potential V = �↵GM2

R , ↵ being a structure constant
dependant on the profile of the distribution of the galaxies in the system (↵ = 3/5 for an
homogenous spherical system for instance) we can write

M

2
v2 =

1

2
↵

GM2

R
(17.9)

17.1.3 ”The Redshift of Extragalactic Nebulae” by F. Zwicky (1933)

Fritz Zwicky (see chapter G.4 for more details) was one of those rare unorthodox geniuses
who occasionaly emerge in astronomy or, for that matter, in any field. A swiss citizen
who lived and worked in United State (Caltech) for many years, Zwicky made profound
contributions to modern astronomy and astrophysics (from the observations and theory of

1To be more precise, the gravitational potential should depend on the exact form of the halo and should
be generalized as V = �↵GM2/R where ↵ is a structure parameter of the order of unity (↵ = 3/5 for a
homogenous spherical system) and R some characteristic size of the system (usually the core of half–mass
radius)
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The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus
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The average of  the derivative of a finite 
function cancels for large time or periodic H 

α depends on the shape of the halo  
(3/5 for an homogenous sphere)
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Table II. 3

Number of nebulae Apparent Distance in Average
Nebular cluster in the cluster diameter 106 light-years velocity

km/s
Virgo . . . . . . (500) 12◦ 6 890
Pegasus . . . . . 100 1◦ 23.6 3810
Pisces . . . . . . 20 0.5 22.8 4630
Cancer . . . . . 150 1.5 29.3 4820
Perseus. . . . . 500 2.0 36 5230
Coma . . . . . . 800 1.7 45 7500
Ursa Major I 300 0.7 72 11800
Leo . . . . . . . 400 0.6 104 19600
Gemini . . . . . (300) — 135 23500

These results are shown graphically in Fig. 2.

Figure 2:

123

Zwicky took 7500 km/s as a mean velocity to 
obtain D=50 Mpc (v=H x D)

And 800 galaxies of 109 solar mass in the cluster 

From the apparent diameter d, Zwicky deduced the 
radius of the cluster, R= d x D = 1Mpc 

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

For forces which obey and inverse distance squared law, the potential is just inversely pro-
portional to the distance. For systems held together by mutual gravitation or electrostatic
attraction the virial theorem reduces to

K = �1

2
V (17.5)

For systems held together by mutual gravitational attraction the potential energy is negative
so the kinetic energy is positive. The average total energy of the system T = K +V is given
by

T =
1

2
V (17.6)

Astronomy has made great use of the virial theorem as a way to measure gravitational mass.
Consider a set of n galaxies, each of mass m. Let v2 be the measured time averaged squared
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where R is the reciprocal of (1/R). In some clusters n is of the order of 1000 so n/(n � 1)
is essentially unity.
Considering a general form of the potential V = �↵GM2

R , ↵ being a structure constant
dependant on the profile of the distribution of the galaxies in the system (↵ = 3/5 for an
homogenous spherical system for instance) we can write
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who occasionaly emerge in astronomy or, for that matter, in any field. A swiss citizen
who lived and worked in United State (Caltech) for many years, Zwicky made profound
contributions to modern astronomy and astrophysics (from the observations and theory of

1To be more precise, the gravitational potential should depend on the exact form of the halo and should
be generalized as V = �↵GM2/R where ↵ is a structure parameter of the order of unity (↵ = 3/5 for a
homogenous spherical system) and R some characteristic size of the system (usually the core of half–mass
radius)
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is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,
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P ~Fi.~ri is equal to zero.

Proof: for each particle
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~pi.~ri then dH/dt =
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(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to
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just twice the kinetic energy K of the system, i.e. 2
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One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)
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y(t)dt. Time averaging the equation of
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The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
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2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence
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.ri) = 0 (17.4)
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The average of  the derivative of a finite 
function cancels for large time or periodic H 

α depends on the shape of the halo  
(3/5 for an homogenous sphere)
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Republication of: The redshift of extragalactic nebulae 215

Table II. 3

Number of nebulae Apparent Distance in Average
Nebular cluster in the cluster diameter 106 light-years velocity

km/s
Virgo . . . . . . (500) 12◦ 6 890
Pegasus . . . . . 100 1◦ 23.6 3810
Pisces . . . . . . 20 0.5 22.8 4630
Cancer . . . . . 150 1.5 29.3 4820
Perseus. . . . . 500 2.0 36 5230
Coma . . . . . . 800 1.7 45 7500
Ursa Major I 300 0.7 72 11800
Leo . . . . . . . 400 0.6 104 19600
Gemini . . . . . (300) — 135 23500

These results are shown graphically in Fig. 2.

Figure 2:
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Zwicky took 7500 km/s as a mean velocity to 
obtain D=50 Mpc (v=H x D)

And 800 galaxies of 109 solar mass in the cluster 

From the apparent diameter d, Zwicky deduced the 
radius of the cluster, R= d x D = 1Mpc 

216 F. Zwicky

From this summary it follows that the velocities of extragalactic nebulae
are proportional to their distance. The specific velocity per million parsecs
is

vs = 558 km/s. (1)

The redshift of every individual nebula is on the average deduced from the
shift of at least three spectral lines. These are usually the H - and K -lines,
the G-Band (λ = 4303 Å) and sometimes one of the lines Hδ (4101 Å), Hν

(4340 Å), Fe (4384 Å) and Hβ (4861 Å). The uncertainty in the redshift of
the nebular cluster in Leo thus turns out to be, e.g.,

v = 19621 ± 300 km/s.

The different absorption lines suffer the same relative displacement, exactly
as with the Doppler effect. Thus for a given nebula we have

∆λ/λ = constant = K = v/c = κr (2)

independently of the wavelength λ, and the displacement can, as we have
done, conveniently be expressed as a velocity. The same value of K applies
therefore to the displacement of the maximum of the continuous emission
spectrum, too.

It ought not to be neglected that in Fig. 1 we showed the average Doppler
velocity of the nebular clusters. This velocity is the average of the values of
several individual nebulae (from 2 to 9) in the single clusters. It is of utmost
importance for the theory of the effects discussed here that the velocities
of individual members of a cluster may differ considerably from the mean.
In the Coma system, e.g., which has been best discussed up to now, the
following individual values have been measured:

Apparent velocities in the Coma cluster
v = 8500 km/s 6900 km/s

7900 6700
7600 6600
7000 5100 (?)

It is possible that the last value of 5100 km/s corresponds to a so called field
nebula, which does not belong to the Coma system, but is projected into

gives also the essential references to the literature.
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He considered that the spread in velocities 
(~1000km/s) correspond to a mean velocity of the 

galaxies inside the cluster

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,
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second term reduces to
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just twice the kinetic energy K of the system, i.e. 2
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One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧
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y(t)dt. Time averaging the equation of

dH/dt gives
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The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence
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.ri) = 0 (17.4)
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For forces which obey and inverse distance squared law, the potential is just inversely pro-
portional to the distance. For systems held together by mutual gravitation or electrostatic
attraction the virial theorem reduces to

K = �1

2
V (17.5)

For systems held together by mutual gravitational attraction the potential energy is negative
so the kinetic energy is positive. The average total energy of the system T = K +V is given
by

T =
1

2
V (17.6)

Astronomy has made great use of the virial theorem as a way to measure gravitational mass.
Consider a set of n galaxies, each of mass m. Let v2 be the measured time averaged squared
velocity of a galaxy and v2 the average of this quantity over the n galaxies. Then the time
averaged kinetic energy of the system is n[1

2
mv2].

The gravitational potential for two galaxies separated by a distance R is then �Gm2/R,
where G is the gravitational constant1. Let 1/R be the cluster average of the time average of
(1/R). There are n(n � 1)/2 pairs of galaxies, so the time averaged potential of the system
is then �[n(n � 1)/2][Gm2/R]. Then, according to the virial theorem,
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giving for the total mass of the cluster nm

nm =
2v2

G

n

n � 1
R (17.8)

where R is the reciprocal of (1/R). In some clusters n is of the order of 1000 so n/(n � 1)
is essentially unity.
Considering a general form of the potential V = �↵GM2

R , ↵ being a structure constant
dependant on the profile of the distribution of the galaxies in the system (↵ = 3/5 for an
homogenous spherical system for instance) we can write
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17.1.3 ”The Redshift of Extragalactic Nebulae” by F. Zwicky (1933)

Fritz Zwicky (see chapter G.4 for more details) was one of those rare unorthodox geniuses
who occasionaly emerge in astronomy or, for that matter, in any field. A swiss citizen
who lived and worked in United State (Caltech) for many years, Zwicky made profound
contributions to modern astronomy and astrophysics (from the observations and theory of

1To be more precise, the gravitational potential should depend on the exact form of the halo and should
be generalized as V = �↵GM2/R where ↵ is a structure parameter of the order of unity (↵ = 3/5 for a
homogenous spherical system) and R some characteristic size of the system (usually the core of half–mass
radius)

419

For forces which obey and inverse distance squared law, the potential is just inversely pro-
portional to the distance. For systems held together by mutual gravitation or electrostatic
attraction the virial theorem reduces to

K = �1

2
V (17.5)

For systems held together by mutual gravitational attraction the potential energy is negative
so the kinetic energy is positive. The average total energy of the system T = K +V is given
by

T =
1

2
V (17.6)

Astronomy has made great use of the virial theorem as a way to measure gravitational mass.
Consider a set of n galaxies, each of mass m. Let v2 be the measured time averaged squared
velocity of a galaxy and v2 the average of this quantity over the n galaxies. Then the time
averaged kinetic energy of the system is n[1

2
mv2].

The gravitational potential for two galaxies separated by a distance R is then �Gm2/R,
where G is the gravitational constant1. Let 1/R be the cluster average of the time average of
(1/R). There are n(n � 1)/2 pairs of galaxies, so the time averaged potential of the system
is then �[n(n � 1)/2][Gm2/R]. Then, according to the virial theorem,

1

2
nmv2 =

1

2

n(n � 1)

2
Gm2

✓
1

R

◆
(17.7)

giving for the total mass of the cluster nm

nm =
2v2

G

n

n � 1
R (17.8)

where R is the reciprocal of (1/R). In some clusters n is of the order of 1000 so n/(n � 1)
is essentially unity.
Considering a general form of the potential V = �↵GM2

R , ↵ being a structure constant
dependant on the profile of the distribution of the galaxies in the system (↵ = 3/5 for an
homogenous spherical system for instance) we can write

M

2
v2 =

1

2
↵

GM2

R
(17.9)

17.1.3 ”The Redshift of Extragalactic Nebulae” by F. Zwicky (1933)

Fritz Zwicky (see chapter G.4 for more details) was one of those rare unorthodox geniuses
who occasionaly emerge in astronomy or, for that matter, in any field. A swiss citizen
who lived and worked in United State (Caltech) for many years, Zwicky made profound
contributions to modern astronomy and astrophysics (from the observations and theory of

1To be more precise, the gravitational potential should depend on the exact form of the halo and should
be generalized as V = �↵GM2/R where ↵ is a structure parameter of the order of unity (↵ = 3/5 for a
homogenous spherical system) and R some characteristic size of the system (usually the core of half–mass
radius)

419

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)

418

The average of  the derivative of a finite 
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α depends on the shape of the halo  
(3/5 for an homogenous sphere)
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Book, chapter 17



The calculation
This factor 3/5 for the potential can be recover by computing the gravitational potential
V (⌦ in the Zwicky’s convention) for a continuous homogenous sphere of density ⇢: V =

G
R R

0
(4

3
⇡⇢r3)(4⇡r2dr)/r = 3

5
GM2

R , M being the total mass of the sphere.

In fact, to be more precise, the reasoning of Zwicky was a little bit di↵erent. From the
mass and radius of the cluster he inferred, he deduced the relative mean velocities of the
galaxies. From the angular size of the Coma cluster (1.7 degree, Fig.17.2) one can compute
its radius R because its distance D is known by the mean velocity of the galaxies (7500 km/s
Fig.17.2) and the application of Hubble law (with the value H0 = 558 km/s/Mpc used at
this epoch) gives D = 45 light-years. This gives R = 1.7 ⇥ 45⇡/180 ' 1 million light-year.
He also observed that the cluster contains around 800 galaxies (nebulae) with each of the
nebulae having a mass of approximatively 109 solar mass. The Sun mass being 2 ⇥ 1033 g
he obtained MComa = 800 ⇥ 109 ⇥ 2 ⇥ 1033 g =1.6 ⇥ 1042 kg. as one can see on his Eq.(5).
Then, applying the virial theorem he computed

v2 =
3

5

GM

R
=

3

5
⇥ 6.67 ⇥ 10�11 ⇥ 1.6 ⇥ 1042

1022
)

p
v2 ' 80 km/s. (17.10)

As Zwicky himself concludes in his paper In order to obtain the observed value of an average
Doppler e↵ect of 1000 km/s or more, the average density in the Coma system would have
to be at least 400 times larger than that derived on the grounds of observations of luminous
matter. If this would be confirmed we would get the surprising result that dark matter is
present in much greater amount than luminous matter.. This is technically the very first
proposition of missing mass in our Universe. Of course, due of the numerous approximations
and errors (like the Hubble parameter) it is easy to understand that this work, in 1933, has
been completely overlooked. Nobody really was interested in this conclusion, as a lot of
observators considered that the lack of information in the interstellar and/or inter-nebulae
gas, or even the absorption lines can explain such a huge discrepancy. It is only while working
at the galactic scale, many years after, that the evidence of presence of dark matter in the
Universe begins to appear.
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One observed velocity spread of 1000 km/s whereas one should 
oversee 80 km/s. Mass of the Coma should then be larger by a 

factor few thousands.

Republication of: The redshift of extragalactic nebulae 215

Table II. 3

Number of nebulae Apparent Distance in Average
Nebular cluster in the cluster diameter 106 light-years velocity

km/s
Virgo . . . . . . (500) 12◦ 6 890
Pegasus . . . . . 100 1◦ 23.6 3810
Pisces . . . . . . 20 0.5 22.8 4630
Cancer . . . . . 150 1.5 29.3 4820
Perseus. . . . . 500 2.0 36 5230
Coma . . . . . . 800 1.7 45 7500
Ursa Major I 300 0.7 72 11800
Leo . . . . . . . 400 0.6 104 19600
Gemini . . . . . (300) — 135 23500

These results are shown graphically in Fig. 2.

Figure 2:
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Zwicky took 7500 km/s as a mean velocity to 
obtain D=50 Mpc (v=H x D)

And 800 galaxies of 109 solar mass in the cluster 

From the apparent diameter d, Zwicky deduced the 
radius of the cluster, R= d x D = 1Mpc 

216 F. Zwicky

From this summary it follows that the velocities of extragalactic nebulae
are proportional to their distance. The specific velocity per million parsecs
is

vs = 558 km/s. (1)

The redshift of every individual nebula is on the average deduced from the
shift of at least three spectral lines. These are usually the H - and K -lines,
the G-Band (λ = 4303 Å) and sometimes one of the lines Hδ (4101 Å), Hν

(4340 Å), Fe (4384 Å) and Hβ (4861 Å). The uncertainty in the redshift of
the nebular cluster in Leo thus turns out to be, e.g.,

v = 19621 ± 300 km/s.

The different absorption lines suffer the same relative displacement, exactly
as with the Doppler effect. Thus for a given nebula we have

∆λ/λ = constant = K = v/c = κr (2)

independently of the wavelength λ, and the displacement can, as we have
done, conveniently be expressed as a velocity. The same value of K applies
therefore to the displacement of the maximum of the continuous emission
spectrum, too.

It ought not to be neglected that in Fig. 1 we showed the average Doppler
velocity of the nebular clusters. This velocity is the average of the values of
several individual nebulae (from 2 to 9) in the single clusters. It is of utmost
importance for the theory of the effects discussed here that the velocities
of individual members of a cluster may differ considerably from the mean.
In the Coma system, e.g., which has been best discussed up to now, the
following individual values have been measured:

Apparent velocities in the Coma cluster
v = 8500 km/s 6900 km/s

7900 6700
7600 6600
7000 5100 (?)

It is possible that the last value of 5100 km/s corresponds to a so called field
nebula, which does not belong to the Coma system, but is projected into

gives also the essential references to the literature.
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He considered that the spread in velocities 
(~1000km/s) correspond to a mean velocity of the 

galaxies inside the cluster

is denoted as mi. Let ~Fi be the net force, internal and external, impinging upon the ith
particle.

Statement of the virial theorem:

For the n point particles, bound together into a system, the time average
of the kinetic energy of the particles,

P
1
2
miv2

i , plus one half of the time

average of
P ~Fi.~ri is equal to zero.

Proof: for each particle

~vi =
d~ri

dt
~pi = m~vi

d~pi

dt
= ~Fi (17.1)

Defining the virial H =
P

~pi.~ri then dH/dt =
P

(d~pi/dt).~ri +
P

~pi.(d~ri/dt). Because
(d~pi/dt) = ~Fi, the first term can be written

P ~Fi.~ri. Because pi = mi~vi = mi(d~ri/dt) the
second term reduces to

P
~pi.(d~ri/dt) =

P
mi(d~ri/dt)2 =

P
mi(~vi)2. This last expression is

just twice the kinetic energy K of the system, i.e. 2
P

1
2
miv2

i . Thus

dH

dt
=

X
~Fi.~ri + 2K (17.2)

One needs then to time average the expression above. The time average of a variable y(t)
over the interval 0 to ⌧ is defined as y = (1/⌧)

R ⌧

0
y(t)dt. Time averaging the equation of

dH/dt gives

✓
dH

dt

◆
=

X
~Fi.~ri + 2K. (17.3)

The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)
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For forces which obey and inverse distance squared law, the potential is just inversely pro-
portional to the distance. For systems held together by mutual gravitation or electrostatic
attraction the virial theorem reduces to

K = �1

2
V (17.5)

For systems held together by mutual gravitational attraction the potential energy is negative
so the kinetic energy is positive. The average total energy of the system T = K +V is given
by

T =
1

2
V (17.6)

Astronomy has made great use of the virial theorem as a way to measure gravitational mass.
Consider a set of n galaxies, each of mass m. Let v2 be the measured time averaged squared
velocity of a galaxy and v2 the average of this quantity over the n galaxies. Then the time
averaged kinetic energy of the system is n[1

2
mv2].

The gravitational potential for two galaxies separated by a distance R is then �Gm2/R,
where G is the gravitational constant1. Let 1/R be the cluster average of the time average of
(1/R). There are n(n � 1)/2 pairs of galaxies, so the time averaged potential of the system
is then �[n(n � 1)/2][Gm2/R]. Then, according to the virial theorem,

1

2
nmv2 =

1

2

n(n � 1)

2
Gm2

✓
1

R

◆
(17.7)

giving for the total mass of the cluster nm

nm =
2v2

G

n

n � 1
R (17.8)

where R is the reciprocal of (1/R). In some clusters n is of the order of 1000 so n/(n � 1)
is essentially unity.
Considering a general form of the potential V = �↵GM2

R , ↵ being a structure constant
dependant on the profile of the distribution of the galaxies in the system (↵ = 3/5 for an
homogenous spherical system for instance) we can write

M

2
v2 =

1

2
↵

GM2

R
(17.9)

17.1.3 ”The Redshift of Extragalactic Nebulae” by F. Zwicky (1933)

Fritz Zwicky (see chapter G.4 for more details) was one of those rare unorthodox geniuses
who occasionaly emerge in astronomy or, for that matter, in any field. A swiss citizen
who lived and worked in United State (Caltech) for many years, Zwicky made profound
contributions to modern astronomy and astrophysics (from the observations and theory of

1To be more precise, the gravitational potential should depend on the exact form of the halo and should
be generalized as V = �↵GM2/R where ↵ is a structure parameter of the order of unity (↵ = 3/5 for a
homogenous spherical system) and R some characteristic size of the system (usually the core of half–mass
radius)
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The time average of dH/dt is just (dH/dt) = (1/⌧)[H(⌧) � H(0)]. If the system is cyclical
such that it returns to its initial state after an interval than ⌧ can be chosen equal to the
cycle period and (dH/dt) reduces to 0. If the system is not cyclical, then for the system
being bounded the limit of (dH/dt) as ⌧ increases without bounds is zero. Thus

X
~Fi.~ri + 2K = 0 or, equivalently

K +
1

2

X
~Fi.~ri = 0

which is the virial theorem. If the forces are generated as the gradient of a potential
V (r1, ..., rn) then ~Fi = �@V/@ri and hence

K � 1

2
(
@V

@ri
.ri) = 0 (17.4)
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Conclusion of the Zwicky article

This result was completely forgotten and nobody took really seriously this 
comment of Zwicky. Indeed, the large scale astrophysics was at its 

beginning after the Hubble discovery and a lot of physicists believed that 
the « missing mass » problem will be solved once we will understand better 

the mechanism of absorption of light in the interstellar/internebulae 
medium. In fact, the « missing mass » problem was a this time considered 
as a « missing luminosity » problem: why we do not see the astrophysics 

bodies that should be responsible of the Newtonian dynamics. On the other 
hand, several scientists tried to modify (already in the 30’s) the 1/r2 

attraction law. Then began  the galaxies analysis.

« In order to obtain the observed value of an average Doppler effect of 1000 km/s or more, the 
average density in the Coma system would have to be at least 400 times larger than that derived 
on the grounds of observations of luminous matter. If this would be confirmed we would get the 
surprising result that dark matter is present in much greater amount than luminous matter » 



At the Galactic scale
In 1939, Horace Babcock presents his PhD 
thesis on the subject of rotation curves of 
galaxies. He compute the rotation curve in 
Andromeda and measured a constant angular 
velocity and concluded :
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The history of the measurements of rotation 
curves dates back to 1914 (!!) where Slipher at 
the Lowell laboratory observed that the velocities 
measured on the left of the bulge of the nearby 
galaxy (nebula) Andromeda (the nearest galaxy 
~800 kpc from us, but believed to be 210 kpc at 
this time due to the Hubble parameter 
determination were approaching us at higher 
velocities (~320 km/s) than the ones on the right 
part of the central bulge (~280 km/s). This is 
what is expected in a disk turn in front of us. 
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In 1918 , Pease at the Mount Wilson 
Observatory measured the rotation out to a 
radius of 600 pc (central part of Andromeda). 
His result were expressed by the formula  

Vc = -0.48 r - 316 
where Vc is the circular velocity measured (in 
km/s) at a distance r from the central bulge of 
Andromeda, showing that this central portion 
appears to rotate with constant angular velocity. 
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In 1918 , Pease at the Mount Wilson 
Observatory measured the rotation out to a 
radius of 600 pc (central part of Andromeda). 
His result were expressed by the formula  

Vc = -0.48 r - 316 
where Vc is the circular velocity measured (in 
km/s) at a distance r from the central bulge of 
Andromeda, showing that this central portion 
appears to rotate with constant angular velocity. 

Babcock in 1939 extend the study to larger 
scale, up to 24 kpc from the center.
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The work of Babcock
Babcock measured the rotation curve much more far away from the central bulge of 
Andromeda, and plotted the circular velocity and the angular velocity as function of the 
distance r from the center of Andromeda.
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Babcock supposed a concentration of spheroids 
of densities σ1, σ2, σ3, and σ4. He then 
computed the 4 densities to respect the 
velocities measured on the left. He obtained
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From the computation of the density, he deduced the total 
mass of Andromeda of 1011 solar mass, equivalent to a 
mass to light ratio M/L=50. He then concludes:19
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« An airplane wing rotating on automobile (Ford Model T) wheels in 
potato field » 

Was built to investigate and eliminate the crackling thunderstorm 
noise (« static ») which interfered with radio-telephone 

conversations over trans-Atlantic short-wave links of the Bell system.
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« An airplane wing rotating on automobile (Ford Model T) wheels in 
potato field » 

Was built to investigate and eliminate the crackling thunderstorm 
noise (« static ») which interfered with radio-telephone 

conversations over trans-Atlantic short-wave links of the Bell system.

Small « bumps » observed by Karl Jansky, one for each 
revolution of the antenna every 20 minutes (rotation time)



Jansky sees the invisible (1932)
However, after making an analysis on a complete year, Jansky noticed that the periodicity of the larger signal was not 24 
hours, but 23h56, which corresponds to a sidereal day and not a solar day: the signal was coming from the center of 

the galaxy and not from the sun (« stationary with respect to the stars »).
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Jansky was able to show that the cause of the static crashes was lightning. He recorded the effects 
of both local thunderstorms and also those from more distant ones reflected from the ionosphere. 
But he also became aware of a more subtle form of interference - a gentle hissing noise similar to 
the background noise produced by the radio receiver itself. (Note: much effort has gone on since 
then to reduce this receiver noise to an absolute minimum.) At first Jansky thought that the Sun 
might be the source of the noise, but, following a year of careful measurements, he realised that, 
instead, it appeared to come from a specific region of the sky.  

Figure 4. The difference between the sidereal 
and solar days. The Earth and an observer on 
its surface are shown at several points during 
its orbit around the Sun. At the first epoch 
(labelled 1) the Sun and a distant star lie in 
the same direction. As the Earth spins and 
simultaneously moves around its orbit the 
next time the star lies in the same direction is 
shown as the second epoch. This marks the 
end of the first sidereal day. However the 
solar day is not yet finished, the Earth needs 
to rotate a little bit more before the Sun lies 
in the same direction as it originally did (this 
is overhead from the point of view of the 
observer shown), shown in the diagram as 
epoch 3. This means the sidereal day is 
slightly shorter (by about 4 minutes) than the 
solar day. Note this diagram is not to scale so 
all the angles are exaggerated.  

 

  
This conclusion came from the fact that, if he kept his 
antenna pointing due south, the weak signal reached a 
peak every 23 hours and 56 minutes. This is the period of 
a sidereal day - the time kept by the Earth with respect to 
the stars - and is less than the solar day (24 hours) by 4 
minutes due to the fact that the Earth, as well as rotating 
about its own axis is also in orbit around the Sun. This 
adds to the effective rotation rate with respect to the stars 
and so the sidereal day is less - see Figure 4. He found 
that the peak of his signal occurred when the telescope 
was pointing towards the constellation Sagittarius - 
towards the centre of our galaxy, the Milky Way! 

Jansky, pictured in Figure 5, had thus discovered that 
celestial bodies could emit radio waves as well as light 
waves. He suggested that the origin of this radiation 
might be ionised interstellar gas rather than stars but it 
was a long time before its true origin was found.  

So, at the age of 26, Jansky, has made an historic 
discovery, but his results, published in 1932, received little attention and it was not until the late 
1940's that the significance of his achievements was widely appreciated. He suggested that a 
parabolic antenna should be constructed to provide more precise observations but there was no 

 
Figure 5. Karle Guthe Jansky (1905-
1950) is shown in 1933 pointing to the 
position on a chart where he first 
recorded radio noise from space.  
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What observed Jansky was in fact the 
synchrotron radiation of ultra high energy 
electrons produced in the Galactic Center. A 
GeV electron emit synchrotron photons at 
radio-wave (1 MHz=300m, 1GHz=30cm, 

frequencies measured by WMAP and 
PLANCK)
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position on a chart where he first 
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Jansky died in 1950 (at 44) without knowing the revolution he initiated. 
p.s.:  he was lucky to look at a wavelength of 14 meters, which was the range not absorbed by the ionosphere while still 

emitted by galactic center. 
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The 21cm tracer (1944-1951)
In 1944, Jan Oort in Leiden realised that should any of the atoms or 
molecules in space give rise to a spectral line in the radio spectrum, 
it would enable much information about the interstellar medium.Jan O
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In a magnetic field, there is a slight 
difference in energy of the ground state 

depending wether the spin of the proton and 
electron are in the same or opposite sense 
(Casimir, friend of Oort). This transition 
between them gives rise to a line close to  

1420 MHz-21 cm in wavelength
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Unfortunately, van de Hulst is 
scooped in 1951 for 6 weeks by 

Ewen and Purcell at Harvard (who 
heard about the line in a talk by van 
de Hulst they assisted in 1949) for 

which they received the Nobel prize 
of Physics in 1952 (never van de 

Hulst). 
Ewen on his horn telescope
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However, van de Hulst never 
stopped and gave the first 

21cm map of Andromeda in 
1957, showing that the 

velocities stays constant 
much far away from the 

visible region with the  
Dwingeloo telescope 

Van de Hulst at Dwingeloo
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Babcock

Van de Hulst  do not insist so much in his paper 
about the flatness of the rotation curve. But, 
computing the mass of M31 he conclude that is is 
much larger than the Milky way. The « dark matter » 
hypothesis does not (yet) strikes the Galactic scale.  
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The problem of instability at a galactic scale
In the 70’s, the Moore law of exponential development describing the time evolution of computing power reached 
astrophysics studies: the computing power doubling every two years, it was possible in the late 60’s to apply 
electronic computing machines in the numerical solution of complex problems (technically, it was the replacement of 
vacuum tubes by transistors which gives a large leap in the field).
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vacuum tubes by transistors which gives a large leap in the field).

Franck Hohl in 1971 made one of the very first « N-body » 
simulation (100 000 stars !!) to test the stability of the galactic 
structures with a disk of particles supported in equilibrium 
almost entirely by rotation. 
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He noticed that a spiral-elongated shape is formed after 2 
revolutions, but rapidly the kinetic energy diffuse the particles 
toward a pressure dominated gas with large elongated axi-
symmetric ellipses 
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He noticed that a spiral-elongated shape is formed after 2 
revolutions, but rapidly the kinetic energy diffuse the particles 
toward a pressure dominated gas with large elongated axi-
symmetric ellipses 

Miller, Pendergast and Quirk tried to stabilized the 
model by adding energy lost, but still, reheating of 
the gas destroys the structures some revolutions after. 
This is when a dark halo came to the rescue and is 
first mentioned in a paper.



First hypothesis of dark halo The idea
Peebles and Ostriker noticed that the random velocities in our galaxies (around 30-40 km/s) are 
much smaller than the systematic circular motion (around 200 km/s). Thus, not only the system is 
unstable as remarked by Hohl et al., but  it shows that galaxies  seems to be dominated by a cold 
gravitational system and not a kinetic pressure dominated one.
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with t=Trot/(-U) and r = Tran/(-U). So, if  t=1/2 (r=0) the system is completely supported against 
gravity by rotation, but if r=1/2 (t=0) the system is completely supported by random motion. 
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unstable and becomes elongated very quickly. However, we just saw that in our Milky Way, the 

rotation velocity is around 200 km/s whereas the random one approaches 40 km/s, which gives t ~ 
0.49, far in excess of the stability limit!!
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rotation velocity is around 200 km/s whereas the random one approaches 40 km/s, which gives t ~ 
0.49, far in excess of the stability limit!!

The clever idea of Peebles and Ostriker is then to add an additional component to the galaxy, a dark 
halo which contributes at least 50% of the mass inside the position of the Sun 

U -> U + Udark 
 Then this spheroidal system would add to the gravitational potential energy, but add nothing to the 

rotational energy; t would be decreased and perhaps stability restored.
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Combining 21cm observations with Peebles idea

Vera Rubin

After the work of Van de Hulst, a lot of instrumental developments allowed to have a 
better understanding of the rotation curves of galaxies much above the optical limit. 
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Which profiles?
The rotation curve is given by 

v2(r) = GM(r)/r 
A constant velocity at large radius means  

M(r) =

Z
4⇡r2⇢(r)dr / r ) ⇢(r) =

⇢0
r2
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In 1907, R. Emden (brother in law of K. Schwarzschild) in a book called « Gaskugeln » 
demonstrates by thermodynamics argument that a gaz of constant temperature is equilibrate with a 
density following ρ(r) = ρ0/r2. One then call these types of profile, isothermal. However, for low 
radius, rotation curves clearly indicates that the density of dark matter is dominated by the gaz, and 
does not diverge. One then add a constant term toward the center which gives  

⇢iso(r) =
⇢0

1 +
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Navarro (Arizona), Frenk (Durham) and White 
(Munchen), in a series of papers between 1995 and 1997 
extracted from precise N-body simulation that the dark 
matter profile observes a cusp feature near the center 

proportional to 1/r and then evolves toward a 1/r3 shape 
in the outskirt regions. This profile is called NFW 

⇢NFW (r) =
⇢0

r
rc

⇣
1 + r

rc

⌘2
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A Universal Density Profile from Hierarchical Clustering

Julio F. Navarro 1

Steward Observatory, University of Arizona, Tucson, AZ, 85721, USA.

Carlos S. Frenk 2

Physics Department, University of Durham, Durham DH1 3LE, England.

Simon D.M. White 3

Max Planck Institut für Astrophysik, Karl-Schwarzschild Strasse 1, D-85740, Garching, Germany.

ABSTRACT

We use high-resolution N-body simulations to study the equilibrium density profiles

of dark matter halos in hierarchically clustering universes. We find that all such

profiles have the same shape, independent of halo mass, of initial density fluctuation

spectrum, and of the values of the cosmological parameters. Spherically averaged

equilibrium profiles are well fit over two decades in radius by a simple formula originally

proposed to describe the structure of galaxy clusters in a cold dark matter universe.

In any particular cosmology the two scale parameters of the fit, the halo mass and its

characteristic density, are strongly correlated. Low-mass halos are significantly denser

than more massive systems, a correlation which reflects the higher collapse redshift

of small halos. The characteristic density of an equilibrium halo is proportional to

the density of the universe at the time it was assembled. A suitable definition of

this assembly time allows the same proportionality constant to be used for all the

cosmologies that we have tested. We compare our results to previous work on halo

density profiles and show that there is good agreement. We also provide a step-by-step

analytic procedure, based on the Press-Schechter formalism, which allows accurate

equilibrium profiles to be calculated as a function of mass in any hierarchical model.

Subject headings: cosmology: theory – dark matter – galaxies: halos – methods:

numerical

1Bart J. Bok Fellow. E-mail: jnavarro@as.arizona.edu

2E-mail: C.S.Frenk@durham.ac.uk

3E-mail: swhite@mpa-garching.mpg.de
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Two examples 
The first N-body simulation was 
made by the Toomre brothers 

(Alar and Juri) in 1972 (!!!) with 
200 points.

Aquarius simulation (2009) with 
109 points 
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Summary (present sky)
Oort (1932) 

Movements perpendicular to 
the MW plane 

Jansky (1933) 
Measuring radio waves

Hohl (1971) 
First N-body simulation, instability

Zwicky (1933) 
Virial theorem applied to the 

Coma cluster

Babcock (1939) 
First rotation curve

van de Hulst (1957) 
radio waves (21cm) rotation curve

Rubin (1969) 
radio waves, hypothesis flat velocity

Peebles (1973) 
N-body: First introduction of Dark Halo

NFW (1995) 
N-body profiles in galactic structures



pre-conclusion

We have seen in this first part that it was a long way from the first papers of Oort 
and Zwicky in the 30’s to the latest N-Body simulation in the 90’s to picture a 

coherent framework in the analysis of dark matter in the structures and 
substructures of the Universe. However, in the 60’s the discovery of the CMB will 
shed a completely new light on the content of the Universe and will reinforce the 

notion of dark matter. This is the subject of the next lecture.
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A S pointed out by one of us, ' various nuclear species

must have originated not as the result of an equilib-

rium corresponding to a certain temperature and density,

but rather as a consequence of a continuous building-up

process arrested by a rapid expansion and cooling of the

primordial matter. According to this picture, we must

imagine the early stage of matter as a highly compressed

neutron gas (overheated neutral nuclear Quid) which

started decaying into protons and electrons when the gas

pressure fell down as the result of universal expansion. The

radiative capture of the still remaining neutrons by the

newly formed protons must have led first to the formation

of deuterium nuclei, and the subsequent neutron captures

resulted in the building up of heavier and heavier nuclei. It

must be remembered that, due to the comparatively short

time allowed for this procgss, ' the building up of heavier

nuclei must have proceeded just above the upper fringe of

the stable elements (short-lived Fermi elements), and the

present frequency distribution of various atomic species

was attained only somewhat later as the result of adjust-

ment of their electric charges by P-decay.

Thus the observed slope of the abundance curve must

not be related to the temperature of the original neutron

gas, but rather to the time period permitted by the expan-

sion process. Also, the individual abundances of various

nuclear species must depend not so much on their intrinsic

stabilities (mass defects) as on the values of their neutron

capture cross sections. The equations governing such a

building-up process apparently can be written in the form:

We may remark at first that the building-up process was

apparently completed when the temperature of the neutron

gas was still rather high, since otherwise the observed

abundances would have been strongly affected by the

resonances in the region of the slow neutrons. According to

Hughes, 2 the neutron capture cross sections of various

elements (for neutron energies of about 1 Mev) increase

exponentially with atomic number halfway up the periodic

system, remaining approximately constant for heavier

elements.Using these cross sections, one finds by integrating

Eqs. (1) as shown in Fig. 1 that the relative abundances of

various nuclear species decrease rapidly for the lighter

elements and remain approximately constant for the ele-

ments heavier than silver. In order to fit the calculated

curve with the observed abundances' it is necessary to

assume thy integral of p„dt during the building-up period is

equal to 5 X104g sec./cm'.

On the other hand, according to the relativistic theory of

the expanding universe4 the density dependence on time is

given by p—10'/t~. Since the integral of this expression

diverges at t =0, it is necessary to assume that the building-

up process began at a certain time to, satisfying the

relation:

J (10'jt')dt =5X 104,
&0

(2)

CAt ClMlKO

-2

which gives us to=20 sec. and p0=2. 5)&105g sec./cm'. This

result may have two meanings: (a) for the higher densities

existing prior to that time the temperature of the neutron

gas was so high that no aggregation was taking place, (b)

the density of the universe never exceeded the value

2.5 )& 10' g sec./cm' which can possibly be understood if we

lsd—=f(t)(;,n; —;n;) i=1,2, " 238
'0

/50

BO

where n; and a;. are the relative numbers and capture cross

sections for the nuclei of atomic weight i, and where f(t) is a

factor characterizing the decrease of the density with time.

803 Fio. 1.Log of relative abundance
Atomic weight

©1948 Nature Publishing Group
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By 1980, the perceived problems of the stability of rotationally supported disk 
galaxies and the observation of non-declining rotation curves of spiral galaxies had 

led most astronomers to accept the idea that galaxies are embedded in a dark 
halo that become dynamically more important in the outer region. 

Astronomers in general thought in terms of rather conventional dark matter - 
cold gas, very low mass stars, failed stars (or super planets), stellar remnants such 

as cold white dwarfs, neutron stars, or low-mass black holes -  
i.e. baryonic dark matter 

At about the same time a rather different idea was gaining credence among 
cosmologists and particle physicists: that the dark matter consists of subatomic 

particles; non-baryonic dark matter that interacts only weakly with baryons and 
photons. 

That is the story we propose to tell now..
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A. Penzias « Gamow? A man whose idea is wrong in almost every detail»,  
Penzias in his Nobel lecture, 1978. 



The concept of nucleosynthesis
Alpher, Bethe Gamow (April 1st, 1948)  
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A S pointed out by one of us, ' various nuclear species
must have originated not as the result of an equilib-

rium corresponding to a certain temperature and density,
but rather as a consequence of a continuous building-up
process arrested by a rapid expansion and cooling of the
primordial matter. According to this picture, we must
imagine the early stage of matter as a highly compressed
neutron gas (overheated neutral nuclear Quid) which
started decaying into protons and electrons when the gas
pressure fell down as the result of universal expansion. The
radiative capture of the still remaining neutrons by the
newly formed protons must have led first to the formation
of deuterium nuclei, and the subsequent neutron captures
resulted in the building up of heavier and heavier nuclei. It
must be remembered that, due to the comparatively short
time allowed for this procgss, ' the building up of heavier
nuclei must have proceeded just above the upper fringe of
the stable elements (short-lived Fermi elements), and the
present frequency distribution of various atomic species
was attained only somewhat later as the result of adjust-
ment of their electric charges by P-decay.
Thus the observed slope of the abundance curve must

not be related to the temperature of the original neutron
gas, but rather to the time period permitted by the expan-
sion process. Also, the individual abundances of various
nuclear species must depend not so much on their intrinsic
stabilities (mass defects) as on the values of their neutron
capture cross sections. The equations governing such a
building-up process apparently can be written in the form:

We may remark at first that the building-up process was
apparently completed when the temperature of the neutron
gas was still rather high, since otherwise the observed
abundances would have been strongly affected by the
resonances in the region of the slow neutrons. According to
Hughes, 2 the neutron capture cross sections of various
elements (for neutron energies of about 1 Mev) increase
exponentially with atomic number halfway up the periodic
system, remaining approximately constant for heavier
elements.
Using these cross sections, one finds by integrating

Eqs. (1)as shown in Fig. 1 that the relative abundances of
various nuclear species decrease rapidly for the lighter
elements and remain approximately constant for the ele-
ments heavier than silver. In order to fit the calculated
curve with the observed abundances' it is necessary to
assume thy integral of p„dt during the building-up period is
equal to 5X104 g sec./cm'.
On the other hand, according to the relativistic theory of

the expanding universe4 the density dependence on time is
given by p—10'/t~. Since the integral of this expression
diverges at t =0, it is necessary to assume that the building-
up process began at a certain time to, satisfying the
relation:

J (10'jt')dt =5X104,
&0

(2)

CAt ClMlKO

-2

which gives us to=20 sec. and p0=2.5)&105g sec./cm'. This
result may have two meanings: (a) for the higher densities
existing prior to that time the temperature of the neutron
gas was so high that no aggregation was taking place, (b)
the density of the universe never exceeded the value
2.5 )& 10' g sec./cm' which can possibly be understood if we

lsd—=f(t)(;,n; —;n;) i=1,2," 238 '0 /50 BO

where n; and a;. are the relative numbers and capture cross
sections for the nuclei of atomic weight i, and where f(t) is a
factor characterizing the decrease of the density with time.
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The approach of a building-up universe was not 
obvious in 1948, when the common thought was that 
the elements were generated from decay processes, 
from the heavier element to the lighter one. The 
concept was proposed by Alpher in his thesis 
supervised by Gamow (from which the famous 
Alpher, Bethe Gamow paper know as the αβγ paper 
is extracted).
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the elements were generated from decay processes, 
from the heavier element to the lighter one. The 
concept was proposed by Alpher in his thesis 
supervised by Gamow (from which the famous 
Alpher, Bethe Gamow paper know as the αβγ paper 
is extracted).

The fundamental idea is that the primordial Universe is made 
of neutron only, which decay into proton. Then, their 
combination form the nucleus of deuterium which 
subsequently will form the heavier elements like Helium, 
Lithium.. This is the « deuterium bottleneck » process.   
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The concept of nucleosynthesis
Alpher, Bethe Gamow (April 1st, 1948)  

+ thesis of Alpher

To compute the time t needed for the process with a 
density of neutron n, Alpher and Gamow supposed  

nt σv ~ 1.  
It means that the exposure nt was sufficiently long to 
initiate one reaction. Using a tabulation by Hughes (1946) 
for σ*(E/1 eV)1/2 = 10-25 cm2 and the approximation E 
~1/2 mv2 to deduce  

σv ~  1.5 x 10-19 cm3 s-1.  
nt should then be equal to 7x1018 s cm-3 to initiate the 
process. However, Alpher and Gamow mistakenly 
considered a matter dominated Universe to compute t:  

G M /a = 1/2 v2 => ~ρ=nm=(3/8πG) / t2. 
giving 

nt ~ 5 x 1029 (s/t) s cm-3. 
The lifetime of the neutron being ~1000 seconds, ntσv is 
equal to 108 (very large exposure!) which means that all 
the protons has been absorbed to form the deuterium, 
leaving a Universe empty of Hydrogen. The mistake was 
of course coming from the matter domination 
hypothesis of the Universe as Gamow will notice 2 
months later.
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Universe is radiation
G. Gamow (June 1948)

The novelty in this paper is the new approach that Gamow took in 
the computation of the temperature at which the deuterium formation 
begins. Indeed, he understood that for large temperature, the reverse 
dissociation process  

γ + d -> n + p  
forbid the formation of the deuterium. In other words, the 
nucleosynthesis process can only be initiated once T drops to  

TD = 109 K = 0.085 MeV.  
Notice that Gamow took a temperature well below the binding 
energy of the deuterium (BD=2.1 MeV) as he should have been 
aware of the Saha equation. 

LETTERS TO THE EDITOR

Neutron Absorytion in SN~arium
A. J. DRIPPER

Argent National Laboratory, Chicago, IQinois
June 28, 1948

" 'N a recent paper' it was shown that the large neutron
absorption ln samarium ls due to the isotope at mass

149. Since the alteration produced by the neutrons was
not very large, the experiment was repeated with a 4-mg
sample exposed in a thin layer of approximately 1 mg per
sq. cm to a much stronger neutron Aux. The isotope at
mass 149 was so reduced that it could not be detected.
One of ten mass spectra made with one milligram of the
sample is shown in Fig. 1, together with a mass spectrum
of normal samarium. The intensity of the isotope at mass
150 was greatly increased so that it appears approximately
equal to the one at 154. A faint gadolinium impurity
showed on the long exposures, with the two absorbing
isotopes at 155 and 157 missing.
Photometric measurements of the plates showed that

the densities at the masses 147, 148, 152, and 154 fell on
a normal photographic density curve indicating no changes
as a result of neutron absorption in any of these isotopes.
The new abundance at mass 150was found from four spec-

147 149
) 148 I iso

Exposed

ills I
Normal

VlG. l. Samarium isotopes altered by neutron absorption.

Kore, and Placzek. ' These values, as well as those calcu-
lated from recent results of Kore and Cobas, Agnew,
Bright, and Froman„are shown in Fig. 2. (The upper limit
of q cannot exceed twice the calcuhted value. )
The cadmium ratio, i.e., the ratio between the unshielded

and cadmium-shielded counters, is of the order of 2.2 over
the depth from 22.8 cm of Hg to 4 cm of' Hg. This is in
agreement with Agnew, Bright, and Froman's4 results.
The author wishes to express his gratitude to Professor

R. Ladenburg for many helpful discussions, to Mr. D. B.
Davis, who is responsible for the designing and building of
the balloon equipment and to members of' the Ordnance
Research Laboratory who helped to make the flight a
successful one.
~ This report is based upon work performed under Contract N6onr-

270 with the CNSce of Naval Research at the Ordnance Research
Laboratory of Princeton University.

~ E. Funfer, Natu+miss. 25, 235 {1937);E. FQnfer, Zeits. f. Physik
111,Mi {1988)",S. A. Kore and B. Hamermesh, Phys. Rev. 69, 155
{1946).

g H. A. Bethe, S. A. Korff. and G. Placzek, Phys. Rev. SV, 573
{1940).I S.A. Kor8 and A. Cobas. Phys. Rev. V3, 1010 (1940).
~ H. M. Agnew, Vf. C. Bright, and Darol Froman, Phys. Rev. 2'2,

2O3 (i947').

tra to have increased to 21.2+0.4 percent. The normal
abundance at 150 is 7.47, and at 149, 13.84 percent, the
sum being 21.3 percent. This shows that within the experi-
mental error the isotopes that disappear at mass 149
reappear at mass 150. The absorbing cross sections of the
other isotopes were estimated to be less than one percent
of that of the isotope at mass 149.

~ R. E. Lapp. J. R. Van Horn, and A. J. Dempster, Phys. Rev. 71,
745 {1947).

The Origin of Elements and the Seyaration
of Galaxies
G. G~ow

George R'ashiegton University, 6'ashiegtos, D. C.
June 21, 1948

&HE successful explanation of the main features of
the abundance curve of chemical elements by the

hypothesis of the "unfinished building-up process, ""per-
mits us to get certain information concerning the densities
and temperatures which must have existed in the universe
during the early stages of its expansion. Ke want to discuss
here some interesting cosmogonical conclusions which can
be based on these informations.
Since the building-up process must have started with the

formation of deuterons from the primordial neutrons and
the protons into which some of these neutrons have de-
cayed, we conclude that the temperature at that time must
have been of the order To—10' 'K (which corresponds to
the dissociation energy of deuterium nuclei), so that the
density of radiation nT4/c' was of the order of magnitude
of water density. If, as we shall show later, this radiation
density exceeded the density of matter, the relativistic
expression for the expansion of the universe must be
written in the form:

d 8' oT4 )

where / is an arbitrary distance in the expanding space,
and the term containing the curvature is neglected because
of the high density value. Since for the adiabatic expansion
T is inversely proportional to /, we can rewrite (1) in the
form:

d T' 8xGo

or, integrating:

32Wo' t
For the radiation density we have:

3 1

32M t2.

These formulas show that the time to, when the temperature
dropped low enough to permit the formation of deuterium,
was several minutes. Let us assume that at that time the
density of matter (protons plus neutrons) was p
Since, in contrast to radiation, the matter is conserved
in the process of expansion, p,~. was decreasing as
I '~7'~t &, The value of p, t. ' can be estimated from
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Universe is radiation
G. Gamow (June 1948)

The novelty in this paper is the new approach that Gamow took in 
the computation of the temperature at which the deuterium formation 
begins. Indeed, he understood that for large temperature, the reverse 
dissociation process  

γ + d -> n + p  
forbid the formation of the deuterium. In other words, the 
nucleosynthesis process can only be initiated once T drops to  

TD = 109 K = 0.085 MeV.  
Notice that Gamow took a temperature well below the binding 
energy of the deuterium (BD=2.1 MeV) as he should have been 
aware of the Saha equation. 

From Friedmann equation, one can write 

dLog(a)/dt = (8π G/3 ρrad)1/2 

and a*T = cste implies dLog(a)/dt = -dLog(T)/dt, and then after 
integration 

ρrad = (3/32 π G)*(1/t2) = π/15 T4 ~ 8.40 (T/109K)4 g cm-3 

which leads to 
t=231 (109K/T)2 seconds 

confirming that the nucleosynthesis is initiated at about 200 seconds
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here some interesting cosmogonical conclusions which can
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Since the building-up process must have started with the

formation of deuterons from the primordial neutrons and
the protons into which some of these neutrons have de-
cayed, we conclude that the temperature at that time must
have been of the order To—10' 'K (which corresponds to
the dissociation energy of deuterium nuclei), so that the
density of radiation nT4/c' was of the order of magnitude
of water density. If, as we shall show later, this radiation
density exceeded the density of matter, the relativistic
expression for the expansion of the universe must be
written in the form:
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These formulas show that the time to, when the temperature
dropped low enough to permit the formation of deuterium,
was several minutes. Let us assume that at that time the
density of matter (protons plus neutrons) was p
Since, in contrast to radiation, the matter is conserved
in the process of expansion, p,~. was decreasing as
I '~7'~t &, The value of p, t. ' can be estimated from

LETTERS TO THE EDITOR

Neutron Absorytion in SN~arium
A. J. DRIPPER

Argent National Laboratory, Chicago, IQinois
June 28, 1948

" 'N a recent paper' it was shown that the large neutron
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149. Since the alteration produced by the neutrons was
not very large, the experiment was repeated with a 4-mg
sample exposed in a thin layer of approximately 1 mg per
sq. cm to a much stronger neutron Aux. The isotope at
mass 149 was so reduced that it could not be detected.
One of ten mass spectra made with one milligram of the
sample is shown in Fig. 1, together with a mass spectrum
of normal samarium. The intensity of the isotope at mass
150 was greatly increased so that it appears approximately
equal to the one at 154. A faint gadolinium impurity
showed on the long exposures, with the two absorbing
isotopes at 155 and 157 missing.
Photometric measurements of the plates showed that

the densities at the masses 147, 148, 152, and 154 fell on
a normal photographic density curve indicating no changes
as a result of neutron absorption in any of these isotopes.
The new abundance at mass 150was found from four spec-
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Computing ρmatter
G. Gamow (October 1948)

© 1948 Nature Publishing Group

© 1948 Nature Publishing Group

© 1948 Nature Publishing Group

© 1948 Nature Publishing Group

After having understood that the Universe is not dominated by the 
dust (mass) but by the radiation at the time of deuterium formation, 
Gamow decided to compute the density of matter ρm at that time. 

Which gives when combining with the equation for the proton  

Nn = X⇢a3; Np = Y ⇢a3
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Gamow supposed the limit condition Y = 
0.5 when t goes to infinity : he supposed 
that half of the mass component of the 
Universe is made of hydrogen. As a result 
he obtained 

 ρm(109K) = 7.2 x 10-3 (1s/t)3/2 g cm-3. 

However, Gamow was not interested to the 
present temperature of the radiation, but to 
the formation of galaxies. It is Alpher and 
Herman who will, 2 weeks later, compute 
it.

After having understood that the Universe is not dominated by the 
dust (mass) but by the radiation at the time of deuterium formation, 
Gamow decided to compute the density of matter ρm at that time. 
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The prediction
Alpher, Herman (October 1948)

The article of Alpher and Herman began by 4 
corrections to the preceding article of Gamow. The 
relation between Gamow, Alpher (his PhD student) and 
Herman (his postdoc) was not so clear, but some 
tensions seemed to have appeared after the αβγ event. In 
any case, correcting the ρm of Gamow, they computed 
the relic temperature nowadays. They obtained 

 ρm = 1.7 x 10-2 (1s/t)3/2 g cm-3 ~ 2x10-6 g cm-3 at 109 K. 

Noting that ρ(T)/T3 = constant, we can deduce  

 Tnow = 109K [ρnow / ρ(109K)]1/3. 

Taking from galaxies observations ρnow = 10-30 g cm-3  
(ρc = 2 x 10-29 h2 g cm-3), one obtains 

 Tnow ~5 K. 

This is the first prediction of the Cosmic Microwave 
Background
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And then…… the field came to sleep 
for a long 20 years period….



The rediscovery
« Well, boys, we’ve been scooped »,  

Dicke after a phone call by Penzias , december 1964

The story of the « accidental » discovery of the Cosmic 
Microwave Background (CMB) in 1965, which led Penzias 
and Wilson to the 1978 Nobel prize (shared with Kapitsa) can 
be found in many textbook/websites/forums.. To make it short, 
Dicke and its team (Peebles then student, Roll and Wilkinson, 
the « W » of WMAP) recomputed, independently in 1963, the 
prediction of Gamow, and Alpher/Herman. They were in their 
offices in Princeton discussing about how to build an antennae 
able to measure such a 5 K radiation (3 K in their calculation), 
when Dicke answer to a phone-call by Penzias. As Dicke put the 
phone down, he turned to his colleagues and said « Well, boys, 
we’ve been scooped ».
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The rediscovery
« Well, boys, we’ve been scooped »,  

Dicke after a phone call by Penzias , december 1964

The story of the « accidental » discovery of the Cosmic 
Microwave Background (CMB) in 1965, which led Penzias 
and Wilson to the 1978 Nobel prize (shared with Kapitsa) can 
be found in many textbook/websites/forums.. To make it short, 
Dicke and its team (Peebles then student, Roll and Wilkinson, 
the « W » of WMAP) recomputed, independently in 1963, the 
prediction of Gamow, and Alpher/Herman. They were in their 
offices in Princeton discussing about how to build an antennae 
able to measure such a 5 K radiation (3 K in their calculation), 
when Dicke answer to a phone-call by Penzias. As Dicke put the 
phone down, he turned to his colleagues and said « Well, boys, 
we’ve been scooped ».

Dicke et al. noticed that an upper bound on the 
Helium density in the protogalaxies lead to an 
upper limit of mass density at deuterium 
composition time ρdmax. Leading at the end by a 
lower value to the present radiation : 

T0 = Td (ρ0 / ρd)1/3 > Td (ρ0 / ρdmax) 

A 3.5 K radiation however leads to a too small 
mass density nowadays, inviting Dicke et al. to 
propose a new scalar field inspired by General 
Relativity.
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The Helium abundance
The novelty in the Dicke et al. article, compared to the Gamow one is the introduction of a more complete 
fundamental setup (positron, electron, and the newly discovered neutrino in 1956) and the computation 
of the Helium abundance. Indeed, Gamow stopped the process to the proton abundance, computing the 
constraints from the hydrogen limits measured in our Universe. Peebles went much further away, solving 
numerically the complete set of equation governing the formation of the Helium and its isotopes in an 
article published just 5 months after the Dicke et al. one.

P.J.  Peebles
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The discovery

Penzias and Wilson, ingeener at Bell telecom discovered in 
1965 the CMB at 3.5 K (2.7 K now) and received the Nobel 
prize of physics for that ion 1978. Neither Gamow, Alpher, 
Herman, Dicke or Peebles received Nobel prize for their 
work.

A. PenziasR. Wilson
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G. Gamow
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A. Penzias « Gamow? A man whose idea is wrong in almost every detail»,  
Penzias in his Nobel lecture, 1978. 



Summary : how to predict a CMB temperature?
1) You suppose, as Gamow in 1948 that the Universe has been building up from the lightest elements and is not 
originated from the decay of a « primeval atom » of the Uranium type as Lemaitre imagined in the 20’s (you 
should for that have a strong sense of intuition) 
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binding energy of the deuterium BD=2.2 MeV = 2.2 x 1010 K to forbid the dissociation process γ + d -> p + n. But 
as you heard about the Saha equation, you know that the real temperature of dissociation is 0.1 MeV (109 K) due 
to the photon statistic distribution.  
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And using the principle of entropy conservation                                                                              you deduce 
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Which gives for T=TD=109 K



4) Remarking that the universe was radiation dominated, you then compute the density of mass a the time of 
dissociation ρm(109 K) = n(109 K) mp, noticing that at the time tD, at least one reaction should have happened
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You deduce n(tD) ~ 1018 cm-3, implying ρm(109 K) ~ 1018 GeV/cm3 = 1.78 x 10-6 g/cm3

Noticing that the deuterium formation required a cross section σ of 10-29 cm2 and that at 109 K, the velocity of  

the nucleons are given by    
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5) Then, noticing that mass should be conserved in an expanding universe, ρm a3 = ρm/T3= constant implies 

Where you have supposed that the density of mass today, measured by experimentalists like Oort is around 10-30 g/cm3  
(the critical density ρc is 2x10-29 h2 g/cm3) 

The last argument, correcting the mistakes of Gamow, was proposed by Alpher and Hermann in their paper which 
appeared 2 weeks after the Gamow one in 1948
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Filling the Universe with neutrino 
The Zeldovich-Cowsik-McClelland bound, or the birth of cosmological astroparticle

Once the CMB has been discovered, and measured, a lot of particle physicists jumped 
on it to test their predictions through interactions on it (GZK cutoff and cosmic ray) to 

astrophysical consequences.

Zeldovich and Ghershtein in June 1966 (!!) were the first to obtain limits on a heavy 
neutrino (the muonic neutrino νµ has been discovered by Lederman in 1962) from 

cosmological consideration, asking for a Universe respecting the deceleration 
parameter, obtaining mνµ < 400 eV.

Cowsik and Mac Clelland in 1972 (!!) recomputed it (without citing Zeldovich) with 
more accurate values of the Hubble parameter and obtained mνµ < 8 eV (the now called 

« Cowsik Mac Clelland » bound). 



The idea of Zeldovich
Suppose a gas of electrons, neutrinos and photons in equilibrium. 

where 3/2 = 3/4 (fermi gas versus boson gas)  
*2 (2+2 degrees of freedom for fermions vs 2 degrees of freedom for photons) 

whereas after decoupling of the e+ e- :  

where 1/2 = 3/2 * 4/11  [(2 + 7/8*4)/2 = 11/4] corresponds to the degrees of freedom of 
the e+ e- absorbed by the photons (and not the neutrino that already decoupled) 

ne� + ne+ = n⌫ + n⌫̄ =
3

2
n�

ne� + ne+ = 0 ; n⌫ + n⌫̄ =
1

2
n�

Then, from the measurements of the CMB, Zeldovich inferred nγ = 550 cm-3 implying 
nν = 300 cm-3. Having a limit on the mass density of the Universe  

ρm < 1.25 x10-28 g cm-3, they inferred  
nν x mν < ρm  =>  mν < 7 x10-31 g =400 eV

Y. Zeldovich



Enrico Fermi 
“Tentativo di una teoria dei raggi β",  

Ricerca Scientifica, 1933



The limit used by Zeldovich 
The deceleration parameter

Before the observation of the anisotropies of the CMB (and thus the determination of 
the cosmological parameters through the measurements of the acoustic peaks) the only 

way to determine the matter content of the Universe, without the knowledge of the 
curvature was to use the second Friedmann equation: 

The limit on q < 2.5 from 1966 gives Ω < 5,  
and ρc = 1.8 x10-29 h2 g cm-3 gives for h < 1.20, ρc < 2.5 x10-29 g cm-3  

implying ρ < 1.25 x10-28 g cm-3. 

n.b. : Nowadays, ρ < 1.8 x10-30 g cm-3, explaining the limit mν < 8 eV

ä
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The Cowsik-Mac Clelland bound (1972) 
The rediscovering of Zeldovich bound

Enrico Fermi 
“Tentativo di una teoria dei raggi β",  

Ricerca Scientifica, 1933
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n~,.(0) = 200(2s,. +1) cm '. (4b)

These numbers are huge in comparison with the mean number density of hydrogen atoms in the uni-
verse; all the visible matter in the universe adds up to an average density of hydrogen atoms of only
-2& 10 8 cm 3. Notice that the expected density of the neutrinos and other weakly interacting particles
is essentially independent of the temperature T(z„), of decoupling, and such other details; the mea-
sured temperature of the universal blackbody photons fixes the density of weak particles quite w'ell.
Now, consider Bandage's' measurement of the Hubble constant H, and the decelexation parameter qo

which together place a limit on p„,, the density of all possible sources of gravitational potential in the
universe, His results, 8,= 50 km sec ' Mpc ' = l.7 x 10 "sec ' and qo =+0.94 + 0.4, imply

p„,=3H,'q, /4no = (10~4)&&10 "g cm '= (6~2)x 10' (eV/c') cm '&10' (ev/c') cm '. (5)

Here G = 6.68 x l0 dyn cm g is the gravitation-
al constant, If m,. were to represent the mass
spectrum of the various neutrinos and other sta-
ble weakly interacting particles, we can combine
Eqs. (4a), (4b), and (5) to obtain the limit

p„„q=Qns, m, +n~,.mt' 150(2s;+1)m, &p„,
ox' (6)
Q(2s, + 1)m,. 66 eV/c'.

Here the summation is to be carried out over all
the particle and antipax'ticle states of both fer-
mions and bosons. Considering only the neutrinos
and antineutrinos of the muon and electron kind
each having a mass of m„, Eg. (6) leads to the
result m„«8 eV/c'.
This limit is obtained assuming big-bang cos-

mology to be correct; however, it depends only
very weakly on the value of the deceleration
parameter and other details of the cosmology.
Thus, even when one allows for a large uncertain-
ty in the cosmological parameters, the limits on
the masses of neutrinos and other stable weakIy
interacting particles derived in this paper are
still much lower than the di.rect expeximental
limits's'4 of m„„&1.5 MeV/c' and m„, &60 eV/c .
Our thanks are due to Professor Eugene D. Com-

mins, Professor J. ¹ Bahcall, Professor G. B.
Field, and Professor P. Buford Price for many
discussions.
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In order that the effect of graviation of the thermal background neutrinos on the expan-
sion of the universe not be too severe, their mass should be less than 8 eV/ c.

2s, +1 )" psdp
2~'I' J. exp[Z/kT(z. , )]+I ' (1a)

Recently there has been a resurgence of inter-
est in the possibility that neutrinos may have a
finite rest mass. These discussions have been
in the context of weak-interaction theories, ' pos-
sible decay of solar neutrinos, ' and enumerating
the possible decay modes of the K~' meson. '
Elsewhere, we have pointed out that the gravita-
tional interactions of neutrinos of finite rest
mass may become very important in the discus-
sion of the dynamics of clusters of galaxies and
of the universe. 4 Considerations involving mas-
sive neutrinos are not new'; an excellent review
of the early developments in the field is given by
Kuchowicz. ' Here we wish to point out that the
recent measurement' of the deceleration param-
eter, qo, implies an upper limit of a few tens of
electron volts on the sum of the masses of all
the possible light, stable particles that interact
only weakly.
In discussing this problem we take the custom-

ary point of view that the universe is expanding
from an initially hot and condensed state as en-
visaged in the "big-bang" theories. 9 In the early
phase of such a universe, when the temperature
was greater than -1MeV, processes of neutrino
production, which have also been considered in
the context of high-temperature stellar cores, '
would lead to the generation of the various kinds
of neutrinos. In fact, similar processes would
generate populations of other fermions and bosons
as well, and conditions of thermal equilibrium
allow us to estimate their number density":

and

2s,. +1 ~" psdp
2ssks ~(& exp[E/kT(z„)] —1 (lb)

Here n~,. is the number density of fermions of
the ith kind, n~, is the number density of bosons
of the ith kind, s,. is the spin of the particle (no-
tice that in writing the multiplicity of states of
the particles we have not discriminated against
the neutrinos; since we are discussing neutrinos
of nonzero rest mass, we have assumed that both
the helicity states are allowed), E = c(p'+mscs)'~s,
k is Boltzmann's constant, and T(z„)= T„(z„)
=Tz(z„)=Ts(z„)=T (z„)= is the common
temperature of radiation, fermions, bosons,
matter, etc. at the latest epoch, characterized
by the red shift z„, when they may be considered
to be in thermal equilibrium; kT(z„)= 1 MeV.
Since our discussion pertains to neutrinos and

any hypothetical stable weak bosons, ' we may as-
sume that kT(z„)= 1 MeV»mcs. In this limit
Eqs. (1a) and (1b) reduce to

n~.(z„)= 0.0913(2s, + 1)[T(z„)/kc]s,
ns(z„) = 0.122(2s,. + 1)[T(z„)/Kc]s.

(2a)

(2b)

As the universe expands and cools down, the
neutrinos and such other weakly interacting par-
ticles survive without annihilation because of the
extremely low cross sections'2 for these proces-
ses. Consequently, the number density decreases
simply as —V(z„)/V(z) = (1+z)'/(1+z„)'. Notic-
ing that 1+z = T„(z)/T„(0), the number densities
of the various particles expected at the present
epoch (z =0) are given by

n~, (0) =n~,.(z„) =0.0913(2s,. +1)
s T (0) s

Z~

ns,. (0) =0.122(2s,. +1) T„(0)
s

Ac

Taking T„(0)=2.7'K, we have
n~,. (0) = 150(2s,. + 1) cm s,

(3b)

(4a)

A little remark
Treatment of Zeldovich is ok but two little mistakes has been made by Cowsik: 

(the original article can be found there: http://www.ymambrini.com/My_World/History.html )

Not true. Cowsik forgot to take 
into account the reheating of 

the thermal bath (photons) due 
to the entropy conservation 
once the electrons/positrons 

decoupled. Factor (4/11)1/3 (see 
book section 2.2.7 + Entropy 

slide)

Cowsik considered left + right 
handed neutrino whereas right 
handed neutrino does not feel 

weak interaction, i.e. cannot be 
considered as in thermal 
equilibrium with the left 

handed ones: only 2 degrees of 
freedom for neutrinos should 
be considered (νL+νL), not 4
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A miraculous cancelation of mistakes makes this limit still valid today. 
Cowsik took h=0.5, Ω=2 giving Ωh2 = 0.5, a factor 5 larger compensated by the fact 

the   (11/4) [e+e- degrees of freedom] *(2) [neutrino helicity] gives also an 
overabundance of ~5-6 for the neutrinos.
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A miraculous cancelation of mistakes makes this limit still valid today. 
Cowsik took h=0.5, Ω=2 giving Ωh2 = 0.5, a factor 5 larger compensated by the fact 

the   (11/4) [e+e- degrees of freedom] *(2) [neutrino helicity] gives also an 
overabundance of ~5-6 for the neutrinos.

In any case, the Zeldovich/Cowsik work can be considered as the first suggestion that 
dark matter in gravitationally bound astronomical systems might consist of non-
baryonic subatomic particles. However, it is in 1977 and 1978 in papers by Lee 
&Weinberg  and by Gunn et al. that for the first time, physicists proposed the 

existence of a stable, massive neutral non-baryonic particle that can dominate the 
present mass density in the Universe.
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Limits on the masses and number of neutral weakly interacting particles are derived using cosmological arguments. 
No such particles with a mass between 120 eV and 3 GeV can exist within the usual big band model Simdar, but much 
more severe, restrictions follow for parUcles that interact only gravitationally. This seems of Importance with respect to 
supersymmetric theories. 

Following an idea, put  forward by Shvartsman [1], 
Steigman et al. [2] presented arguments leading to an 
upper limit to the number of  different types of  mass- 
less neutrinos, which may be summarized as follows. 

According to the hot  big bang model all forms of  
matter in the universe, even neutrinos, are initially in 
thermal equilibrium. The total  energy density of  rela- 
tivistic particles is then given at a temperature T by 

0 = Ka T4. (1) 

a is the radiation density constant,  appearing in the 
black-body radiation law, and K is given by  

t~ = ½(nb + ~ nf). (2) 

The quantities n b and nf are the total  number of  Inter- 
nal degrees of  freedom of  the different types of  bosons 
and fermions respectively. For  a photon gas K = 1, whde 
for a mixture of  photons,  electrons, electron and muon 
neutrinos, together with their antiparticles, ¢ = 9/2. 

A second expression for the total energy density p 
is given as a function of  the expansion time t by solv- 
ing the Einstein equations in a radiation dominated 
homogeneous and isotropic universe, 

p = 3/32 rr Gt 2, (3) 

where G is the gravitational coupling constant,  G = 6.7 
X 10 -45 MeV - 2 . .  Combining (1) and (3) we get 

T = (3/32 rr Ga) 1/4 K- 1/4 t -  1/2 (4) 

* We use units such that fi = c = k = 1, and the temperature Is 
expressed in MeV. 

Adding more types of  neutrinos relative to the standard 
big bang model increases the value of  K. This would have 
the following observable effect. 

The neutron/proton ratio is given by the equilibrium 
value n/p = exp { - ( m  n - mp)/T) as long as the rate of  
weak interactions, like e.g. n + e ÷ ~ p + F e, is high 
enough. But this ratio freezes in soon after the time be- 
tween successive collisions grows bigger than, say, the 
expansion time. The mean free time is r = (oN)-1  as 
long as the electrons are relativistic. The cross section 
o " T 2 and the number density of  protons and neu- 
trons N ~ R - 3 ,  where R is the scale factor of  the ex- 
panding universe. At these early times the number of  
nucleons is far smaller than the number of  photons,  
electrons, positrons and neutrinos, so the cooling pro- 
ceeds adiabatically like T ~ R -1  . Therefore N ~ T 3 
and thus 

r = const. × T -5 .  (5) 

Putting t = r in (4), from (5) we get an effective 
temperature Tf at which the neut ron/proton ratio 
freezes in, given by 

Tf = const. X K 1/6. (6) 

When the temperature falls off further nearly all neu- 
trons are captured to form deuterium and subsequently 
helium. In the standard model Tf ~ 1 MeV ~ 1010 K and 
the abundance by weight ofhehum produced m this way 
is Y ~ 0.23 to 0.27, depending on thepresen t  density 
of nucleons in the universe. An observational upper 
limit [4] Y ~ 0.29 agrees well with the standard model. 

Increasing now the number of  neutrino types would 
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5) Wait for applauses for that first lower bound on a massive non-baryonic matter 
filling the Universe.

3) Compute the relic abundance and compare with the experimental limits  

⌦ =
⇢

⇢c
=

n⇥m

⇢c
=

Y ⇥ n� ⇥m

⇢c
=

26⇥ 400 cm�3

⇢cMPlh�vi
< 1 ) h�vi > 10�9h�2 GeV�2



Enrico Fermi 
“Tentativo di una teoria dei raggi β",  

Ricerca Scientifica, 1933

19
78
Ap
J.
..
22
3.
10
15
G

19
78
Ap
J.
..
22
3.
10
15
G



Enrico Fermi 
“Tentativo di una teoria dei raggi β",  

Ricerca Scientifica, 1933

19
78
Ap
J.
..
22
3.
10
15
G

19
78
Ap
J.
..
22
3.
10
15
G

The difference with the « neutrino » dark matter paradigm of Zeldovich is that they 
were not limited in the ranges of masses, could be above the GeV scale.
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Zeldovich paper

Cowsik-McClelland bound Lee-Weinberg bound



Summary (primordial sky)
Gamow (1948) 

Combining nuclear reactions in a 
Freidmann’s universe

Zeldovich (1967) 
Anisotropies in CMB

Zeldovich (1966) 
Filling the Universe with a massive 

neutrino

Penzias, Wilson (1965) 
Discovery of the CMB

Bond, Neftassiou  (1986) 
Dark matter and anisotropies

Dicke, Peebles, Roll Wilkinson (1965) 
Peebles (1966) 

Link between Helium abundance and 
the Helium abundance with a 3K CMB 

Alpher, Herman (1948) 
Prediction of the CMB

Cowsik McCleland (1972) 
Filling the Universe with a massive 

neutrino

Peebles (1970) 
First N-body simulation, instability

Steigman (1978) 
Filling the Universe with a massive 

neutral non-baryonic candidate
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Conclusion
We have then seen that 4 main periods have seen a fast developments of new 

ideas and concepts around the dark matter hypothesis : 

1)     In the 40’s during the development of the observations of the sky at 
the radio-waves, following the developments of the radar especially 

during the WWII 

2)     In the 50’s once the nuclear physics fused with the model of expansion of 
Universe 

3)     In the 60’s following the outbreaking discovery of the cosmic microwave 
background 

4)    And finally in the 70’s once computing progress made possible the first 
simulations of our Universe by solving Einstein’s equation from the CMB till 

present day.



Did it make the introductory slide clearer?

The bullet cluster

The rotation curve

Astrophysics scale

Measurement of the CMB

Cosmological scale Particle physics

Cosmic rays

Neutrino sector



The pure effective approach « a la Fermi » 
Application: the Zeldovich-Hut-Lee-Weinberg bound

The (Hut-)Lee-Weinberg bound (1977)
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Limits on the masses and number of neutral weakly interacting particles are derived using cosmological arguments. 
No such particles with a mass between 120 eV and 3 GeV can exist within the usual big band model Simdar, but much 
more severe, restrictions follow for parUcles that interact only gravitationally. This seems of Importance with respect to 
supersymmetric theories. 

Following an idea, put  forward by Shvartsman [1], 
Steigman et al. [2] presented arguments leading to an 
upper limit to the number of  different types of  mass- 
less neutrinos, which may be summarized as follows. 

According to the hot  big bang model all forms of  
matter in the universe, even neutrinos, are initially in 
thermal equilibrium. The total  energy density of  rela- 
tivistic particles is then given at a temperature T by 

0 = Ka T4. (1) 

a is the radiation density constant,  appearing in the 
black-body radiation law, and K is given by  

t~ = ½(nb + ~ nf). (2) 

The quantities n b and nf are the total  number of  Inter- 
nal degrees of  freedom of  the different types of  bosons 
and fermions respectively. For  a photon gas K = 1, whde 
for a mixture of  photons,  electrons, electron and muon 
neutrinos, together with their antiparticles, ¢ = 9/2. 

A second expression for the total energy density p 
is given as a function of  the expansion time t by solv- 
ing the Einstein equations in a radiation dominated 
homogeneous and isotropic universe, 

p = 3/32 rr Gt 2, (3) 

where G is the gravitational coupling constant,  G = 6.7 
X 10 -45 MeV - 2 . .  Combining (1) and (3) we get 

T = (3/32 rr Ga) 1/4 K- 1/4 t -  1/2 (4) 

* We use units such that fi = c = k = 1, and the temperature Is 
expressed in MeV. 

Adding more types of  neutrinos relative to the standard 
big bang model increases the value of  K. This would have 
the following observable effect. 

The neutron/proton ratio is given by the equilibrium 
value n/p = exp { - ( m  n - mp)/T) as long as the rate of  
weak interactions, like e.g. n + e ÷ ~ p + F e, is high 
enough. But this ratio freezes in soon after the time be- 
tween successive collisions grows bigger than, say, the 
expansion time. The mean free time is r = (oN)-1  as 
long as the electrons are relativistic. The cross section 
o " T 2 and the number density of  protons and neu- 
trons N ~ R - 3 ,  where R is the scale factor of  the ex- 
panding universe. At these early times the number of  
nucleons is far smaller than the number of  photons,  
electrons, positrons and neutrinos, so the cooling pro- 
ceeds adiabatically like T ~ R -1  . Therefore N ~ T 3 
and thus 

r = const. × T -5 .  (5) 

Putting t = r in (4), from (5) we get an effective 
temperature Tf at which the neut ron/proton ratio 
freezes in, given by 

Tf = const. X K 1/6. (6) 

When the temperature falls off further nearly all neu- 
trons are captured to form deuterium and subsequently 
helium. In the standard model Tf ~ 1 MeV ~ 1010 K and 
the abundance by weight ofhehum produced m this way 
is Y ~ 0.23 to 0.27, depending on thepresen t  density 
of nucleons in the universe. An observational upper 
limit [4] Y ~ 0.29 agrees well with the standard model. 

Increasing now the number of  neutrino types would 
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End of the primordial Universe part.
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General Plan
Historical perspective

Primordial Universe

Properties of Dark Matter

Detection of Dark Matter

Modelization of Dark Matter 



Historical plan/menu
Breakfast 

Observing the structure in the sky  
(1930-1970)

Lunch 
 Observing the Cosmological Microwave Background [CMB]  

(1948-1967)

Dessert 
Introducing new particles 

(1965-1980)



Who am I?
4-body decays of 

supersymmetric particles 
[Djouadi]

software « SDECAY » for LEP 
and then implemented in 

ATLAS/CMS analysis

Moduli stabilization in 
heterotic strings (non-

perturbative effects in Kahler 
metric) + racetrack 
[Binetruy, Munoz]

Type IIB strings moduli 
stabilization in KKLT 

[Linde]
Phenomenology of ISS models 

[Dudas, Nilles]

Synchrotron radiation from 
Galactic center 

[Silk]

Higgs-portal and invisible 
Higgs at LHC 
[Falkowski]

Dark Z’ and direct detection of 
dark matter

SO(10) models 
[Olive]



H^2 = \left( \frac{\dot a}{a} \right)^2 = \frac{8 \pi G}{3} \rho_{rad}(T) = \frac{8 \pi G}{3} \frac{\pi^2}{15} T^4
\\
aT = \mathrm{cste} ~~~~ \Rightarrow ~~~~ \frac{da}{a} = - \frac{dT}{T} 
\\
\frac{dT}{T^3}= -\sqrt{\frac{8 \pi^3 G}{45}} dt ~~~~\Rightarrow ~~~~ t = \frac{M_{PL}}{T^2}\sqrt{\frac{45}{32 
\pi^3}} \simeq 0.2 \frac{M_{PL}}{T^2}
\\
t \simeq 3 \times 10^{27}~\mathrm{GeV^{-1}} \sim 200 ~\mathrm{seconds}
\\
n(t_D) \sigma v ~ t_D \simeq 1 ~~~~\Rightarrow n(t_D) \simeq \frac{1}{\sigma v t_D}
\\
v = \sqrt{\frac{3 T_D}{m_p}}\times c \simeq 5 \times 10^8 ~\mathrm{cm ~s^{-1}}
\\
T^{now} = \left(\frac{\rho_m^{now}}{\rho_m(10^9~\mathrm{K})}\right)^{1/3} 10^9~\mathrm{K} = \left( \frac{10^{-30}}
{1.78 \times 10^{-6}~\mathrm{g/cm^3}} \right)^{1/3}10^9~\mathrm{K} \simeq 8 ~\mathrm{K}



The equationsn_{e^-} + n_{e^+} = 0 ~ ; ~~ n_{\nu} + n_{\bar \nu} = \frac{1}{2} n_{\gamma}

\frac{\ddot a}{a} = - \frac{4 \pi G}{3}  \rho ~\Rightarrow ~ q(t) = - \frac{1}{H^2} \frac{\ddot a}{a} = \frac{4 \pi 
G}{3 H^2} \rho 
\\
= \frac{1}{2} \frac{\rho}{\rho_c}= \frac{1}{2} \Omega,
 ~~~~~~ \mathrm{with} ~ H^2 = \frac{8 \pi G}{3} \rho_c

n(T_f) \langle \sigma v \rangle = H(T_f) ~~ \Rightarrow ~~\left(T_f m \right)^{3/2} e^{-m/T_f} \langle \sigma v 
\rangle < \frac{T_f^2}{M_{Pl}} ~~\Rightarrow ~~ T_f=\frac{m}{\ln{M_{Pl}}} = \frac{m}{26}

\frac{dY}{dT} = \frac{T^2}{H(T)} \langle \sigma v \rangle Y^2 ~~\Rightarrow ~~ Y(T_{now}) = \frac{1}{M_{Pl} T_f 
\langle \sigma v \rangle } = \frac{26}{M_{Pl} m \langle \sigma v \rangle } 

\Omega = \frac{\rho}{\rho_c} = \frac{n \times m}{\rho_c} = \frac{Y \times n_\gamma \times m}{\rho_c} = \frac{26 
\times 400~\mathrm{cm^{-3}}}{\rho_c M_{Pl} \langle \sigma v \rangle} < 1

\langle \sigma v \rangle \simeq G_F^2 m^2 > 10^{-9} ~\mathrm{GeV^{-2}} ~~\Rightarrow ~~ m > 2 ~\mathrm{GeV} 



The equationsn_{e^-} + n_{e^+} = 0 ~ ; ~~ n_{\nu} + n_{\bar \nu} = \frac{1}{2} n_{\gamma}

\frac{\ddot a}{a} = - \frac{4 \pi G}{3}  \rho ~\Rightarrow ~ q(t) = - \frac{1}{H^2} \frac{\ddot a}{a} = \frac{4 \pi 
G}{3 H^2} \rho 
\\
= \frac{1}{2} \frac{\rho}{\rho_c}= \frac{1}{2} \Omega,
 ~~~~~~ \mathrm{with} ~ H^2 = \frac{8 \pi G}{3} \rho_c

n(T_f) \langle \sigma v \rangle = H(T_f) ~~ \Rightarrow ~~\left(T_f m \right)^{3/2} e^{-m/T_f} \langle \sigma v 
\rangle < \frac{T_f^2}{M_{Pl}} ~~\Rightarrow ~~ T_f=\frac{m}{\ln{M_{Pl}}} = \frac{m}{26}

\frac{dY}{dT} = \frac{T^2}{H(T)} \langle \sigma v \rangle Y^2 ~~\Rightarrow ~~ Y(T_{now}) = \frac{1}{M_{Pl} T_f 
\langle \sigma v \rangle } = \frac{26}{M_{Pl} m \langle \sigma v \rangle } 

\Omega = \frac{\rho}{\rho_c} = \frac{n \times m}{\rho_c} = \frac{Y \times n_\gamma \times m}{\rho_c} = \frac{26 
\times 400~\mathrm{cm^{-3}}}{\rho_c M_{Pl} \langle \sigma v \rangle} < 1

\langle \sigma v \rangle \simeq G_F^2 m^2 > 10^{-9} ~\mathrm{GeV^{-2}} ~~\Rightarrow ~~ m > 2 ~\mathrm{GeV} 

This LIA is a unique opportunity to strengthens our links and develop new directions of research in this 
future very (!!) exciting and bright future for our discipline..



Filling the Universe with massive dark neutrino 
The Zeldovich-Cowsik-McClelland bound, or the birth of cosmological astroparticle
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[CMB, Penzias 1965 + discovery νµ, Lederman 1962 ]

at T < me, e- and e+ decouple from the 
thermal bath: they give their degrees of 
freedom (2+2=4) to the photons and not 

the neutrinos because the latter are 
already out of equilibrium since T ~ 3 MeV  

2 nγ -> (2+ 7/8 4 )nγ =  11/2 nγ.

The photons are then almost 3 times more « dense » than the neutrino in the 
bath after the decoupling of the electrons,  

resulting at T0=2.7 K, nγ = 300 cm-3 [CMB] => nν + nν = 100 cm-3 

To avoid overclosing the Universe, one needs  
ρν = mν (nν + nν) < ρcrit = 3 H2/8 π G =  2 x 10-29 h2  g / cm3  

=> mν <  2 10-31 h2 g = 94 h2 eV = 45 eV             [H0=67 km/s/Mpc] 
[corrections 1/3 from Ωm versus 1 (or 5, Zeldovich)  

+ number of families]
[Zeldovich considered  ρ < 2 x 10-28 g/cm3]

Y. Zeldovich


