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Abstract

The emergent dynamics of the density motion is formulated for macroscopic ensembles of
non-relativistic, interacting particles in terms of a displacement field. The formulation is valid
both for classical and quantum-mechanical ensembles at equilibrium, as well as for ensembles
at statistical equilibrium. The dynamics of the displacement field is expressed in terms
of coupled harmonic oscillators, which exhibit vibrations and wave-like motion; if needed,
the motion of the displacement field can be quantized. Examples are given for short-range
interaction (gases, liquids, solids, or atomic nucleus) and (long-range) Coulomb interaction
(plasmas). Ensembles with short-range interaction may exhibit a self-energy (oscillation
eigenfrequency), which may lead to resonance. The density motion in ensembles of particles
interacting through short-range forces is equivalent with the motion of the deformation of
homogeneous, isotropic solids with only one Lame coefficients (dilatational motion).

Newton’s law. A particle with mass m and position vector r moves according to Newton’s law

m
dv

dt
= F , (1)

where v = ṙ is the velocity and F denotes the force. It is sufficiently general to assume that the
force is given by a potential Φ, through

F = −gradΦ . (2)

If the potential Φ is independent of time, then, multiplying equation (1) by v, we get the law of
energy conservation

d

dt

(
1

2
mv2 + Φ

)
= 0 , (3)

where mv2/2 is the kinetic energy and Φ is the potential energy. A more general form of the
Newton’s law may be derived from the extremum of the mechanical action

S =

∫
dtL(r,v) =

∫
dt(mv2/2− Φ) , (4)

where L, defined by equation (4), is the lagrangian; the resulting Lagrange equation of motion are

d

dt

∂L
∂v

− ∂L
∂r

= 0 ; (5)
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multiplying equation (5) by v we get the law of conservation of the hamiltonian (energy)

d

dt

(
v
∂L
∂v

)
− ∂L
∂v

∂v

∂t
− v

∂L
∂r

=
d

dt

(
v
∂L
∂v

−L
)

= 0 , (6)

whereH = v∂L/∂v−L is the hamiltonian (energy); introducing momentum p = ∂L/∂v and using
equation of motion (5) (which now reads dp/dt = ∂L/∂r = F), we get the Hamilton equations of
motion

dp

dt
= −∂H

∂r
,
dr

dt
=
∂H

∂p
. (7)

Moreover, from equation (4) and Hamilton equations we get ∂S/∂r = p and ∂S/∂t = dS/dt −
v∂S/∂r = L − vp = −H , which are the Hamilton-Jacobi equations.

The Newton’s law is obtained from the general Lagrange, Hamilton, Jacobi formalism by p =
mv (and F = ∂L/∂r = −∂H/∂r), which amounts to the kinetic term mv2/2 in lagrangian
(hamiltonian).

We note that energy is conserved due to the absence of the time in the expression of the force
(lagrangian, hamiltonian); the energy conservation is due to the uniformity of time. Similarly,
from Newton’s law dp/dt = F the momentum is conserved if the force is absent, which means
the uniformity of space (Galilei’s principle of inertia). By an infinitesimal rotation δϕ the vectors
change like δr = δϕ× r; the change of the lagrangian is

δL = ∂L
∂r
(δϕ× r) + ∂L

∂v
(δϕ× v) = δϕ

(
r× ∂L

∂r
+ v × ∂L

∂v

)
=

= δϕ (r× ṗ+ v × p) = δϕ d
dt
(r× p) ;

(8)

hence, if the space is uniform under rotations the angular momentum L = r× p is conserved; its
equation of motion is

dL

dt
= r× F , (9)

where K = r×F is the torque of the force. We can indeed check that ∂L/∂ϕ = ∂L/∂r(∂r/∂ϕ) =
r×F. There are not other symmetries of the clasical motion of a material point, or a rigid solid,
to lead to other conservation laws (constants of motion).

We may imagine that a source of motion is not only a gradient of a scalar function, but also a
vortex. Force may also be given by a curl, F = curlA (since any vector derive from a grad and a
curl); it is natural to admit that A depends only on the magnitude r of the position vector. Then,
we get from Newton’s law dp/dt = curlA the equation d2p/dt2 = p×B, where B = A

′

(r)/mr.
We may assume that the direction of the vector B is fixed, at least locally; then px = ae−ωt cosωt,
py = be−ωt sinωt, where ω = |B|1/2 /

√
2; we can see that, although with an interesting trajectory,

the motion ceases after a while.1

Many particles. Let us write Newton’s law for many interacting particles as

mi
dẋα(i)

dt
= −

′∑

j

∂Φ(ij)

∂xα(i)
, (10)

where i, j label the particles, α is cartesian label and the prime over summation means i 6= j.; the
notation Φ(ij) means that the potential Φ depends on the coordinates x(i) and x(j), where i 6= j.

1For vorticial motion see M. Apostol, "Fluids, fluid vortices and the theory of Electricity nad Magnetism", J.
Theor. Phys. 135 (2006).
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With sufficient generality we may assume for Φ(ij) a dependence on | x(i) − x(j)|. We multiply
equation (10) by ẋα(i), sum over α and use the identity

dΦ(ij)

dt
=
∂Φ(ij)

∂xα(i)
ẋα(i) +

∂Φ(ij)

∂xα(j)
ẋα(j) (11)

(for i 6= j). We get

d

dt

(
1

2
miẋ

2
α(i) +

′∑

j

Φ(ij)

)
=

′∑

j

∂Φ(ij)

∂xα(j)
ẋα(j) , (12)

where the summation over α is implicit. On the left in this equation we have the energy

Ei =
1

2
miẋ

2
α(i) +

′∑

j

Φ(ij) (13)

of the i-th particle; equation (12) can also be written as

dEi =

′∑

j

∂Φ(ij)

∂xα(j)
dxα(j) ; (14)

hence ∂Ei/∂xα(j) = ∂Φ(ij)/∂xα(j) and ∂Ei/∂xα(i) = 0 ; these two equalities are mutually
contradictory, since ∂2Ei/∂xβ(i)∂xα(j) is both zero and nonzero (∂2Φ(ij)/∂xβ(i)∂xα(j)); in fact,
Ei does not exist. Hence we conclude that the motion of a collection of at least three interacting
classical particles cannot be determined (in terms of trajectories of individual particles); it is not
integrable (the separation of the center of mass makes one particle independent of the motion
of the rest).2 This basic limitation of the mechanical theory was first indicated by Poincare,
in relation to the motion of the Earth, the Sun and the Moon;3 subsequently it motivated the
so-called "chaos theory" and the "theory of dynamical systems".4

Displacement field. Let us consider the lagrangian

L =
∑

i

1

2
miẋ

2(i)−
∑

i

Φ1(i)−
1

2

′∑

ij

Φ2(ij) , (15)

of many interacting particles, where Φ1(i) = Φ1(x(i)) is an external field (one-particle function)
and Φ2(ij) = Φ2(x(i),x(j)) is an interaction (two-particle function; usually, we take Φ2(ij) =
Φ2(|x(i)− x(j)|); the prime over the summation sign means i 6= j.

We consider a macroscopic collection of classical, non-relativistic particles at rest at some points
x(i); we assume a dense, uniform distribution of such points, such that we may pass from sum-
mations over i to integration over x; in integrals, the position vector x will be denoted by r. We
assume the existence of a uniform density n of particles (concentration), which does not depend
on position, nor on the time. Both the number N of particles and the volume V they occupy
are macroscopic, i.e. N ≫ 1 and V ≫ v, where v is the mean volume attributed to one particle

2M. Apostol, "The Many-Body Theory: its logic along the years", J. Theor. Phys. 152 (2007).
3See, for instance, M. Apostol, "Moon’s problem", J. Theor. Phys. 117 (2005).
4The point related to the non-integrability of the equations of the mechanical motion lies in fact at the core

of some arguments which claim the instability of Coulomb interacting many particles (plasma), either classical,
or quantum-mechanical. Indeed, the repulsive interaction of an electron with the rest of N − 1 electrons in an
ensemble of N electrons is compensated by the attractive interaction of the same electron with N ions; it would
follow that it remains one uncompensated electron-ion interaction, which would make the plasma unstable.
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(v = V/N , nv = 1). We introduce the external field Φ1 and the interaction Φ2 and are interested
in the change produced by these agencies in the state of the collection of particles, especially its
motion. The external field Φ1 may depend on the time, but it is assumed that the interaction Φ2

does not.

A similar problem can be formulated for an ensemble of interacting particles at equilibrium;
although the motion is not integrable, at the initial moment of time the particles have positions;
we are interested in the change produced in these positions by an external field and the interaction,
especially, in the motion of the ensemble, if it exists. Specifically, we are interested in what kinds of
motion the ensemble may support, if any. The interaction takes part in realizing the equilibrium,
but an external field brings the interaction again in action. At equilibrium the density may, in
general, be non-uniform, but these non-uniformities are either limited to small regions, or they are
very small, such that we may assume, in a first approximation, a uniform density. A non-uniform
density can be included in the considerations which follow.

Also, we can consider the problem described above for an ensemble of particles at thermal equi-
librium. In this case, the positions and the momenta of the particles are not determined; they
are subject to a statistical distribution f(x,p), where x is the ensemble of positions and p is
the ensemble of momenta. The motion is described usually by the change in this distribution
f , governed by kinetic equations (in particular Boltzmann equation). An external field perturbs
the ensemble of particles, but, since the change in entropy is a second-order change at equibrium,
there exists equilibrium, "kinetic" motion of f limited to first-order changes. However, an external
perturbation brings the interaction into play, which implies second-order changes and, possibly,
mechanical ("kinetic") motion; the entropy of the ensemble may increase on this occasion, in order
to compensate for the decrease brought about by the ordered mechanical motion sustained by the
ensemble. At a given moment, when the perturbation is introduced, the particles are at some,
unknown, points x(i), statistically distributed.

A set of quantum-mechanical particles is described by a multi-particle wavefunction obeying the
Schodinger equation. At the moment of introducing the external perturbation there exist positions
where the probabilistic existence of quantum-mechanical particles hold. The approach described
below is valid for quantum-mechanical particles.

Let us assume that the perturbation generates a displacement

x(i) → x(i) + y(i) , (16)

where we consider small values of the changes y(i) in positions. We assume that the displacement
field y(i) has two components,

y(i) = u(i) + ξ(i) , (17)

where the component u(i) has a slow spatial and temporal dependence, while the component ξ(i)
has a fast spatial and temporal dependence; the component u corresponds to a "macroscopic"
motion, while the component ξ corresponds to a "microscopic" motion. We are interested in the
motion of the coordinates u, the rapid ξ-motion being the undetermined mechanical motion, or the
statistical motion, or the quantum-mechanical motion. We shall average the microscopic motion,
both spatially and temporally. The average with respect to time gives ξ(i) = 0, ξ̇(i) = 0 and the
vanishing of all the odd powers of ξ(i) and ξ̇(i). Similar results gives the spatial average. The
spatial avearge is performed by means of a coarse-graining procedure, in the sense that summations
over i are understood as ∑

i

=
∑

r,i

, (18)
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where r are some arbitray points and i in the second summation in equation (18) denotes the
particles in the neighbourhood of each point r. It is assumed that the results of the coarse-graining
procedure does not depend on the choice of the points r and the choice of the neighborhoods of
these r-points. The r-points are distributed with a uniform density n. According to this coarse-
graining procedure and the rest of our assumptions, the macroscopic part u(i) of the displacement
field depends only on the position r which defines the neighbourhood the i-th particle belongs
to. We keep the notation u(i) but we understand everywhere the splitting summation procedure
given in equation (18). It is this two-scale assumptions, both in space and time, which makes
possible the separation of the macroscopic motion from the microscopic one.

Also, a two-scale decompositon is used for the external field Φ1 and the interaction Φ2,

Φ1 = Φ1s + Φ1f , Φ2 = Φ2s + Φ2f , (19)

where the suffixes s and f denotes the slow and, respectively, fast components of these functions,
both in space and time. The slow components correspond to macroscopic fields and interactions.

Density. The particles density can be represented as

ρ(x) =
∑

i

δ(x− x(i)) =
1

V

∑

q

eiqx
∑

i

e−iqx(i) ; (20)

we can see both the fast spatial dependence in passing from one δ-function to another and the
slow dependence associated with the envelope of the δ-functions; we are interested in the slow
dependence, which means that we may restrict to small wavevectors q in the Fourier decompostion
given by equation (20).

There exists a useful relation between the change δρ in density ρ and the displacement u, as
expected, which justifies the denomination of density motion (density-fluctuations motion) for the
macroscopic u-motion; we note that there exists an important difference between the non-uniform
density ρ and the uniform density n (concentration), corresponding to the Fourier component q = 0
of ρ; in contrast with n, the non-uniform density ρ includes the density fluctuations, corresponding
to the components q 6= 0. Let us see how the density ρ changes under a displacement field y(i);
we have

ρ̃(x) = 1
V

∑
q
eiqx

∑
i e

−iq(x(i)+u(i)+ξ(i)) =

= 1
V

∑
q
eiqx

∑
i e

−iqx(i)
[
1− iqu(i)− iqξ(i)− 1

2
(qu(i) + qξ(i))2 + ...

]
;

(21)

we apply the time and space average in this equation; consequently, the ξ-term and the mixed
term which includes u(i)ξ(i) disappear, while the average of the ξ2-term gives a constant; we
express its contribution in terms of a constant ξ; it is easy to see that we are left with

ρ̃(x) = ρ(x)− ∂αρ(x) · uα(x) +
1

2
∂α∂βρ(x) · [uα(x)uβ(x) + ξαξβ] + ... . (22)

This is an expansion in powers of uα and ξα, which can be obtained directly from equation (20):

ρ̃(x) =
∑

i δ(x− x(i)− u(i)− ξ(i)) = ρ(x)−∑i uα(i)∂αδ(x− x(i)+

+1
2

∑
i [uα(i)uβ(i) + ξαξβ] ∂α∂βδ(x− x(i) + ... ,

(23)

where the averages were taken; equation (23) can also be written as

ρ̃(x) = ρ(x)−
∑

i uα(x)∂αδ(x− x(i))+

+1
2

∑
i [uα(x)uβ(x) + ξαξβ] ∂α∂βδ(x− x(i) + ... ,

(24)
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which is equation (22). The change in density given by equation (24) is due to the change in
position; we are interested in the change in density brought about by transport, or particles flow;
this latter variation of density is given by transferring the derivatives upon u (ξ is a constant, so
its contribution disappears); in addition, we replace x by r; we get

ρ̃(r) = ρ(r)

[
1 + divu+

1

2
∂α∂β (uαuβ) + ...

]
. (25)

It is worth noting that the change in density is given by

δρ(r) = ρ(r)− ρ̃(r) = −ρ(r)
[
divu+

1

2
∂α∂β (uαuβ)

]
+ ... (26)

(since the displacement field decreases the density). We can see that a displacement field induces
a change

δn = −ndivu− 1

2
n∂α∂β (uαuβ) + ... (27)

in the uniform density n. The first term in equation (27) can also be obtained by the following
well-known procedure: let r = (x, y, z) and r+∆r = (x+∆x, y, z) be two arbitrary points; for a
displacement field ux the change in particle density is

δn =
nux(x)− nux(x +∆x)

∆x
= −n∂xux ; (28)

obviously, for a general displacement we have δn = −ndivu.

It is worth noting that the change in the total number of particles is given by a surface term;
for a constant number of particles this term should be cancelled out by an additional condition
imposed upon u; a similar additional condition should be imposed, if we use the conservation of
the mean number of particles.

Lagrangian. Let us see how the lagrangian given by equation (15) is changed if a displacement
field is introduced. Since ẋ(i) → ẏ(i), the kinetic term in equation (15) becomes

T =
∑

i

1

2
miẏ(i)

2 ; (29)

similarly, the external field contribution to the lagrangian and the interaction lagrangian become

L1 = −
∑

i

Φ1(x(i) + y(i)) = −
∑

i

[
Φ1(i) + ∂iαΦ1(i) · yα(i) +

1

2
∂iα∂

i
βΦ1(i) · yα(i)yβ(i) + ...

]
(30)

and, respectively,

L2 = −1
2

∑′

ij Φ2(|x(i)− x(j) + y(i)− y(j)|) =

= −1
2

∑′

ij{Φ2(ij) + ∂iαΦ2(ij) · (yα(i)− yα(j))+

+1
2
∂iα∂

i
βΦ2(ij) · (yα(i)− yα(j))(yβ(i)− yβ(j)) + ...} ;

(31)

due to the symmetry of the function Φ2(ij) the interaction term can also be written as

L2 = −1
2

∑′

ij{Φ2(ij) + 2∂iαΦ2(ij) · yα(i)+

+∂iα∂
i
βΦ2(ij) · (yα(i)yβ(i)− yα(i)yβ(j)) + ...} ,

(32)
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or
L2 = −1

2

∑′

ij Φ2(ij)−
∑

i ∂
i
α

(∑′

j Φ2(ij)
)
· yα(i)−

−1
2

∑
i ∂

i
α∂

i
β

(∑′

j Φ2(ij)
)
yα(i)yβ(i) +

1
2

∑′

ij ∂
i
α∂

i
βΦ2(ij) · yα(i)yβ(j) + ... .

(33)

The equations of motion for y(i) are

miÿα(i) + ∂iα∂
i
β

[
Φ1(i) +

∑′

j Φ2(ij)
]
· yβ(i)−

−
∑′

j ∂
i
α∂

i
βΦ2(ij) · yβ(j) = −∂iα

[
Φ1(i) +

∑′

j Φ2(ij)
]
.

(34)

We can see that equations (34) are equations of motion of an ensemble of coupled harmonic
oscillators subject to an external field. As it is well known, the system of equations (34) can be
solved; the solution implies the diagonalization of the spatial coupling, which can be realized by
a Fourier transform; the ensemble exhibits wave-like normal modes, which are known as phonons
(or vibrations of the positions denoted by i). However, the motion remains non-integrable, since
the positions i are arbitrary.

Emergent motion. We introduce the notations

Eα(i) = −∂iα
[
Φ1(i) +

∑′

j Φ2(ij)
]
, Eαβ(i) = −∂αEβ(i) = ∂iα∂

i
β

[
Φ1(i) +

∑′

j Φ2(ij)
]
,

Iαβ(ij) = ∂iα∂
i
βΦ2(ij) ;

(35)

the equations of motion (34) can be written as

miÿα(i) + Eαβ(i)yβ(i)−
∑′

j Iαβ(ij)yβ(j) = Eα(i) ; (36)

in this equation we replace y(i) by u(i)+ξ(i) and use the decomposition in slow and fast compo-
nents of the fields (equations (19)):

mi[üα(i) + ξ̈α(i)] + [Eαβs(i)uβ(i) + Eαβs(i)ξβ(i) + Eαβf (i)uβ(i) + Eαβf (i)ξβ(i)]−

−
∑′

j [Iαβs(ij)uβ(j) + Iαβs(ij)ξβ(j) + Iαβf (ij)uβ(j) + Iαβf(ij)ξβ(j)] = Eαs(i) + Eαf (i) ;

(37)

by using the average procedure the mixed terms of the type (s, ξ) and (f, u) are vanishing; at the
same time, we drop the term Iαβf (ij)ξβ(j) because we assume that the fast microscopic motions
of the i-th and j-th particles are uncorrelated. The term Eαβf (i)ξβ(i) is small, such that the fast
motion is determined by the equation

miξ̈α(i) = Eαf (i) ; (38)

the solution is of the type ξα(i) = −Eαf (i)/miω
2, where ω is a characteristic frequency of the fast

motion; the term Eαβf(i)ξβ(i) becomes

Eαβf (i)ξβ(i) = −∂αEβf (i)
Eβf (i)

miω2
= −∂α

E2
βf (i)

2miω2
; (39)

taking the time average we get
E2

βf(i)

2miω2
=

1

2
miξ̇

2
(i) , (40)
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i.e. the time-averaged kinetic term

Tf(i) =
1

2
miξ̇

2
(i) ; (41)

it acts like an external field ∂αTf in the macroscopic motion. Equally well, we may use
[
E2

βf (i)
]1/2

for this field.5 Usually, the spatial average of Tf does not depend on the spatial coordinates,
such that the corresponding force is vanishing. It may happen that the fast component of the
external field is absent; then the fast motion is determined by equation miξ̈α + Eαβf (i)ξβ(i) = 0,
with corresponding average procedure; in this case the fast motion does not affect in any way the
u-motion.

After applying the average procedure and decoupling the microscopic motion we are left with the
"macroscopic" equations of motion

miüα(i) + Eαβs(i)uβ(i)−
∑′

j Iαβs(ij)uβ(j) = Eαs(i) + ∂αTf(i) ; (42)

we may replace x(i) in this equation by r, give up the suffix s (understanding that we are left
only with macroscopic fields) and replace the summation over j by an integral (we note that the
restriction i 6= j is not effective anymore); also, the mass mi may be replaced by its spatial average
m; we get

müα(r) + Eαβ(r)uβ(r)− n

∫
dr

′

Iαβ(
∣∣∣r− r

′
∣∣∣)uβ(r

′

) = Eα(r) + ∂αTf(r) , (43)

where
Eα(r) = −∂α

[
Φ1(r) + n

∫
dr

′

Φ2(
∣∣r− r

′
∣∣)
]
,

Eαβ(r) = ∂α∂β
[
Φ1(r) + n

∫
dr

′

Φ2(
∣∣r− r

′
∣∣)
]
,

Iαβ(
∣∣r− r

′
∣∣) = ∂α∂βΦ2(

∣∣r− r
′
∣∣) .

(44)

Since the coordinates x(i) are eliminated through integration, the equations of motion (43) are
integrable. They are equations of motion for a field, the displacement field u. These equations
define an emergent dynamics,6 associated with the motion of the density fluctuations. Since the
field u depends on both the time and position, the total derivative u̇ = du/dt may be replaced
by the partial derivative ∂u/∂t; we note that the field u is defined at the position x(i), which,
according to our hypotheses, is fixed.

Effective lagrangian. Let us apply the average procedure to the lagrangian given by equations
(29), (30) and (33). The kinetic energy (equation (29)) reads

T =
∑

i

1

2
mi(u̇

2(i) + 2u̇ξ̇ + ξ̇
2
(i)) ; (45)

by the time average the mixed u̇ξ̇-term disapears.

In the remaining part L1+L2 of the lagrangian we neglect the mixed terms arising from slow-fast
combinations with an odd number of fast contributions, including the lack of correlations between

5See, for instance, M. Apostol and L. C. Cune, "Molecular dynamics in high electric fields", Chem. Phys. 472

262-269 (2016).
6P. W. Anderson, "More is different", Science 177 393-396 (1972).
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the partners of the (ij)-pairs; we are left with

L1 + L2 =
∑

iEαs(i)uα(i) +
∑

iEαf(i)ξα(i)−

−1
2

∑
i[Eαβs(i)uα(i)uβ(i) + Eαβs(i)ξα(i)ξβ(i) + Eαβf (i)uα(i)ξβ(i) + Eαβf (i)uβ(i)ξα(i)]+

+1
2

∑′

ij[Iαβs(ij)uα(i)uβ(j) + Iαβf (ij)ξα(i)ξβ(j)] ;

(46)

we take the variation of the lagrangian with respect to the coordinates uα(i) and ξα(i), and
consider the leading contributions to the equations of motion for the coordinates ξα(i); making
use of equation (45) these equations of motion is equation (38),

miξ̈α(i) = Eαf (i) ; (47)

we solve this equation and introduce the solution in the lagrangian; we can see that the terms
quadratic in ξα are small in comparison with the rest of the terms, and may be neglected (in the
equations of motion these terms disappear by averaging); in addition, the ξ̇

2
-kinetic term and the

term
∑

iEαf (i)ξα(i) give the lagrangian for the ξ-motion, and they can be left aside; the terms
Eαβf (i)uα(i)ξβ(i) and Eαβf (i)uβ(i)ξα(i) give the slow contribution of the term Tf in equation (42);
finally, we get

L =
∑

i
1
2
miu̇

2(i)− 1
2

∑
iEαβs(i)uα(i)uβ(i) +

1
2

∑′

ij Iαβs(ij)uα(i)uβ(j)+

+
∑

iEαs(i)uα(i) +
∑

i ∂αTf (i)uα(i) ,

(48)

which leads to the equations of motion (42). By spatial averaging and passing to integration, the
macroscopic lagrangian is

L = n
∫
dr1

2
mu̇2(r)− 1

2
n
∫
drEαβ(r)uα(r)uβ(r) +

1
2
n2
∫
drdr

′

Iαβ(
∣∣r− r

′
∣∣)uα(r)uβ(r

′

)+

+n
∫
drEα(r)uα(r) + n

∫
dr∂αTf (r)uα(r) ,

(49)

which leads to the equations of motion (43).

We note that the decoupling of the macroscopic motion from the microscopic one is accomplished
as a consequence of the recognition of the two distinct space-time scales. If this distinction is not
sharp, then mixed terms are present in dynamics; such a typical term is the mixed kinetic term∑

imiu̇ξ̇, which leads to an uncertainty in energy of the order
√
εuεξ, where εu,ξ are the mean

energies per particle, corresponding to the u- and, respectively the ξ-motion. This uncertainty in
energy leads to dissipation of energy and relaxation.7

Also, it is worth noting that we have assumed that the displacement u is much smaller than the
wavelengths; if a particle has a long excursion u(i), its place is taken by another identical particle,
and we may attribute the displacement to this process, such that the displacement is indeed
small; similarly, small displacements can be be viewed as long ones, by transferring each of them
to neighbouring, identical particles. Non-inertial motion may give rise to a "large" displacement
field, leading to electromagnetic emission and gyroelectric and gyromagnetic effects.8 According

7See, for instance, M. Apostol, "Dynamics of collective density modes in multi-component molecular mixtures",
Phys. Chem. Liquids 47 35-44 (2009).

8M. Apostol, "Non-inertial electromagnetic effects in matter. Gyromagnetic efffect", Solid State Commun. 152

1567-1571 (2012).
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to this picture we may say that the formalism of the u-motion described here corresponds to the
so-called Euler equations of motion for fluids.

Equilibrium. It may happen that the switching on of the external field and the interaction
induced by the ensuing change in positions destroy the equilibrium of the ensemble of particles;
it may happen that the ensemble is driven to a new state of equilibrium, or, simply, the motion
collapses. For instance, the second term on the right in Eα in equations (44) generates a field
which may destroy the equilibrium. We can look for a new state of equilibrium by introducing
u = u0+u1 and solve for u0 in the new equilibrium state. Internal fields generated by interaction
disappear on performing such a redefinition of the equilibrium state. Consequently, we disregard
such terms in the equations of motion, which become

müα(r) + n∂α∂β
∫
dr

′

Φ2(
∣∣r− r

′
∣∣) · uβ(r)− n∂α∂β

∫
dr

′

Φ2(
∣∣r− r

′
∣∣)uβ(r

′

) =

= −∂αΦ1(r)− ∂α∂βΦ1(r) · uβ(r) ,
(50)

where we omit the Tf -term. The second term on the left in this equation is a self-energy (self-
interaction) term, while the third term on the left is an interaction term. The first term on the
right in equation (50) is a typical external-field interaction term, while the second term on the
right can be viewed as a ponderomotive force due to the (slow) spatial variation of the external
field.

Equations (50) may satisfy some necessary conditions of equilibrium, but they may not necessarily
satisfy sufficient conditions of equilibrium. The general criterion of equilibrium (stability) is a
minimum of the energy of the ensemble. For instance, for short-range interaction it is necessary
to have a positive self-energy, which implies a repulsive short-range interaction; however, the
equilibrium requires also an attractive overall force, which should be provided by external forces,
e.g., acting as boundary conditions. For (long-range) Coulomb interaction the repulsive self-energy
of the ensemble is infinite; it is easy to see that a neutralizing, rigid background of electric charges
provides exactly a self-energy term with opposite sign, such that the self-energy term should be
omitted in equations (50); formally, such a term is of the same form as the second term on the right
in equations (50) (i.e., an "external" field provided by the internal background). Consequently,
for Colomb interacting charges the equations of motion read

müα(r)− n∂α∂β
∫
dr

′

Φ2(
∣∣r− r

′
∣∣)uβ(r

′

) = −∂αΦ1(r)− ∂α∂βΦ1(r) · uβ(r) . (51)

Also, we note that the equations of motion (50) and (51) remain valid for a non-uniform density
n, which should be introduced under the integral sign in the interaction terms.

Energy conservation. If we multiply the equations of motion (50) by u̇α, sum over α and make
use of the symmetry of the tensors involved in these equations, we get the energy conservation

d
dt

[
1
2
mu̇2 + 1

2
n∂α∂β

(∫
dr

′

Φ2

)
· uαuβ

]
− n∂α∂β

∫
dr

′

Φ2u
′

β · u̇α =

= −∂αΦ1 · u̇α − 1
2
∂α∂βΦ1

d
dt
(uαuβ) ,

(52)

where in square brackets we have the energy density and in the term on the right we have the
density of mechanical work done by external forces per unit time; the second term on the left is a
mechanical work done by interaction (the interaction is assumed independent of time). We note
that the mechanical work done by the ponderomotive forces generated by the external field is an
energy density. Integrating over r we get the conservation of the total energy.
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Boundary conditions. We can see from equations (50) that the internal force which acts upon
the u-field is

Fα(r) = −n∂α∂β
(∫

dr
′

Φ2

)
· uβ + n∂α∂β

∫
dr

′

Φ2u
′

β , (53)

where u
′

β stands for uβ(r
′

). For a short-range interaction Φ2(| r − r
′ |) = vΦ2δ(r − r

′

), where Φ2

is a constant and v is the volume associated with one particle (nv = 1), the self-energy term in
equation (53) disappears, and we are left with the equation of motion

mü− Φ2grad · divu = E (54)

(where we neglect the ponderomotive force) and the internal force

Fα(r) = Φ2∂α∂βuβ . (55)

The total force acting upon the volume V is
∫

V

drFα = Φ2

∮

S

dSsβ(∂αuβ) |S , (56)

where S is the surface which bounds the volume V and sβ are the components of the normal s to
the surface S. It is convenient to introduce the curvilinear cordinates s along the normal to the
surface S (denoted also by z or x3, for instance) and t (for instance, x, y or x1 x2), parallel to the
surface S (lying in the plane paralel with the plane tangent to S in any point). Then, we can see
that the contributions arising from α = t in equation (56) are zero, and we are left with

∫

V

drFt = 0 ,

∫

V

drFs = Φ2

∮

S

dS(∂sus) |S ; (57)

it follows that
nΦ2sβ(∂suβ) |S= nΦ2(∂sus) |S= −Ps (58)

is the force acting (normal, inwards) upon the unit area of the surface; equation (58) serves
as boundary conditions for the u-motion with short-range forces. We can note that equations
(54) with the boundary conditions given by equation (58) define the deformation motion of a
homogeneous, isotropic solid with only one Lame coefficient (dilatational coefficient λ with the
notations of Elasticity). The motion is governed by a potential Φ, such that u = gradΦ. The
surface force Ps in equation (58) is the pressure.

For (long-range) Coulomb interaction we consider equations of motion (51) and point charges q
interacting through the Coulomb potential Φ2 = q2/ | r− r

′ |; we get

n2sβ

(
∂s

∫
dr

′

Φ2u
′

β

)
|S= n2

(
∂s

∫
dr

′

Φ2u
′

s

)
|S= −Ps (59)

for the surface force; if the displacement is given by a potential Φ, u = gradΦ, effecting the surface
integral in the total force, we get

−4πn2q2Φ |s= −Ps (60)

for the boundary conditions. For a uniform displacement the surface force is vanishing for a short-
range interaction (equation (58), the surface is free) and non-vanishing for a Coulomb interaction
(in both cases the number of particles is conserved).

It is worth noting that a non-uniform density changes the boundary conditions given above.
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Short-range interaction. Let us consider an ensemble of particles at equilibrium, interacting by
short-range forces and subject to an external field; the equations of motion for the displacement
field are

müα + n∂α∂β
∫
dr

′

Φ2 · uβ − n∂α∂β
∫
dr

′

Φ2u
′

β = −∂αΦ1 , (61)

where we omit the ponderomotive force −∂α∂βΦ1 · uβ arising from the external field (equations
(50)). For a short-range interaction Φ2(| r − r

′ |) = vΦ2δ(r − r
′

), where Φ2 is a constant, the
equations of motion (61) become

müα − Φ2∂αdivu = −∂αΦ1 (62)

(vn = 1). We can see that the self-energy term disappears (it does not for a non-uniform density).
Taking the div in equation (62) we get the wave equation

m
∂2

∂t2
δn− Φ2∆δn = n∆Φ1 = −ndivE , (63)

for the density, with c =
√

Φ2/m the wave velocity (Φ2 > 0). It describes the "kinetic" sound (or
"anomalous" sound, distinct from the hydrodinamic, equilibrium sound) in interacting condensed
matter.9

This result is valid as long as the mean inter-particle separation a goes to zero (a → 0); for a
small, but finite a, there exist additional contributions to the equations of motion; for instance,
the second term in equation (61) is of the order naΦ2uα. Let us estimate these contributions for
an ensemble of particles confined to a sphere of radius R. With the origin in the centre of the
sphere we get

J =

∫
dr

′

Φ2 = 2π

∫ R

0

dr
′

r
′2

∫ 1

−1

duΦ2(
√
r2 + r′2 − 2rr′u) ; (64)

making use of the substitution ρ =
√
r2 + r′2 − 2rr′u this integral becomes

J =
2π

r

∫ R

0

dr
′

r
′

∫ r+r
′

|r−r′ |

dρ · ρΦ2(ρ) =
2π

r

∫ a

−a

dx(r + x)

∫ 2r+x

|x|

dρ · ρΦ2(ρ) , (65)

where r
′

= r + x; the leading contribution to this integral is

J = 4πaF (2r) , (66)

where F is the primitive function of ρΦ2(ρ); the second term in equation (61) becomes

n∂α∂β

∫
dr

′

Φ2 · uβ = n∂α∂βJ · uβ ≃ 16πnaΦ2(2r)uα . (67)

We can see that this term yields an eigenfrequency for the u-oscillators located in the core of
the ensemble; for r < a/2 it reduces to a particle. For a short-range (repulsive) interaction this
eigenfrequency, denoted by ωc, is given approximately by

ω2
c ≃

16πnaΦ2

m
. (68)

9Called "densiton" waves in M. Apostol, "Dynamics of collective density modes in multi-component molecular
mixtures", Phys. Chem. Liquids 47 35-44 (2009); they prevail in solids, as phonons, are hindered in gases by
the hydrodynamic sound and are inter-mixed with the hydrodynamic sound in liquids. It is worth noting that the
displacement in the hydrodynamic sound is small (much smaller than the mean inter-particle separation a), while
the displacement in the u-motion described here is larger than a (but smaller than the wavelegths). For small
displacement the interaction is replaced by the compressibility coefficient.
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It is worth noting that the estimation of the integral J in equation (66) holds for any space region
the ensemble is confined to, not only for a sphere.

The third term in equations (61) can be written as

−n∂α∂β
∫
dr

′

Φ2u
′

β = n∂α

∫
dr

′

∂
′

βΦ2u
′

β = n∂α

∮

S

dS
′

(Φ2u
′

)− n∂α

∫
dr

′

Φ2div
′

u ; (69)

we can check that for a short-range interaction the surface term is vanishing (for any r inside
the sphere), while the second term on the right in equation (69) is −Φ2∂αdivu, which appears in
equation (62). On the other hand, it is easy to see that the surface term is of the form ∂αf(r),
where f(r) is a function of r resulted from the surface integration; its magnitude is of the order
a2Φ2uR, where uR is the mean radial displacement on the surface; we get

n∂α

∮

S

dS
′

(Φ2u
′

) ≃ naΦ2uR
Xα

R
(70)

for the surface term, which may be neglected in comparison with the external force.

Taking into account all these results we get the equations of motion

müα +mω2
cuα − Φ2∂αdivu = −∂αΦ1 , (71)

or
ü+ ω2

cu− c2grad · divu = E ; (72)

the ωc-term is valid only for the core r < a/2; for the rest of the ensemble ωc = 0; we may take
an average eigenfrequency ωc extended to the whole ensemble.

If the external field E = E0e
−iωt does not depend on position (for instance, an electric field in

the dipole approximation) we get u = −E0e
−iωt/(ω2 − ω2

c ) (a similar solution is obtained if a
spatial dependence would be present). We can see that there exists a resonance in the response
of the ensemble as a whole, which may be called a "giant" resonance. We note that for a uniform
displacement the total internal force in equation (72) is

∫
drmω2

cu ∼ a4, which may be neglected
(it is taken over by the rest of the ensemble and compensated by boundary forces).

The above results can be applied to the atomic nucleus.10 For the mean separation distance we
take a = 10−13cm (1fm), the nucleon mass is m ≃ 10−24g and for the interaction energy Φ2 we
take the mean cohesion energy per nucleon, Φ2 ≃ 10MeV ; we get ~ωc ≃ 10MeV (where ~ is
Planck’s constant).

Coulomb interaction. For ensembles of electric charges at equlibrium, interacting through
(long-range) Coulomb forces, the self-energy is absent in the equations of motion, which read
(equations (51))

müα − n∂α∂β
∫
dr

′

Φ2u
′

β = −∂αΦ1(r) (73)

(we leave aside the ponderomotive term). However, it is worth noting that a short-range interaction
may be present, as, for instance, the molecular electric field acting upon electrons in the Drude
model of polarizable matter,11 which may generate a self-energy.

The interaction term
Emf

α (r) = n∂α∂β

∫
dr

′

Φ2(
∣∣∣r− r

′
∣∣∣)uβ(r

′

) (74)

10M. Apostol and M. Ganciu, "Coupling of (ultra-) relativistic atomic nuclei with photons", AIP Advances 3

112133 (2013).
11M.Apostol, Essays in Electromagnetism and Matter, Lambert (2013).
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is a mean field; it may be determined self-consistently from the equations of motion. For Coulomb
forces the mean field is determined from the equations of the electric field. Indeed, for an infinite
ensemble, where we may leave aside the surface term, we can write

Emf
α (r) = n∂α

∫
dr

′

∂βΦ2(
∣∣r− r

′
∣∣)uβ(r

′

) = −n∂α
∫
dr

′

∂
′

βΦ2(
∣∣r− r

′
∣∣)uβ(r

′

) =

= −∂α
∫
dr

′

Φ2(
∣∣r− r

′
∣∣)δn(r′

) ;
(75)

for an ensemble of point charges q interacting by a Coulomb potential (plasma) we get easily

divEmf(r) = −
∫
dr

′

∆rΦ2(
∣∣∣r− r

′
∣∣∣)δn(r′

) = 4πq2δn(r) = −4πnq2divu(r) , (76)

whence
Emf(r) = −4πnq2u(r) ; (77)

we can see that the interaction is "solved" for such an ensemble, and the equations of motion (73)
become

mü+ 4πnq2u = E , (78)

where ωp = (4πnq2/m)1/2 is the plasma frequency (as it is well known, the resonance with the
frequency ωp is called plasmon).

For a finite-size ensemble the surface term of the interaction should be included. For a uniform
external field it is sufficient to expand the displacement u and the Coulomb interaction q2/

∣∣r− r
′
∣∣

in series of Legendre polynomials Pl(cos θ) , where θ is the angle between r and r
′

; apart from
normal modes, we can see that only the component l = 0 (u) is driven by the external field, with
Emf = −(4πnq2/3)u;12 it follows that the plasma eigenfrequency for a sphere is ωp = (4πnq2/3)1/2

("spherical" plasmon).13 Since such modes occur for finite-size ensembles they are also called
sometime "surface" plasmons, though damped modes are properly called surface plasmons. We
note that the surface term disappears also for a uniform displacement of a plasma confined to an
infinite slab, in which case the plasma frequency is ωp = (4πnq2/m)1/2; since the displacement is
uniform, we can view it as being restricted to the surfaces of the slab; then, the mean field can
be viewed as a (de-) polarizing field; in the static case, it compensates the external field (as in
conductors).

A non-uniform density occurs in principle in Coulomb interacting ensembles through the screening
length. In a classical plasma the density is Boltzmann distributed, n ∼ e−βqϕ, where β = 1/T is the
inverse of the temperature T , q is particle charge and ϕ is the potential; there exists a change δn =
−nβqϕ in density, such that the Poisson equation for the potential is ∆ϕ = −4πqδ(r)+4πnβq2ϕ;
with solution ϕ = (q/r)e−κr, where κ =

√
4πnβq2; κ−1 is the Debye screening length. In normal

conditions, a classical plasma has a pressure p = 106dyn/cm2, a temperature T = 300K and
a mean inter-particle separation a = (T/p)1/3 ≃ 35Å; for electrons q = 4.8 × 10−10esu; the
Debye screening length is κ−1 ≃ 10−1a (q2/a = 7 × 10−13erg, T = 4 × 10−14erg); it is too
small to affect appreciably the density. For a degenerate plasma (cold, quantum-mechanical,
higly-correlated plasma), like electrons in solids, the screening length is of the order of mean
inter-particle separation,14 which again justifies a quasi-uniform density.

12M. Apostol and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere",
Progr. Electrom. Res. PIER 98 97-118 (2009).

13It is also worth noting that the self-energy n∂α∂β
∫
dr

′

Φ2 · uβ for the Coulomb interaction in a sphere is
−(4πnq2/3)uα.

14L. C. Cune and M. Apostol, "Ground-state energy and geometric magic numbers for homo-atomic metallic
clusters", Phys. Lett. A273 117-124 (2000).
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Granular matter. Granular matter consists of microscopic grains (micro-domains), physically
assembled, which, usually, carry an electric charge (the ensemble being electrically neutral); this
is known as the Maxwell-Wagner-Sillars effect.15 Let us consider a uniform distribution of such
identical domains, with total density n, each with mass M and charge ±Q. Under the action of a
external, uniform electric field E the equations of motion for the displacement u± corresponding
to the two species of domains (equations (43), (73)) are

Mü+α − n
2

∫
dr

′

Iαβ(
∣∣r− r

′
∣∣)[u+β(r

′

)− u−β(r
′

)] = Eα ,

Mü−α − n
2

∫
dr

′

Iαβ(
∣∣r− r

′
∣∣)[u−β(r

′

)− u+β(r
′

)] = −Eα ;
(79)

the relative motion of any pair is described by

M∆üα − n

∫
dr

′

Iαβ(
∣∣∣r− r

′
∣∣∣)∆uβ(r

′

) = 2Eα , (80)

where ∆u = u+ − u−, while the center of mass is free; the interaction is Coulombian. The mean
field defined by

Emf
α = n

∫
dr

′

Iαβ(
∣∣∣r− r

′
∣∣∣)∆uβ(r

′

) (81)

is Emf = −4πnQ2∆u (equation (77)); we can see that it generates a plasma eigenfrequency

ωp =

(
4πnQ2

M

)1/2

. (82)

We give here an estimation of this frequency. The grain density is n = 1/R3, where R is the linear
dimension of the grains. The number of atoms in a grain is N = (R/a)3, where a is the linear
dimension of an atom; we take 105m for atomic mass, where m = 10−27g is the electron mass, such
that the mass of a grain is M = 105(R/a)3m. The charge Q is determined from the condition of
electrostatic equilibrium Qq/R = ε = q2/a, where q is the electron charge (q = 4.8× 10−10esu); ε
is the cohesion energy of an electron, which is approximately of the order q2/a; we get Q = q(R/a)
and ωp = (10−5q2a/m)1/2R−2. For a = 3Å and R = 1µm (10−4cm) we get ωp ≃ 1011s−1. More
probably, the grains are larger and the charge Q is smaller, such that their plasma freqency may
lie in the radio range.

An additional short-range interaction exists between the grains, like, for instance, a dipolar in-
teraction; other interaction may be induced by the external field; consequently, the equilibrium
may be modified under the action of an external field, and the plasma frequency may be modified,
temporarily; it is known that relaxation phenomena are important in such matter.

In this context it is also wortwhile estimating the dipolar electromagnetic emission of a sample of
granular matter. It is well known that the dipolar intensity (energy per unit time) is I = 2d2ω4/3c3,
where d = Q∆u is the electric dipole; since Mω2∆u = −QE, where E is the external electric
field, we get I ≃ Q4E2/M2c3; taking E/V for E2, where E is the external energy, we get the
total emitted intensity I ≃ (Q4n/M2c3ω)Iex, where Iex is the external, input intensity. Making
use of the numerical data given above (Q ≃ 10−6esu, M ≃ 10−11g, n ≃ 1011cm−3, ω = ωp), we
get I ≃ 10−33Iex, which is an extremely small output, as expected, because the external energy is
ineffective in the large grains volume.

15See, for instance, M. Apostol, S. Ilie, A. Petrut, M. Savu and S. Toba, "Induced displacive trasition in hetero-
geneous materials", Eur. Phys. J. Appl. Phys. 59 10401 (2012).
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Surface terms. As it is well known, the derivatives in the lagrangian and the equations of
motion mean that the equations of motion are valid inside the domain occupied by the ensemble;
on the other hand, the boundary conditions imply the limit of the functions and their derivatives
on the surface; hence, the functions should be continuous and differentiable. It follows that a
distinction can be made between volume and surface terms. Indeed, by using the Gauss’s theorem
in equations (50) we get

müα − n∂α
∮
S
dSΦ2(|r−R|) · us(r) + n∂α

∮
dSΦ2(|r−R|)us(R)−

−n∂α
∫
V
dr

′

Φ2(
∣∣r− r

′
∣∣)divu(r′

) = Eα ,
(83)

where us is the component normal to the surface S, R is a position vector on the surface S and
V is the volume of the ensemble. We can see that the self-energy term is in fact a surface term;16

the term which includes divu is a volume term. For a uniform displacement the surface terms in
equations (83) cancel out (for short-range interaction). For Coulomb interaction the self-energy
is absent and for a uniform displacement we are left only with the surface term. For a sphere
us = u cos θ for a uniform displacement u and the evaluation of the surface term in equation
(83) gives (4πnq2/3)u, as expected. It is worth noting that we may view the restriction of the
displacement u to the domain V as uθ(s0 − s), where θ is the step function, s is the coordinate
along the normal to the surface and s0 is the value of this coordinate on the surface; then, we
may extend the integral over the volume V in equations (83) to the whole space by introducing
the factor θ(s0 − s

′

); this factor can be absorbed in divu, by using the identity

divu · θ(s0 − s
′

) = div[u
′

θ(s0 − s
′

)] + us′δ(s
′ − s0) ; (84)

we can see that the surface interaction term disappears in equations (83), which now read

müα − n∂α
∮
S
dSΦ2(|r−R|) · us(r)− n∂α

∫
dr

′

Φ2(
∣∣r− r

′
∣∣)div[u′

θ(s0 − s
′

)] = Eα . (85)

where the volume integral is extended to the whole space; a factor θ(s0 − s) may multiply the
rest of the terms in equation (85), such that we solve this equation in the whole space and the
restriction of the solution to the domain V is the solution of our problem. It is also worth noting
that in Gauss’s equation divE = 4πρ, where ρ is a charge density, the restriction to a finite domain
implies div[Eθ(s0 − s)] = divE · θ(s0 − s)− Esδ(s− s0), which indicates the presence of (half) a
surface charge density Es/4π (corresponding volume charge Esδ(s− s0)/4π).

For short-range interaction a non-uniform density may appear near the surface,17 in which case a
self-energy is present in the equations of motion, which has the appearrance of surface contribu-
tions.

Fluids. There exists an important generalization of the description given here to the density mo-
tion, which arises from contemplating fluids. Let us consider small amounts of matter, sufficiently
large to be viewed as macroscopic matter but, at the same time, sufficiently small to be viewed
as particles. Being macroscopic, such particles are free of fast motions, in particular brownian
motion, statistical or quantum-mechanical motion. Their dynamics is governed by equations (50)

16In the derivation made above of the eigenfrequency ωc it was assumed that the short-range interaction is
different from zero only inside a small domain of linear dimension of the order a and the self-energy was estimated
on the surface of this small domain.

17For Coulomb interaction a double layer appears at the surface, which ensures the stability; it implies a specific
surface density contribution (See, for instance, L. C Cune and M. Apostol, "Metallic clusters deposited on surface",
J. Theor. Phys. 77 (2002) and L. C Cune and M. Apostol, "Metallic clusters and nanostructures", J. Theor. Phys.
78 (2002) ).
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or (51) (they can be electrically charged), with some important modifications. First, the positions
denoted by i in deriving the equations of motion are not fixed anymore, since these particles may
flow now. Consequently, the transiton from the total time derivative to the partial one is not
warranted anymore, and we have to return to the total time derivative in the equations of motion;
it is convenient to use the velocity in this case, instead of the displacement. Second, the density of
these particles is, in general, non-uniform, and it may change; the fluid may be compressible; it is
convenient to use a non-uniform mass density ρ = mn instead of the concentration n. Let us con-
sider that these particels interact by short-range forces given by the interaction Φ2 = vΦ2δ(r−r

′

),
where v and Φ2 are constants Then, the equations of motion (50) become

m

(
∂vα
∂t

+ (vgrad)vα

)
+ vΦ2(∂α∂βn)uβ − vΦ2∂α∂β(nuβ) = Eα , (86)

where v is velocity, or

m

(
∂vα
∂t

+ (vgrad)vα

)
− vΦ2∂βn · ∂αuβ − vΦ2∂α(ndivu) = Eα ; (87)

we may consider here a constant, non-uniform displacement u0, such that the total displacement
is u+ u0; we get

m
(
∂vα
∂t

+ (vgrad)vα
)
− vΦ2∂βn · ∂αuβ − vΦ2∂βn · ∂αu0β − vΦ2∂α(ndivu) =

= vΦ2∂α(ndivu
0) + Eα ;

(88)

we note that −Φ2(ndivu
0) = p0 is pressure; introducing the mass density we get

ρ
(
∂vα
∂t

+ (vgrad)vα
)
− nvΦ2

m
∂βρ · ∂αuβ − nvΦ2

m
∂βρ · ∂αu0β − nvΦ2

m
∂α(ρdivu) =

= −nv∂αp + nEα ,
(89)

where p may include the internal pressure (actually, the variations of the internal pressure) beside
the external pressure p0. The existence of the internal pressure is an important feature of the
condensed matter at statistical equilibrium. Since the fluid is viewed as being continuous (both
at macroscopic and microscopic scales), we may take vn = 1, m the molecular mass and Φ2 the
interaction at the microscopic scale. Equation (89) becomes

∂vα
∂t

+ (vgrad)vα − Φ2

ρm
∂βρ · ∂αuβ − Φ2

ρm
∂βρ · ∂αu0β − Φ2

ρm
∂α(ρdivu) =

= −1
ρ
∂αp+ fα ,

(90)

where f is force per unit mass. The continuity equation

∂ρ

∂t
+ divρv = 0 (91)

should be added (mass conservation).

Equations (90) and (91) describe the density motion of a fluid, i.e. the motion of the displacement
field u (where v = du/dt); it is worth noting that we should give the initial displacement u0 if an
external pressure is present. If the internal pressure is viewed as an unknown, then the necessary
supplementary equation is provided by the adiabatic motion of the ideal fluid, which reads ds/dt =
0, i.e. ∂s/∂t + vgrads = 0, where s is the entropy per unit mass (or ∂(ρs)/∂t + div(ρsv) = 0,
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making use of the continuity equation); if there exist friction or thermoconduction, the entropy
is not conserved (and the ensemble is not at equilibrium). The density motion is, in general, a
non-equilibrium motion; however, the change it may produce in entropy is small, since, on one
hand, it affects a small amount of degrees of freedom (uq ≪ 1) and, on the other hand, it is
produced by small external forces. An important simplification is obtained for a uniform density
in the equilibrium state (which entails a vanishing u0 for ideal fluids), where equations (90) and
(91) become

∂v
∂t

+ (vgrad)v− Φ2

m
grad · divu = −grad(p/ρ) + f (92)

and divv = 0; for small velocities we may neglect the term (vgrad)v. For small displacements
the interaction may be neglected and we get the well-known Euler equations for the fluid flow

∂v
∂t

+ (vgrad)v = −1
ρ
gradp+ f , (93)

where p may include an external pressure. For the (adiabatic) change in pressure we have δp =
(∂p/∂V )SδV and δV/V = −δn/n = divu; we get

ü− [−V (∂p/∂V )S/ρ]grad · divu = f , (94)

which describe the sound. The Euler equations are equilibrium equations.

We can use the identity v× curlv = grad(v2/2)− (vgrad)v in Euler’s equation, which becomes

∂v
∂t

+ grad(v2/2)− v × curlv = −1
ρ
gradp+ f (95)

and
∂
∂t
(curlv)− curl(v× curlv) = curlf (96)

(for an incompressible fluid); the fluid exhibits both a potential (irrotational, gradient) and a
vorticial (solenoidal) flow. Equation (96) shows that the vorticity

∮
vdl equals the circulation of

the force f ; for f = −gradΦ1 the vorticity is conserved, curlv = 0 and we may put v = gradψ,
where ψ is a scalar (velocity) potential; in that case, the flow is potential. Also, for small velocity
we may consider the flow potential; then, from equation (95) we get

∂ψ

∂t
+

1

2
v2 +

1

ρ
p+ Φ1 = 0 , (97)

which is a first integral of Euler’s equation (for incompressible, irrotational flow). Equations (96)
and (97) are similar with the Helmholtz decompositon for the motion of the elastic deformations.
Similarly, under the same conditions, from equation (92) we get

∂ψ

∂t
+

1

2
v2 − Φ2

m
divu+

1

ρ
p+ Φ1 = 0 , (98)

where c =
√

Φ2/m is the wave velocity.

Concluding remarks. The motion of the density is considered in this paper by means of the
displacement field. The disentanglement of the macroscopic density motion from the motion at
the microscopic level is achieved by identifying two scales of slow and, respectively, fast motion.
The equations of motion and the effective lagrangian are derived for short-range and (long-range)
Colomb interactions, corresponding to gases, liquids, solids, atomic nuclei and, respectively, plas-
mas. The relevant boundary conditions are derived for this motion. For short-range interaction
the density motion is the motion of the deformation of elastic, homogeneous, isotropic solids with
only one Lame coefficient (dilatational motion). The density motion may imply diplacements
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larger than the mean inter-particle separation, in contrast with the displacement in the hydrody-
namic sound, which is limited to displacements smaller than the mean inter-particle separation.
The latter provides equlibrium motion, with constant entropy, while the former addresses also the
non-equilibrium motion. Also, the density motion implies the particle interaction, while the sound
implies the compressibility coefficient.
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