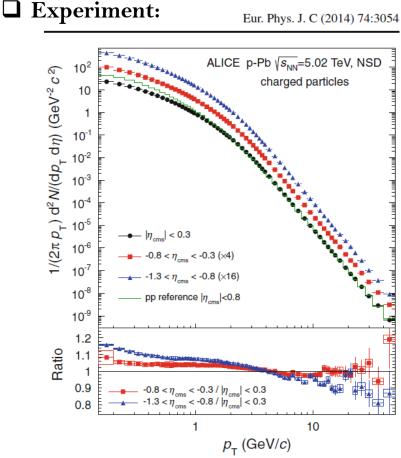
Transverse momentum distribution of hadrons in the Tsallis statistics

A.S. Parvan

DFT, Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania BLTP, Joint Institute for Nuclear Research, Russia

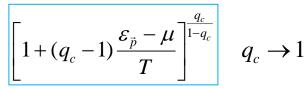
Transverse momentum distributions of hadrons at high energies

Boltzmann-Gibbs distribution

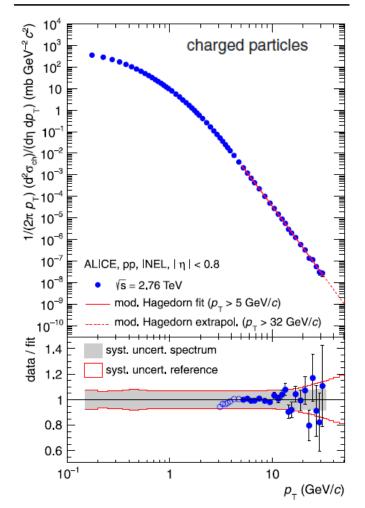


Statistical Theory:

Tsallis-factorized distribution



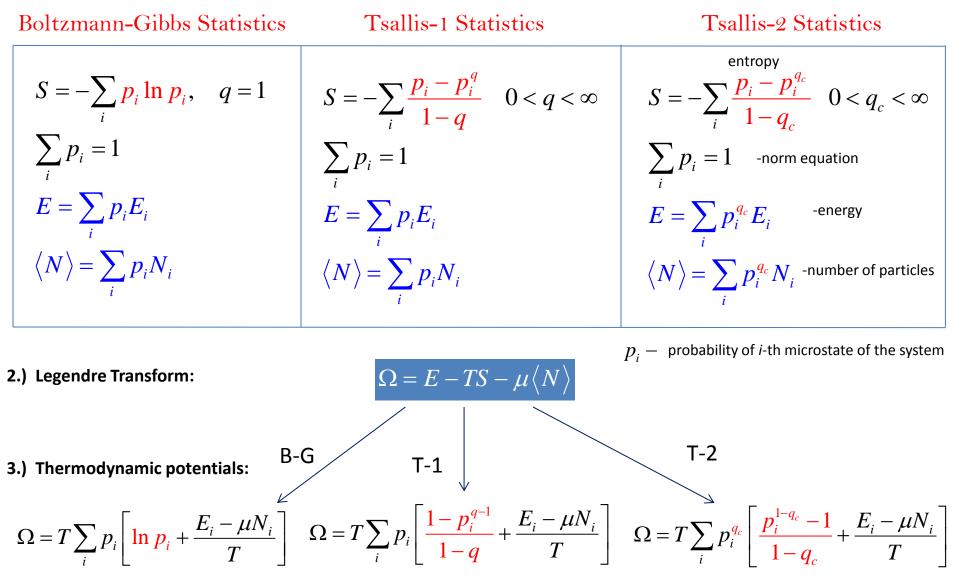
J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012) $\mathcal{E}_{\vec{p}} = m_T \cosh y, \quad m_T = \sqrt{p_T^2 + m^2}$ Eur. Phys. J. C (2013) 73:2662



Is the Tsallis-factorized distribution related to the Tsallis statistics?

What is the Tsallis statistics?

1.) Definitions:



What is the Tsallis statistics?

4.) Constrained Local Extrema of the Thermodynamic Potential (Method of Lagrange Multipliers):

$$\begin{split} \Phi &= \Omega - \lambda \phi, \qquad \phi = \sum_i p_i - 1 = 0 & \text{-Lagrange function} \\ & \frac{\partial \Phi}{\partial p_i} = 0 & \text{-constrained equation} \\ \end{split}$$

5.) Many-body distribution functions (Probabilities of Microstates of the System) and the norm functions:

Boltzmann-Gibbs Statistics

Tsallis-1 Statistics

Tsallis-2 Statistics

$$\begin{array}{l} \begin{array}{c} -\operatorname{many-body\ distribution\ function} \\ p_{i} = \frac{1}{Z} \exp\left(-\frac{E_{i} - \mu N_{i}}{T}\right) \\ P_{i} = \left[1 + \frac{q - 1}{q} \frac{\Lambda - E_{i} + \mu N_{i}}{T}\right]^{\frac{1}{q - 1}} \\ P_{i} = \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu N_{i}}{T}\right]^{\frac{1}{1 - q_{c}}} \\ \hline P_{i} = \frac{1}{Z} \left[1 - (1 - q_{c}) \frac{E_{i} - \mu$$

What is the Tsallis-factorized statistics?

Boltzmann-Gibbs Statistics

• Ideal Gas (Maxwell-Boltzmann):

 $\langle n_{\vec{p}\sigma} \rangle = e^{-\frac{\varepsilon_{\vec{p}}-\mu}{T}}$

generalization

$$S = -\sum_{\vec{p}\sigma} \left[\left\langle n_{\vec{p}\sigma} \right\rangle \ln \left\langle n_{\vec{p}\sigma} \right\rangle - \left\langle n_{\vec{p}\sigma} \right\rangle \right]$$

$$\langle N \rangle = \sum_{\vec{p}\sigma} \langle n_{\vec{p}\sigma} \rangle$$
$$E = \sum_{\vec{p}\sigma} \langle n_{\vec{p}\sigma} \rangle \varepsilon_{\vec{p}}$$

$$\Omega = E - TS - \mu \langle N \rangle$$

$$=T\sum_{\vec{p}\sigma} \left\langle n_{\vec{p}\sigma} \right\rangle \left[\ln \left\langle n_{\vec{p}\sigma} \right\rangle - 1 + \frac{c_{\vec{p}} - \mu}{T} \right]$$

$$\frac{\partial \Omega}{\partial \left\langle n_{\vec{p}\sigma} \right\rangle} = 0, \quad \longrightarrow \quad \left\langle n_{\vec{p}\sigma} \right\rangle = e^{-\frac{\varepsilon_{\vec{p}} - \mu}{T}}$$

 The constrained maximization of the entropy of the ideal gas with respect to the single-particle distribution function leads to the results of the Boltzmann-Gibbs statistics

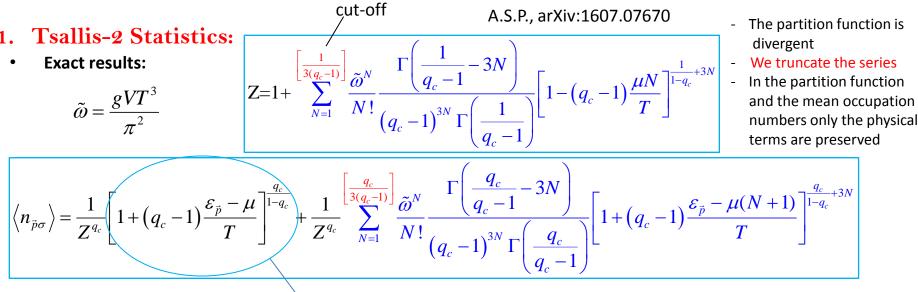
Tsallis-factorized Statistics

• Ideal Gas (Maxwell-Boltzmann):
J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

$$q_c$$
 - real parameter
 $S = -\sum_{\bar{p}\sigma} \left[f_{\bar{p}\sigma}^{q_c} \ln_{q_c} f_{\bar{p}\sigma} - f_{\bar{p}\sigma} \right], \qquad f_{\bar{p}\sigma}^{q_c} \equiv \left\langle n_{\bar{p}\sigma} \right\rangle$
 $\left\langle N \right\rangle = \sum_{\bar{p}\sigma} f_{\bar{p}\sigma}^{q_c} \qquad \ln_{q_c}(x) = \frac{x^{1-q_c} - 1}{1 - q_c}, \qquad 0 < q_c < \infty$
 $E = \sum_{\bar{p}\sigma} f_{\bar{p}\sigma}^{q_c} \mathcal{E}_{\bar{p}}$
 $\Omega = E - TS - \mu \left\langle N \right\rangle$
 $= T \sum_{\bar{p}\sigma} f_{\bar{p}\sigma}^{q_c} \left[q_c \ln_{q_c} f_{\bar{p}\sigma} - 1 + \frac{\mathcal{E}_{\bar{p}} - \mu}{T} \right]$
 $\frac{\partial \Omega}{\partial f_{\bar{p}\sigma}} = 0, \implies \left\langle n_{\bar{p}\sigma} \right\rangle = \left[1 + (q_c - 1) \frac{\mathcal{E}_{\bar{p}} - \mu}{T} \right]^{\frac{q_c}{1 - q_c}}$

- The constrained maximization of the Tsallis-factorized entropy of the ideal gas (generalized from the Boltzmann-Gibbs entropy of the ideal gas) with respect to the single-particle distribution function should lead to the results of the Tsallis-2 statistics
- Is it indeed the Tsallis-factorized distribution equivalent to the distribution of the Tsallis-2 statistics?
- The Tsallis-factorized statistics should be equivalent to the Tsallis-2 statistics

Ultrarelativistic Ideal Gas: Tsallis-2 statistics $q_c > 1$



- The mean occupation numbers in the Tsallis-2 statistics

- Zeroth term approximation: (Definition: All terms with $N \ge 1$ in the series given above are deleted by hand)
 - $N=0, \qquad Z=1$

$$\left\langle n_{\vec{p}\sigma} \right\rangle = \left[1 + (q_c - 1) \frac{\varepsilon_{\vec{p}} - \mu}{T} \right]^{\frac{q_c}{1 - q_c}}$$

- The mean occupation numbers in the zeroth term approximation of the Tsallis-2 statistics
- The zeroth term approximation is valid only for $q_c > 3/2$

2. Tsallis-factorized Statistics:

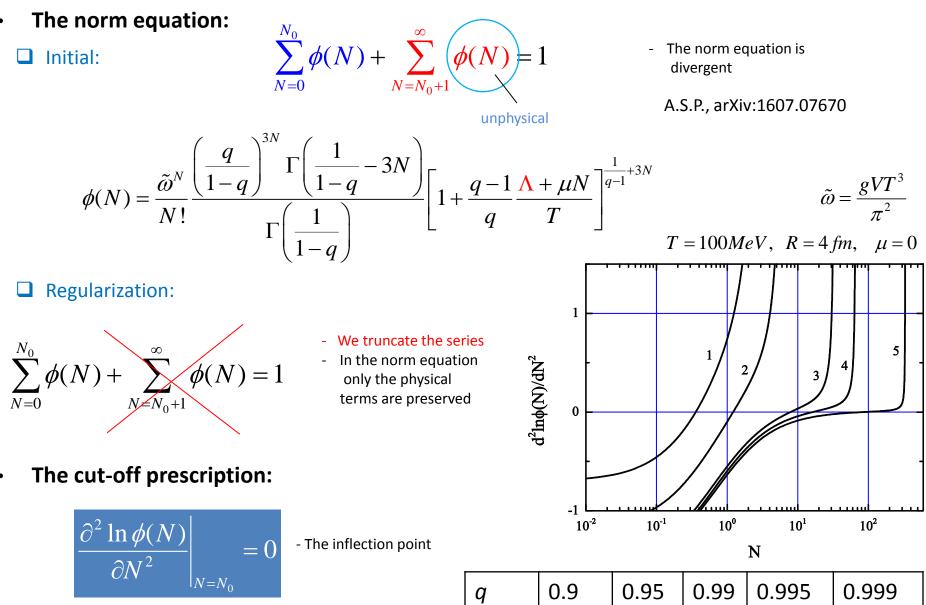
 The constrained maximization of the Tsallis-factorized entropy of the ideal gas (generalized from the Boltzmann-Gibbs entropy of the ideal gas) with respect to the single-particle distribution function does not lead to the true results for the Tsallis-2 statistics

J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

$$\left\langle n_{\vec{p}\sigma} \right\rangle = \left[1 + (q_c - 1) \frac{\varepsilon_{\vec{p}} - \mu}{T} \right]^{\frac{q_c}{1 - q_c}}$$

- The Tsallis-factorized distribution is not equivalent to the distribution of the Tsallis-2 statistics
- The Tsallis-factorized statistics is not equivalent to the Tsallis-2 statistics
- The Tsallis-factorized statistics can serve as a particular statistics independent from the Tsallis statistics

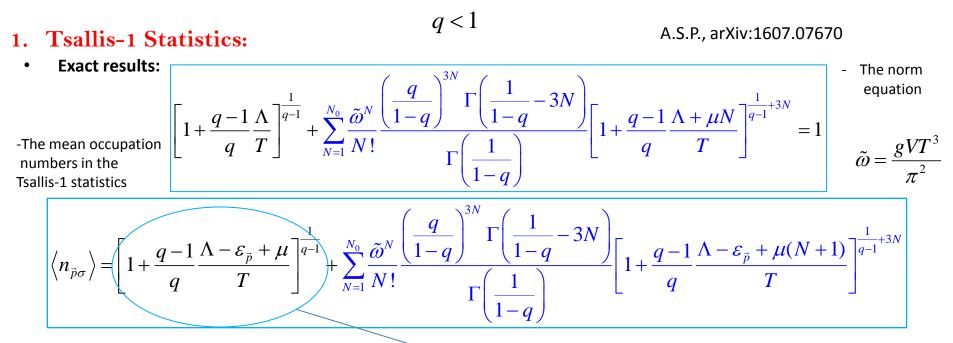
Ultrarelativistic Ideal Gas: Tsallis-1 statistics q < 1



 $N_{
m o}-$ the upper bound of summation

q	0.9	0.95	0.99	0.995	0.999
No	0	1	7	16	82

Ultrarelativistic Ideal Gas: Tsallis-1 statistics



• Zeroth term approximation: (Definition: All terms with $N \ge 1$ in the series given above are deleted by hand)

$$N=0, \Lambda=0$$

-The Tsallis-factorized distribution is not equivalent to the distribution of the Tsallis-1 statistics

-The Tsallis-factorized statistics is not equivalent to the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics)

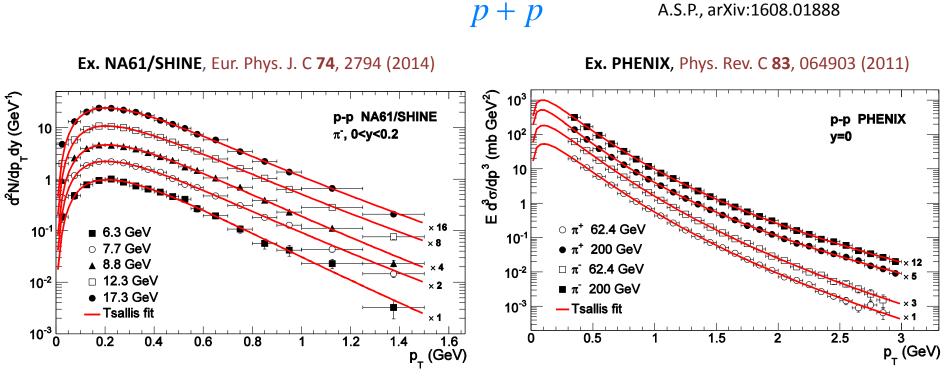
$$\left\langle n_{\vec{p}\sigma} \right\rangle = \left[1 - \frac{q-1}{q} \frac{\varepsilon_{\vec{p}} - \mu}{T} \right]^{\frac{1}{q-1}}$$
$$q \to 1/q_c$$

J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

$$\left\langle n_{\vec{p}\sigma} \right\rangle = \left[1 + (q_c - 1) \frac{\varepsilon_{\vec{p}} - \mu}{T} \right]^{\frac{q_c}{1 - q_c}}$$

- The mean occupation numbers in the zeroth term approximation of the Tsallis-1 statistics
- The zeroth term approximation is valid only for $N_0 = 0$ at large deviations of q from the unity
 - The mean occupation
 numbers of the
 Tsallis-factorized statistics

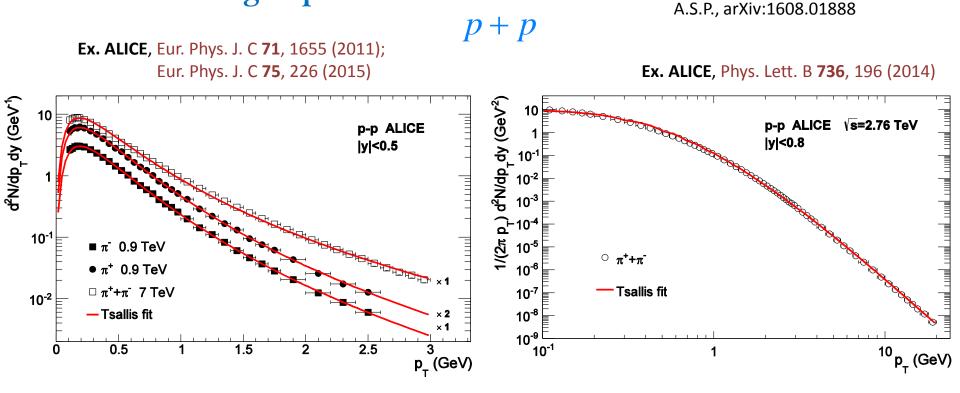
Comparison of Tsallis-factorized statistics with Tsallis-1 statistics: Charged pions



Ultrarelativistic distributions of the Tsallis-1 statistics:

$$\frac{d^{2}N}{dp_{T}dy}\Big|_{y_{0}}^{y_{1}} = \frac{gV}{(2\pi)^{2}}p_{T}^{2}\int_{y_{0}}^{y_{1}}dy\cosh y\sum_{N=0}^{N_{0}}\frac{\tilde{\omega}^{N}}{N!}\frac{\left(\frac{q}{1-q}\right)^{3N}\Gamma\left(\frac{1}{1-q}-3N\right)}{\Gamma\left(\frac{1}{1-q}\right)} \qquad \qquad \frac{1}{2\pi p_{T}}\frac{d^{2}N}{dp_{T}dy} = \frac{gV}{(2\pi)^{3}}p_{T}\cosh y\sum_{N=0}^{N_{0}}\frac{\tilde{\omega}^{N}}{N!}\frac{\left(\frac{q}{1-q}\right)^{3N}\Gamma\left(\frac{1}{1-q}-3N\right)}{\Gamma\left(\frac{1}{1-q}\right)} \\ = \left[1+\frac{q-1}{q}\frac{\Lambda-p_{T}\cosh y+\mu(N+1)}{T}\right]^{\frac{1}{q-1}+3N} \qquad \qquad \left[1+\frac{q-1}{q}\frac{\Lambda-p_{T}\cosh y+\mu(N+1)}{T}\right]^{\frac{1}{q-1}+3N}$$

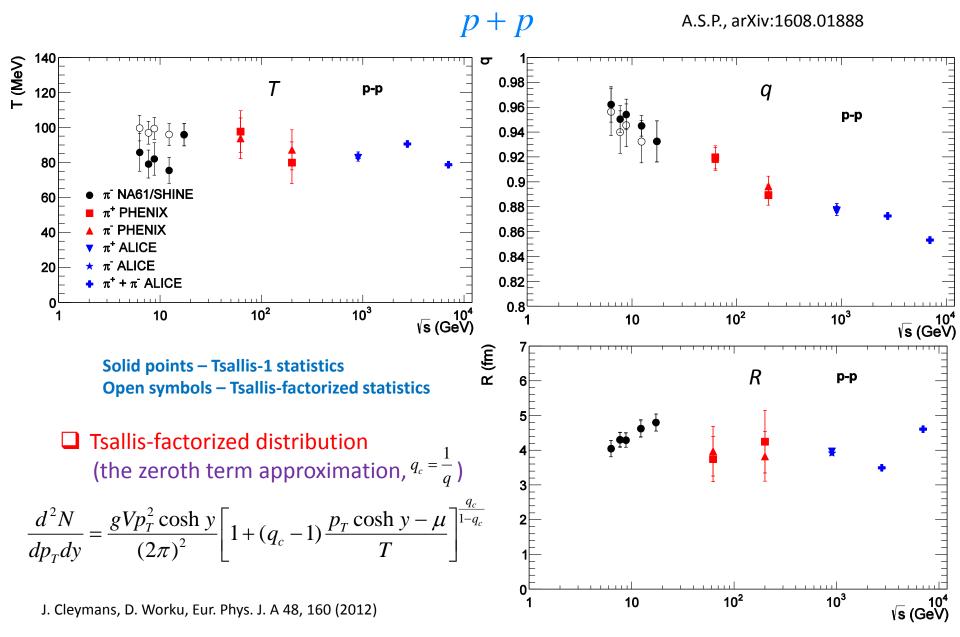
Comparison of Tsallis-factorized statistics with Tsallis-1 statistics: Charged pions



Ultrarelativistic distributions of the Tsallis-1 statistics:

$$\frac{d^{2}N}{dp_{T}dy}\Big|_{y_{0}}^{y_{1}} = \frac{gV}{\left(2\pi\right)^{2}}p_{T}^{2}\int_{y_{0}}^{y_{1}}dy\cosh y\sum_{N=0}^{N_{0}}\frac{\tilde{\omega}^{N}}{N!}\frac{\left(\frac{q}{1-q}\right)^{3N}\Gamma\left(\frac{1}{1-q}-3N\right)}{\Gamma\left(\frac{1}{1-q}\right)} \quad \frac{1}{2\pi p_{T}}\frac{d^{2}N}{dp_{T}dy}\Big|_{y_{0}}^{y_{1}} = \frac{gV}{\left(2\pi\right)^{3}}p_{T}\int_{y_{0}}^{y_{1}}dy\cosh y\sum_{N=0}^{N_{0}}\frac{\omega^{N}}{N!}\frac{\left(\frac{q}{1-q}\right)^{3N}\Gamma\left(\frac{1}{1-q}-3N\right)}{\Gamma\left(\frac{1}{1-q}\right)} \\ \int \left[1+\frac{q-1}{q}\frac{\Lambda-p_{T}\cosh y+\mu(N+1)}{T}\right]^{\frac{1}{q-1}+3N} \int \left[1+\frac{q-1}{q}\frac{\Lambda-p_{T}\cosh y+\mu(N+1)}{T}\right]^{\frac{1}{q-1}+3N}$$

Energy dependence of the parameters of the Tsallis-1 statistics and the Tsallis-factorized statistics



Parameters of the Tsallis-1 statistics

p + p

A.S.P., arXiv:1608.01888

Collaboration	Туре	\sqrt{s} , GeV	T, MeV	R, fm	q	χ^2/ndf
NA61/SHINE	π^{-}	6.3	85.78 ± 10.79	4.047 ± 0.235	$0.9623 {\pm} 0.0142$	2.821/15
NA61/SHINE	π^{-}	7.7	$79.05 {\pm} 8.01$	$4.304{\pm}0.204$	$0.9505{\pm}0.0107$	1.472/15
NA61/SHINE	π^{-}	8.8	82.01 ± 9.28	$4.294{\pm}0.212$	$0.9542{\pm}0.0123$	1.821/15
NA61/SHINE	π^{-}	12.3	$75.47 {\pm} 7.41$	4.627 ± 0.253	$0.9451{\pm}0.0083$	1.152/15
NA61/SHINE	π^{-}	17.3	$95.83{\pm}6.38$	$4.798 {\pm} 0.246$	$0.9326{\pm}0.0166$	0.865/15
PHENIX	π^+	62.4	97.62 ± 11.92	3.744 ± 0.648	$0.9197{\pm}0.0093$	1.654/23
PHENIX	π^{-}	62.4	$93.76{\pm}11.69$	3.971 ± 0.716	$0.9184{\pm}0.0091$	0.878/23
PHENIX	π^+	200.0	$79.89{\pm}11.80$	4.247 ± 0.899	$0.8894{\pm}0.0082$	0.987/24
PHENIX	π^{-}	200.0	$87.20{\pm}11.48$	3.823 ± 0.714	$0.8965 {\pm} 0.0081$	0.691/24
ALICE	π^+	900.0	82.72 ± 2.01	3.965 ± 0.069	$0.8766 {\pm} 0.0037$	3.609/30
ALICE	π^{-}	900.0	$83.92{\pm}2.02$	$3.918 {\pm} 0.068$	$0.8790 {\pm} 0.0036$	1.610/30
ALICE	$\pi^{+} + \pi^{-}$	2760.0	90.61 ± 1.45	$3.496 {\pm} 0.057$	$0.8726 {\pm} 0.0012$	12.18/60
ALICE	$\pi^{+} + \pi^{-}$	7000.0	$78.75 {\pm} 1.86$	$4.606 {\pm} 0.093$	$0.8533 {\pm} 0.0024$	9.775/38

Parameters of the Tsallis-1 statistics fit for the pions produced in pp collisions at different energies

Parameters of the Tsallis-factorized statistics

p + p

A.S.P., arXiv:1608.01888

Parameters of the fit by the distribution of the Tsallis-factorized statistics (the zero term approximation of Tsallis-1 statistics) for the pions produced in pp collisions at different energies

Collaboration	Type	\sqrt{s} , GeV	T, MeV	R, fm	q	$q_c = 1/q$	χ^2/ndf
NA61/SHINE	π^{-}	6.3	$99.59 {\pm} 7.32$	$4.045 {\pm} 0.234$	$0.9563 {\pm} 0.0190$	$1.0457 {\pm} 0.0208$	2.825/15
NA61/SHINE	π^{-}	7.7	$96.93 {\pm} 6.49$	4.300 ± 0.222	$0.9400 {\pm} 0.0171$	$1.0638 {\pm} 0.0194$	1.481/15
NA61/SHINE	π^{-}	8.8	$99.37 {\pm} 6.29$	$4.290{\pm}0.204$	$0.9455 {\pm} 0.0172$	$1.0576 {\pm} 0.0193$	1.838/15
NA61/SHINE	π^{-}	12.3	$95.92{\pm}6.29$	$4.619 {\pm} 0.228$	$0.9324{\pm}0.0170$	$1.0725 {\pm} 0.0196$	1.175/15
NA61/SHINE	π^{-}	17.3	$95.83{\pm}6.38$	$4.798{\pm}0.246$	$0.9326{\pm}0.0166$	$1.0722 {\pm} 0.0191$	0.865/15
PHENIX	π^+	62.4	97.62 ± 11.92	$3.744{\pm}0.648$	$0.9197 {\pm} 0.0093$	$1.0874 {\pm} 0.0110$	1.654/23
PHENIX	π^{-}	62.4	$93.76 {\pm} 11.69$	$3.971 {\pm} 0.715$	$0.9184{\pm}0.0091$	$1.0888 {\pm} 0.0108$	0.878/23
PHENIX	π^+	200.0	$79.89{\pm}11.81$	$4.247{\pm}0.899$	$0.8894{\pm}0.0082$	$1.1244{\pm}0.0104$	0.987/24
PHENIX	π^{-}	200.0	87.20 ± 11.49	$3.823 {\pm} 0.714$	$0.8965 {\pm} 0.0081$	$1.1155 {\pm} 0.0101$	0.691/24
ALICE	π^+	900.0	82.72 ± 2.01	$3.965 {\pm} 0.069$	$0.8766 {\pm} 0.0037$	$1.1408 {\pm} 0.0048$	3.609/30
ALICE	π^{-}	900.0	$83.92{\pm}2.02$	$3.918 {\pm} 0.068$	$0.8790 {\pm} 0.0036$	$1.1376 {\pm} 0.0047$	1.610/30
ALICE	$\pi^{+} + \pi^{-}$	2760.0	90.61 ± 1.45	$3.496{\pm}0.057$	$0.8726 {\pm} 0.0012$	$1.1460{\pm}0.0016$	12.18/60
ALICE	$\pi^+ + \pi^-$	7000.0	78.75 ± 1.86	$4.606 {\pm} 0.093$	$0.8533 {\pm} 0.0024$	$1.1719{\pm}0.0032$	9.775/38

- The results of the Tsallis-factorized statistics (the zeroth term approximation of the Tsallis-1 statistics) deviate from the results of the Tsallis-1 statistics only at low NA61/SHINE energies when the value of the parameter q is close to unity.
- At higher energies, when the value of the parameter q deviates essentially from the unity, the Tsallis-factorized statistics satisfactorily recovers the results of the Tsallis-1 statistics because at this values of q in the series of the Tsallis-1 statistics only one term N = 0 is physical.

Conclusions

- 1. The analytical expressions for the ultrarelativistic transverse momentum distribution of the Tsallis-1 and Tsallis-2 statistics were obtained
- 2. We found that the transverse momentum distribution of the Tsallis-factorized statistics in the ultrarelativistic case is not equivalent to the transverse momentum distribution of both the Tsallis-1 and Tsallis-2 statistics
- 3. The transverse momentum distribution of the Tsallis-factorized statistics is equivalent only to the distribution in the zeroth term approximation of the Tsallis-2 statistics and the Tsallis-1 statistics with transformation of the parameter q to $1/q_c$
- 4. We have demonstrated on the base of the ultrarelativistic ideal gas that the Tsallis –factorized statistics is not equivalent to the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics)
- 5. The Tsallis-factorized statistics is a particular statistics independent from the Tsallis statistics (Tsallis-1 and Tsallis-2 statistics)

Thank you for your attention