Shapes coexistence in the frame of the Bohr model
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Bohr-Mottelson Collective Model

A. Bohr, Mat. Fyz. Medd. K. Dan. Vidensk. Selsk. 26 (1952) No. 14.
A. Bohr, B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 27 (1953) No. 16.

The excitation spectra of the nuclei are interpreted as vibrations and
rotations of their surface:

R(6,9,¢] RO%HM )qu(é’,co)%

R, - radius of spherical nucleus, «,, - surface collective coordinates,
Y,.(0,0) - spherical harmonics.

Types of multipole deformations:

monopole dipole quadrupole octupole
hexadecupole



Quadrupole deformation: Wiglner function

\'%
ILab 0@)Qllnt: a = 2' (

2u oy
‘ll'

Q€¢6,0,,0,) ¥ Euler angles

Zu’

Bohr-Mottelson transformation (intrinsic reference frame):
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The stretching of the nuclear axis. W. Greiner, J. A. Maruhn,
Nuclear Models, Springer-Verlag Berlin Heidelberg (1996).

B=0.4 and y=n1/3 (n=0,1,2,3,4,5.): prolate(n=0,2,4), oblate (n=1,3,5)
and triaxial in rest. L. Fortunato, Eur. Phys. J. A 26 (2005) 1-30.




The Bohr-Mottelson Hamiltonian:

Hy(B,7.6,,6,,0,) = Ey( B,7.,6,,6,,6,)
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H = P vibration + y vibration +

rotation + potential o
Reviewed solutions of the Bohr-Mottelson Hamiltonian in:

L. Fortunato, Eur. Phys. J. A 26 (2005) 1.
P. Buganu, L. Fortunato, J. Phys. G: Nucl. Part. Phys. 43 (2016) 093003.
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Separable potentials: V(8,7) =V,(B) + ,(7)
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Two differential equations, one for B and other for y and the Euler angles:
O,B 0 Y u (B)ep(B)=€(B), ulp) :Z—BV(ﬂ), 8=2—BE, @ € separation constant
Fel @ NG NS
1 o X 2B
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Potentials of frequent use for
Name Parametenization Notes
Harmonic Oscillator ~C(3> ES
Davidson 3C8 + & ES
Square well 0 5<B ES
W] 3 = 3-.; . 3
Coulomb % ES Plot of champagne bottle, plastic bottle and sea—sh?ll potentials,
Kraty . ES that are examples of y—unstable, y-stable and localized y-stable
atzer 4+ = h . .

“ 5 potentials, respectively.
quartic AB* NES
Sextic A3 + BBF* + €32 QES

" —24(5— —A(5— . re o . . o e .
Morse e TR — 227 QES Other classification of these solutions in soft and rigid solutions,
Displaced harmonic  —C (y — 7;)? Aperiodic || respectively. In the rigid case, a variable is set to a given value B
Cosine Acos(3y) + Bcos?(3y) Periodic || ory,. The wave functions and the quantum fluctuations in that
Inverse sine square  ——— Periodic || varijable are disregarded.

Page 16 P. Buganu, L. Fortunato, J. Phys. G: Nucl. Part. Phys. 43 (2016) 093003.
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The Interacting Boson Approximation (IBA)

F. Iachello, A. Arima, The Interacting Boson Model, Cambridge,
England, University Press, Cambridge, 1987.

The IBA describes even — even nuclei in terms of interacting valence nucleon pairs with angular momenta
L= 0 (s bosons) and 2 (d bosons):

st e S EZjaj(a; Xa;jo()), d, < f); Eij,/J)jj- (a; Xa;.juz) [A,§+] :1-}z<mlwhile [s,s*] =1

The IBA is a truncation and a subsequent bosonization of the Shell Model in terms of S and D pairs, while
In the classical limit (N [] o) the expectation value of the IBA Hamiltonian between coherent states reduces
to the Bohr Hamiltonian.

A standard two — dimensional parametrization of the IBA Hamiltonian is:

H(N.n.x) = a(nia Q)

~

d — boson number operator N, =d* -d du=(—@2_”d—u

My

quadrupole operator Q (!.;;T[rf_|_“’T ) _|_3.L[{IT {]}(9}

N — total number of bosons; a = 1 MeV - scaling factor; n and y — dimensionless control parameters
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FIGURE 1. The extended Casten triangle [12] and its different
phases. The solid dot in the center represents the second-order tran-
sition between spherical nuclei (Phase I) and deformed nuclei with
prolate (Phase IT) and oblate (Phase IIT) forms. The dashed lines
correspond to first-order phase transitions.

J. Jolie, R. F. Casten, P. von Brentano, and V. Werner, Phys. Rev. Lett. 87 (2001) 162501.
J. Jolie, S. Heinze, P. Cejnar, Revista Mexicana de Fisica 49 (2003) 29 — 33.



The geometric interpretation of the IBA Hamiltonian can be derived by using s and d — boson condensate
states [R. Gilmore, J. Math. Phys. 20 (1979) 891; J. N. Ghinocchio, M. W. Kirson, Phys. Rev. Lett. 44 (1980) 1744]:
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| ,37/> \/N!(
Energy functional EN,7,x; B8, ¥)=(N,B=y|H(N,n, x)IN,B,v)

E(N,n,x;B,v)= (1+;32)2 {[Nn (1= (4N +x2 — 8)IB? + 4(N — (1 — n)\[x cos3y}
(1+52)2 {[Nn —(1-n) (2N7+5 "= )] 84}

Analogy to the Landau theory

Instead of the thermodynamic potential ¢(P,T;¢), that depends on external parameters (pressure P and
Temperature T) and the order parameter &, one has the energy surface E(N,n,x;[,y) depending on external
parameters 1) and y and on the order parameters 3 and y. The external parameters are related here to the
number of valence and hence indirectly to the underlying shell structure.

The ground state energy obtained from the global minimum of the energy functional E(N,n,x;f,y,) must be

a continuous function of 1 and y, similarly as the thermodynamic potential in the equilibrium configuration
&, is a continuous function in P and T. Discontinuities in the first or second derivatives of E(N,n,x;5,Ys)

with respect to the control parameters result in first — or second — order shape phase transition.

J. Jolie, S. Heinze, P. Cejnar, Revista Mexicana de Fisica 49 (2003) 29 — 33.
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Motivation for the present study
R. F. Casten, Nature Physics 2 (2006) 811. “ X(5)
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0—X—q+ Ay =333 configuration. With increasing valence nucleon
Ry =2 U@ number, its energy decreases, eventually becoming
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critical point.
Figure 1 Symmetry triangle for nuclear structure. a, showing the traditional paradigms at the vertices (along with mini-level schemes), and the two critical point symmetries,
E(5) and X(5), at the termini of the phase-transitional region between spherical and deformed nuclei. Note that there are two systems for labelling these paradigms: the
geometric language of vibrator, rotor, y-soft, E(5), and X(5), which are solutions to the Bohr hamiltonian, and symmetry-based labels from the IBA (U(5), SU(3) and O(8)). This
distinction should be borne in mind and is the reason, for example, that E(5) and X(5) are shown in open circles, to distinguish them from the dynamical symmetries at the
vertices. Also, even solutions such as U(5) and the vibrator, which appear in both algebraic and geometric approaches, although similar, are not identical.

Interacting Boson Approximation (IBA): F. Iachello, A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987.
Bohr — Mottelson Geometrical Model: A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26 (1952) No. 14;
A. Bohr, B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 27 (1953) No. 16.
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Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima

Radial-like differential equation for the (3 variable for prolate deformed nuclei is:
[F. Iachello, Phys. Rev. Lett. 87 (2001) 052502]
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FREEYTI +Vv [ﬁ)]‘l'(ﬁ) e"W(B).

g ap
A general sextic potential is used to introduce the barrier separating the two minima:
v(f) =ap’ +bp* +cp°
R. Budaca, P. Buganu, A. I. Budaca, Phys. Lett. B 776 (2018) 26 — 31. R. Budaca, A. I. Budaca, EPL 123 (2018) 42001.

The eigenvalue can be scaled as follows: eﬁ(a, b.c)= a”zeﬁ(l, ba_?’fz._ ca‘z)
Due to the scaling property, one can start from the beginning with a potential of the form: v() =8° +af* +bf°

Making the change of function () =g % (), one obtains a new form for the (3 equation:

0 > L(L+1)
-t 2

] OB 3p
The energies and the wave functions are obtained by numerical diagonalization using as a basis the solutions
of the same equation but for an infinite square well potential:

I
ovg (P (B) =e" () vy (B) :éwf +ap* +bp°

\/*ﬁ;' 0o /J’D
_ u By u _|L(L+1) 9 00, B<B,
lﬂ"n(ﬁ) - ﬁwjvﬂ( n) Y 3 +4’ for V(ﬁ) _HOO’ /3>/3W

Jv are Bessel functions of the first kind, while o, are their zeros associated to the boundary conditions for a
suitably chosen limiting value (3,,, which encompass the relevant part of the sextic potential. The boundary
value (3, is fixed such that to achieve a satisfactory convergence (10-) for all considered energy states for a
given dimension of the diagonalization basis (n=20).

In this study, the parameters a and b, describing the potential, are fixed such that the two minima,
%%Qﬁrﬂwd by a barrier, to have the same minimum energy.
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Fig. 1: (Colour online) Effective (solid) and original (dashed)
collective potentials as well as the probability distribution cor-
responding to the first two 3 excited states are plotted as a
function of 5. The energy levels 07 and 2% belonging to the
ground band and [ excited band are shown using the same
arbitrary units of the potential curves.

Page[] 12 R. Budaca, A. I. Budaca, EPL 123 (2018) 42001.
R. Budaca, P. Buganu, A. I. Budaca, Phys. Lett. B 776 (2018) 26 — 31.
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Fig. 3: (Colour online) Theoretical and experimental [18]
energy spectra for “®Kr including only K™ = 07 states. The
energy scale of theoretical predictions is fixed to reproduce the
experimental energy of 27 state, while the theoretical B(E2)
values are scaled to the experimental value of the 277 — 07

transition. Energy levels are given in Mev and B(E2) values

- 272
in e“b”.
Page [] 13 R. Budaca, A. I. Budaca, EPL 123 (2018) 42001..
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Fig. 1. Theoretical results are compared with experimental data for ground and 8 excited band energies and the associated
E2 transition probabilities, given in MeV and respectively W.u., for 725e [40], T45e [41] and 765 [42].

R. Budaca, P. Buganu, A. 1. Budaca, Nucl. Phys. A (2019) in press.
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Fig. 2. Calculated (squares) and experimental (circles) absolute energy of the y band levels as a function of angular

momentum.

Page [] 16

R. Budaca, P. Buganu, A. I. Budaca, Nucl. Phys. A (2019) in press.
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Fig. 4. Theoretical effective potentials (14) as well as the probability distribution corresponding to the L =0, 2, 4 ground
band states, L. = 0,2 B excited band states and L = 2,3 y band states are plotted as a function of B deformation for the
Page [] 17 12747656 nuclei.

R. Budaca, P. Buganu, A. I. Budaca, Nucl. Phys. A (2019) in press.



Conclusions

The influence had by the barrier for the critical point of the phase transition from
spherical vibrator to axial rotor is investigated in the frame of the Bohr-Mottelson
model using a sextic potential for the  variable. Moreover, the study goes beyond
this particular situation by increasing considerably the height of the barrier.

The parameters, describing the associated effective potential, are fixed such that
the two minima, separated by barrier, to have the same minimum energy.

The Hamiltonian is diagonalized in a basis of Bessel functions of the first kind,
which in turn are solutions for the same problem but for an infinite square well
potential.

Analyzing the density distribution probabilities for the ground state and for the
first 0* excited state, but also the monopole transition matrix element between
these two states, one can see how the barrier influence dramatically the
deformation of the ground and excited states and moreover, the fact that these
states could present shape coexistence, coexistence with mixing and fluctuations,
respectively, depending on the height of the barrier.

Experimental realization of the present model is found for 7°Kr and 7>747¢Se.
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