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Hadronic vacuum polarization

• Electromagnetic current Jµ(x) of light hadrons (π and K mesons)

• Lorentz-invariant vacuum polarization amplitude Π(s):

−i
∫

d4x e iq·x 〈0|T {Jµ(x), Jν(0)†} |0〉 = (qµqν − gµνq2) Π(s), s = q2

• Causality and unitarity: for s ≥ 4m2
π, Π(s) is complex and

Im Π(s) ≈ σ(e+e− → hadrons), Im Π(s) ≈ σ(τ → ντhadrons)

• Perturbative QCD: Feynman graphs with free quark and gluon lines

• strong coupling g at each quark-gluon vertex

• State of the art: calculations in perturbative QCD up to five-loop order

Π(s) ∼ α4
s , αs =

g 2

4π
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Perturbative QCD

• Renormalization-group invariant quantity (Adler function)

D(s) = −s dΠ(s)

ds
, D̂(s) ≡ 4π2D(s)− 1.

• Standard expansion in powers of the renormalized coupling αs(µ
2):

D̂(s) =
∑
n≥1

(αs(µ
2)/π)n

n∑
k=1

k cn,k L
k−1, L = ln(−s/µ2)

• Renormalization-group improved expansion: µ2 = −s > 0 ⇒
D̂(s) =

∑
n≥1

cn,1 (αs(−s)/π)n, αs(−s) : “running coupling”

• Coefficients calculated in MS renormalization scheme:

c1,1 = 1, c2,1 = 1.640, c3,1 = 6.371, c4,1 = 49.076

• Higher-order calculations not foreseen in the near future

• Estimates of next coefficients of interest for testing the Standard Model at
intermediate energies motivation of the present work!

• Large-order behaviour: cn,1 ∼ n! for n→∞
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Problems of perturbative QCD

• The description of physical hadronic observables is not straightforward

• The expansions truncated at finite orders depend on the renormalization
scheme and scale

• Perturbative QCD is valid in the Euclidian region s < 0, far from the
hadronic thresholds

• Hadron observables are measured in the Minkowskian region s > 0

• An analytic continuation in the momentum plane is required

• The series is divergent (has zero radius of convergence)

• The expanded functions are singular at the origin of the coupling plane

• The perturbative series is an asymptotic expansion for αs(µ
2)→ 0+

• Additional terms might be necessary for recovering the exact function
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Hyperasymptotics, transseries, resurgence

• Consider an asymptotic expansion for z → 0+ to a continuous function F (z):

F (z) ' a0+a1z+a2z
2+. . . |F (z)−

N∑
0

anz
n| = O(zN+1), N = 1, 2, . . . z → 0+

• Remark: for an arbitrary c > 0

e−c/z ' 0 + 0× z + 0× z2 + . . . (z > 0)

• We can add to an asymptotic series an arbitrary exponentially-small term

F (z) ' a0 + a1z + a2z
2 + . . .+ e−c/z , z → 0+

• Hyperasymptotics

• expand a well behaved function as an asymptotic (divergent) series

• add terms exponentially-small in the coupling of the original series

• add terms exponentially-small in the coupling of the second series

• continue the process (“transseries”)

• this will allow the expanded function to “resurge”
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Hyperasymptotics in QCD

• The dependence of the coupling on the scale µ2 given by RGE:

− µ2 dαs

dµ2
≡ β(αs) = β0 α

2
s + β1 α

3
s + β2 α

4
s + β3 α

5
s + . . .

• The running coupling to one-loop: s = −Q2

αs(Q
2) ≈ 1

β0 ln(Q2/Λ2)
(exhibits “asymptotic freedom”)

• For z = αs(Q
2) ⇒ exponentially small terms give power corrections:

e−c/z = e−c/αs (Q2) ' 1

(Q2)c

• For z = 1/Q2 ⇒ exponentially decreasing corrections e−c/z = e−cQ2

⇒ Hyperasymptotic perturbative expansion in QCD:

D̂(s) '
∑
n≥1

cn,1 (αs(Q
2)/π)n +

∑
k≥1

Ck

Q2k
+

∑
j≥1

Dje
−FjQ

2

pure PT ”power corrections” ”duality violating” terms
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Laplace-Borel transform

• Starting from a factorially divergent series, define a convergent series:

D̂ =
∑
n≥1

cn,1(αs/π)n ⇒ BD(u) =
∞∑
n=0

bn u
n, bn =

cn+1,1

βn
0 n!

• The large-order behaviour encoded in the singularities of BD(u)

• branch-points on the real semiaxis u ≥ 2 (infrared renormalons)

• branch-points on the real semiaxis u ≤ −1 (ultraviolet renormalons)

• The nature of the first branch points at u = −1 and u = 2 is known:

BD(u) = O((1 + u)−γ1 ), γ1 = 1.21

BD(u) = O((1− u/2)−γ2 ), γ2 = 2.58

• Convergence region in the u plane:

Higher-order perturbative coefficients in QCD from series acceleration by conformal mappings



Laplace-Borel transform

• Starting from a factorially divergent series, define a convergent series:

D̂ =
∑
n≥1

cn,1(αs/π)n ⇒ BD(u) =
∞∑
n=0

bn u
n, bn =

cn+1,1

βn
0 n!

• The large-order behaviour encoded in the singularities of BD(u)

• branch-points on the real semiaxis u ≥ 2 (infrared renormalons)

• branch-points on the real semiaxis u ≤ −1 (ultraviolet renormalons)

• The nature of the first branch points at u = −1 and u = 2 is known:

BD(u) = O((1 + u)−γ1 ), γ1 = 1.21

BD(u) = O((1− u/2)−γ2 ), γ2 = 2.58

• Convergence region in the u plane:

Higher-order perturbative coefficients in QCD from series acceleration by conformal mappings



Laplace-Borel transform

• Starting from a factorially divergent series, define a convergent series:

D̂ =
∑
n≥1

cn,1(αs/π)n ⇒ BD(u) =
∞∑
n=0

bn u
n, bn =

cn+1,1

βn
0 n!

• The large-order behaviour encoded in the singularities of BD(u)

• branch-points on the real semiaxis u ≥ 2 (infrared renormalons)

• branch-points on the real semiaxis u ≤ −1 (ultraviolet renormalons)

• The nature of the first branch points at u = −1 and u = 2 is known:

BD(u) = O((1 + u)−γ1 ), γ1 = 1.21

BD(u) = O((1− u/2)−γ2 ), γ2 = 2.58

• Convergence region in the u plane:

Higher-order perturbative coefficients in QCD from series acceleration by conformal mappings



Singularities in the Borel plane and hyperasymptotics

Recover the original function by the Laplace-Borel integral

D̂(s) =
1

β0

∞∫
0

exp

(
−u

β0αs(−s)

)
BD(u) du

• The integral is not defined due to the singularities of BD(u) for u ≥ 2

• The first singularity at u = 2 can be related to a power correction:

D̂(s) =
1

β0

2∫
0

. . . du + O

(
exp

(
−2

β0αs(Q2)

))
∼ 1

Q4

• The exponential corrections (quark-hadron duality violating terms) can be
also related to singularities in a Borel complex plane

• The standard expansions fail to deal with the singularities in the Borel plane

⇒ Consider alternative expansions which implement these singularities
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Series acceleration by conformal mappings

• Series acceleration: increase the convergence domain and the convergence
rate of an expansion

• A power series convergent in a disk of positive radius around the origin, is
replaced by a series in powers of another variable, which performs the
conformal mapping of the original complex plane (or a part of it) onto a
disk of radius equal to unity

Larger domain mapped onto the unit disk ⇒ higher convergence rate

D2

D1

u-plane

⇒
K1

z1-plane

∣∣∣∣an,1 (z̃1(u))n

an,2 (z̃2(u)n

∣∣∣∣ < 1

Optimal conformal mapping w̃(u): whole holomorphy domain ⇒ |w | < 1
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Optimal conformal mapping of Borel plane

Re u

Im u

−1

UV 0

2

IR
⇒ Re w

Im w

−1 1

×

×

w∞

w∗∞

IR
UV

0

Achieved by w ≡ w̃(u), w̃(0) = 0, and the inverse ũ(w):

w̃(u) =
√

1+u−
√

1−u/2
√

1+u+
√

1−u/2
ũ(w) = 8w

3−2w+3w2 (IC & Fischer, 1999)

• Optimal expansion of the Borel transform:

BD(u) =
∑
n≥0

bnu
n ⇒ BD(u) =

∑
n≥0

cn w
n

• Optimal expansion with singularity softening (s.s.):

BD(u) =
1

(1 + w)2γ1 (1− w)2γ2

∑
n≥0

c̄n w
n
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w̃(u) =
√

1+u−
√

1−u/2
√

1+u+
√

1−u/2
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ũ(w) = 8w

3−2w+3w2 (IC & Fischer, 1999)

• Optimal expansion of the Borel transform:

BD(u) =
∑
n≥0

bnu
n ⇒ BD(u) =

∑
n≥0

cn w
n

• Optimal expansion with singularity softening (s.s.):

BD(u) =
1

(1 + w)2γ1 (1− w)2γ2

∑
n≥0

c̄n w
n

Higher-order perturbative coefficients in QCD from series acceleration by conformal mappings



Mapping which accounts only for the UV reormalons

Re u

Im u

−1

UV 0

2

IR
⇒ Re v

Im v

−1 1IR

UV

0

Achieved by v ≡ ṽ(u), ṽ(0) = 0, and the inverse ũ(v):

ṽ(u) =
√

1+u−1√
1+u+1

ũ(v) = 4v
(1−v)2

• Alternative expansion of the Borel transform:

BD(u) =
∑
n≥0

fn v
n,

• Expansion with singularity softening:

BD(u) =
1

(1 + v)2γ1 (1− v/ṽ(2))γ2

∑
n≥0

f̄n v
n
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Prediction of higher-order coefficients

• Four known coefficients cn,1, 1 ≤ n ≤ 4 ⇒ four coefficients bn, 0 ≤ n ≤ 3

• Can one predict higher-order coefficients?

• Use theoretical knowledge on the expanded function

• The series acceleration by conformal mappings is a suitable framework

Algorithm:

• start from the expansion of BD(u) in powers of u truncated at order N − 1

• insert u = ũ(w) in this truncated expansion

• expand its product with the global prefactor (1 + w)2γ1 (1− w)2γ2 in
powers of w to the same order N − 1

• reexpand in powers of u the ratio of this truncated expansion to the
factors (1 + w)2γ1 (1− w)2γ2

⇒
• recover the first N input coefficients

• obtain also definite values for the higher-order coefficients
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Prediction of higher-order coefficients

• Four known coefficients cn,1, 1 ≤ n ≤ 4 ⇒ four coefficients bn, 0 ≤ n ≤ 3

• Can one predict higher-order coefficients?

• Use theoretical knowledge on the expanded function

• The series acceleration by conformal mappings is a suitable framework

Algorithm:

• start from the expansion of BD(u) in powers of u truncated at order N − 1

• insert u = ũ(w) in this truncated expansion

• expand its product with the global prefactor (1 + w)2γ1 (1− w)2γ2 in
powers of w to the same order N − 1

• reexpand in powers of u the ratio of this truncated expansion to the
factors (1 + w)2γ1 (1− w)2γ2

⇒
• recover the first N input coefficients

• obtain also definite values for the higher-order coefficients
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Test at large orders

Coefficient cN,1 from input cn,1, n ≤ N − 1 for a mathematical model

N Series in vn Series in wn vn and s.s. wn and s.s. Exact cN,1
4 −52.34 −17.61 14.77 17.85 49.076

5 −932.45 −270.46 255.98 255.73 283.

6 −14348.46 −2290.94 3096.35 2928.76 3275.45

7 −274384. −39054.7 15740.1 16308.73 18758.4

8 −5.12 × 106 −272605.1 350336.4 381151.6 388445.6

9 −1.14 × 108 −6.89 × 106 455072.1 963059.1 919119.2

10 −2.56 × 109 −1.424 × 107 7.82 × 107 8.49 × 107 8.37 × 107

11 −6.68 × 1010 −1.78 × 109 −5.74 × 108 −5.04 × 108 −5.19 × 108

12 −1.76 × 1012 1.66 × 1010 3.36 × 1010 3.39 × 1010 3.38 × 1010

13 −5.29 × 1013 −8.47 × 1011 −5.89 × 1011 −6.04 × 1011 −6.04 × 1011

14 −1.61 × 1015 1.98 × 1013 2.42 × 1013 2.34 × 1013 2.34 × 1013

15 −5.48 × 1016 −7.09 × 1014 −6.24 × 1014 −6.53 × 1014 −6.52 × 1014

16 −1.89 × 1018 2.32 × 1016 2.52 × 1016 2.42 × 1016 2.42 × 1016

17 −7.22 × 1019 −8.62 × 1017 −8.12 × 1017 −8.46 × 1017 −8.46 × 1017

18 −2.78 × 1021 3.33 × 1019 3.48 × 1019 3.36 × 1019 3.36 × 1019

19 −1.18 × 1023 −1.36 × 1021 −1.32 × 1021 −1.36 × 1021 −1.36 × 1021

20 −5.01 × 1024 5.90 × 1022 6.07 × 1022 5.92 × 1022 5.92 × 1022

21 −2.34 × 1026 −2.68 × 1024 −2.62 × 1024 −2.68 × 1024 −2.68 × 1024

22 −1.09 × 1028 1.28 × 1026 1.31 × 1026 1.28 × 1026 1.28 × 1026

23 −5.54 × 1029 −6.41 × 1027 −6.32 × 1027 −6.41 × 1027 −6.41 × 1027

24 −2.80 × 1031 3.35 × 1029 3.39 × 1029 3.35 × 1029 3.35 × 1029

25 −1.54 × 1033 −1.83 × 1031 −1.81 × 1031 −1.83 × 1031 −1.83 × 1031
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Higher-order coefficients from BD(u)

• Standard truncated expansion with 4 given coefficients:

BD(u) = 1 + 0.7288 u + 0.6292 u2 + 0.7181 u3

• The above algorithm leads to the optimal expansion

BD(u) =
1− 0.7973w + 0.4095w 2 + 8.6647w 3

(1 + w)2γ1 (1− w)2γ2

• Reexpanded in powers of u, it gives

BD(u) = 1 + 0.7288 u + 0.6292 u2 + 0.7181 u3

+ 0.4157 u4 + 0.4220 u5 + 0.1429 u6 + . . .

• The first four coefficients reproduce the input values

• The remaining coefficients lead to:

c5,1 = 255.73, c6,1 = 2920.2, c7,1 = 13357.1 .
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Alternative observable: τ hadronic width

• Hadronic decay of the τ lepton:

hadronsτ−

ντ

W−

Rτ =
Γ(τ− → hadrons ντ )

Γ(τ− → eν̄eντ )
= CEW (1 + δ(0))

δ(0): hadronic contribution

• Unitarity and analyticity for the hadronic polarization function ⇒

δ(0) = 1
2πi

∮
|s|=m2

τ

ds
s

(
1− s

m2
τ

)3 (
1 + s

m2
τ

)
D̂(s), mτ = 1.78GeV

Re s

Im s

m2
τ
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τ hadronic width in perturbative QCD:

• Inserting in the integral the perturbative expansion of D̂(s) leads to

δ(0) =
∑
n≥1

dn (αs(m
2
τ ))n

d1 = 1, d2 = 5.20, d3 = 26.37, d4 = 127.08, d5 = 307.8 + c5,1,

d6 = −5848.2 + 17.81c5,1 + c6,1, d7 = −97769.1 + 61.33 c5,1 + 21.38 c6,1 + c7,1

• Borel transform of δ(0):

Bδ(u) =
∑
n≥0

dn+1

βn
0n!

un
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Properties of Bδ(u)

In the one-loop approximation for the coupling the following relation is valid:

Bδ(u) =
12

(1− u)(3− u)(4− u)

sin(πu)

πu
BD(u)

Bδ(u) ∼ (1 + u)(2− u)BD(u)

⇒ The nature of the singularities at u = 2 and u = −1 is modified

But:

• Beyond the one-loop approximation the simple zeros become
branch-points

• The behaviour of Bδ(u) near the first singularities is not exactly known

⇒ Bδ(u) is not suitable for a precise extraction of higher-order coefficients
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Other contour integrals

Consider a general weighted contour integral:

Iω =
1

2πi

∮
|s|=m2

τ

ds

s
ω(s) D̂(s),

In the one-loop approximation of the coupling:

BIω (u) = Fω(u)BD(u)

Requirements on the weight ω(s):

• ω(s) should vanish at the timelike point s = m2
τ , in order to suppress the

region where the perturbative logarithms ln(−s/m2
τ ) are large

• Fω(u) should not vanish at u = 2 and u = −1

• Fω(u) should not have poles or zeros at low values of |u|

⇒ BIω (u) has the same dominant singularities as BD(u)
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Borel transforms

i ωi (s) Fωi
(u)

1

(
1 − s

m2
τ

)
1

(1−u)
sin(πu)
πu

2

(
1 − s

m2
τ

)2
2

(1−u)(2−u)
sin(πu)
πu

3

(
1 − s

m2
τ

)2 (
2 + s

m2
τ

)
6

(1−u)(3−u)
sin(πu)
πu

4

(
1 − s

m2
τ

)3

− 6
(1−u)(2−u)(3−u)

sin(πu)
πu

5

(
1 − s

m2
τ

)3 (
1 + s

m2
τ

)
12

(1−u)(3−u)(4−u)
sin(πu)
πu

6

(
1 − s

m2
τ

)3 (
3 + s

m2
τ

)
24

(1−u)(2−u)(4−u)
sin(πu)
πu

7

(
1 − s

m2
τ

)
m2
τ
s − 1

(1+u)
sin(πu)
πu

8

(
1 − s

m2
τ

)2
m2
τ
s − 2

(1−u)(1+u)
sin(πu)
πu

9

(
1 − s

m2
τ

)3
m2
τ
s − 6

(1−u)(2−u)(1+u)
sin(πu)
πu

10

(
1 − s

m2
τ

)3 (
1 + s

m2
τ

)
m2
τ
s − 12

(2−u)(3−u)(1+u)
sin(πu)
πu
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Higher-order coefficients from a suitable contour integral

Consider the contour integral:

I =
1

2πi

∮
|s|=m2

τ

ds

3s

(
s

m2
τ

− 1

)3
m2
τ

s
D̂(s)

Perturbative expansion:

I =
∑
n≥1

In (αs(m
2
τ ))n ⇒ BI (u) =

∑
n≥0

In+1

βn
0n!

un,

I1 = 1, I2 = 2.76, I3 = 8.06, I4 = −17.85 + c4,1, I5 = −379.33 + 4.5 c4,1 + c5,1,

I6 = −2190.8 − 31.99 c4,1 + 5.63 c5,1 + c6,1, I7 = −895.7 − 406.2 c4,1 − 49.98 c5,1 + 6.75 c6,1 + c7,1.

• Optimal representation:

BI (u) =
1− 0.536w − 1.168w 2 − 1.181w 3

(1 + w)2γ1 (1− w)2γ2
,

• Reexpanded in powers of u leads to the higher-order coefficients:

c5,1 = 327.0, c6,1 = 2840.6, c7,1 = 26475
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Final results

• Average of the predictions obtained from the expansions of BD(u) and
BI (u) in powers of w and v

• With only three input coefficients cn,1:

c4,1 = 34.4± 19.6 consistent with the true value c4,1 = 49.076

• With four input coefficients cn,1:

c5,1 = 287± 40, c6,1 = 2948± 208, c7,1 = (1.89± 0.75)× 104

• Conservative definition of the error such as to cover the range of individual
values (not a statistical error)

• Comparison with predictions based on other methods:

• Fastest Apparent Convergence (FAC) or Principle of Minimum Sensitivity
(PMS): c5,1 ≈ 275

• Qualitative trend in the expansion of the τ hadronic width: c5,1 = 283± 142

• Rational approximants of the τ hadronic width in the coupling and the Borel
planes: c5,1 = 277 ± 51, c6,1 = 3460 ± 690, c7,1 = (2.02 ± 0.72) × 104
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Summary and conclusions

• Impressive progress in perturbative QCD: calculations available to five-loop
order for several observables

• However,

• higher-order calculations not expected in the near future

• estimates of higher-order coefficients of interest for precision tests of the
Standard Model at intermediate energies

• complications due to hyperasymptotics (especially quark-hadron duality
violation) still under debate

• The series acceleration by conformal mappings of the Borel plane is a
possible alternative to transseries in perturbative QCD

• The method allows reasonable predictions of the perturbative coefficients
of the QCD Adler function up to eight-loop order
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